Supplementary material: biosynthetic pathways of amino acids

This section supplements the main text describing the procedures and results regarding the
reconstruction of the biosynthetic pathways for amino acids in Deianiraea, and the phylogenetic
analyses of the genes involved.

The prediction of the function of each gene putatively involved in the pathways was verified
in detail by manual inspection of blastp results against NCBI databases, and conserved domain
search results (Marchler-Bauer et al. 2015). The pathways were reconstructed manually with the
reference of Biocyc (Caspi et al. 2016), Pathway tools (Karp et al. 2015), and KEGG (Kanehisa et
al. 2016), which were also used for comparing with other bacteria. In particular, the presence in
other Rickettsiales (excluding samples coming from metagenomic projects) of all the genes
involved in amino acid biosynthesis (both those present in Deianiraea and those absent) was further
directly evaluated by taxon-specific blastp searches. In order to consider a biosynthetic pathway
present in a given organism, two main criteria were applied: the gene coding to the last enzymatic
step, giving the final compound, must be present, and half (or more) of the genes specific of the
pathway should be present.

Further analyses were conducted on the five biosynthetic pathways, responsible for the
synthesis of eight amino acids, which were identified as exclusive of Deianiraea respect to all
known Rickettsiales. In particular, phylogenetic analyses were employed to evaluate the
evolutionary origin of those genes and the possibility of horizontal gene transfer (HGT). In order to
identify the orthologs, the predicted proteins from 2644 complete bacterial genomes were
downloaded from NCBI. For each Deianiraea protein analysed, the respective best blastp hit on
each organismal protein set was identified. In order to filter out paralogs, multiple strategies were
employed. First, preliminary screening of the best hits from the NCBI annotation was performed,
followed by examination of preliminary single gene trees (data not shown). Additionally, in the

cases when Deianiraea itself possessed two (or more) paralogous genes, the respective best hits on



each organism were compared, and only the hit with highest identity was retained. Finally, all the
Deianiraea genes that were found to have orthologs in an insufficient and not taxonomically
representative set of organisms (in particular for what concerned the presence in other
Alphaproteobacteria) were discarded from the analysis. Subsequently, the retained genes of each
pathway were treated separately. For each pathway, a representative selection of proteobacterial
organisms plus an outgroup was selected for the analysis. Then, each ortholog was aligned with
MUSCLE and polished with Gblocks, and a concatenated alignment of all orthologs was produced.
For each alignment, ML (maximum likelihood) phylogenetic analyses were performed with
RAXML, after selection of the best model using ProtTest. For comparison, the respective
organismal phylogenies were inferred, by selecting single copy orthogroups with OrthoFinder
(Emms and Kelly 2015), which were aligned, polished and concatenated before ML and BI
phylogenies, as described above. The Shimodaira-Hasegawa (SH) test was performed with
RAXML, in order to compare the phylogeny of each pathway with the respective organismal
phylogeny.

In the following sections, a detailed report is presented on the inferred reconstruction of the five
metabolic pathways exclusive of Deianiraea among Rickettsiales, followed by the respective

phylogenetic results.

Aromatic amino acids synthesis

Biosynthesis of aromatic amino acids (tryptophan, phenylalanine, tyrosine) in bacteria initially
involves the shikimate pathway. This pathway, starting from erythrose 4-phosphate (an intermediate
of the pentose-phosphate pathway) and phosphoenolpyruvate (and requiring another
phosphoenolpyruvate at the 6" step), leads to chorismate through 7 enzymatic steps (Pittard and
Yang 2008; Bender 2012). In turn, chorismate leads to the synthesis of the aromatic amino acids

and other aromatic compounds. The gene sequence of the enzyme catalysing the first step of the



shikimate pathway (3-deoxy-7-phosphoheptulonate synthase) is atypical respect to all
Proteobacteria. Only a limited number of significant blastp hits was found, and always with very
low identity (Supplementary material 15), with sequences assigned to rare bacterial phyla retrieved
in metagenomic samples (Anantharam et al. 2016; Lawson et al. 2017; Probst et al. 2018; Brown
C.T et al. unpublished: [KKT47881.1]).

Additionally, a peculiar gene fusion of enzymatic activities was retrieved (Deia_00424), namely
for the genes encoding in the order the enzymes of the 5™, 4™ and 3™ of the shikimate pathway
(respectively, shikimate kinase AroL, shikimate dehydrogenase AroE, and 3-dehydroquinate
dehydratase AroD). As a matter of fact, several different combinations of gene fusions involved in
the shikimate pathway are common in different evolutionary lineages (Bender 2012). Interestingly,
the 3-dehydroquinate dehydratase is more similar to type [ enzymes found in
Gammaproteobacteria and Betaproteobacteria, rather than to type II, typical in other
Alphaproteobacteria. The gene for the 6™ step of the pathway (3-phosphoshikimate 1-
carboxyvinyltransferase) is present also in two Anaplasmataceae, namely “Ca. Neoehrlichia
lotoris” (Daugherty, S.C et al. unpublished: [LANX01000001]) and “Ca. Xenolissoclinum
pacificiensis” (Kwan and Schmidt 2013).

The biosynthetic pathway for tryptophan immediately deviates after chorismate (five genes for
six enzymatic steps in Escherichia coli). This pathway is absent in Deianiraea and in all other
Rickettsiales: only a single gene (anthranilate phosphoribosyltransferase TrpD) was found in the
Rickettsiales bacterium Ac37b (Felsheim, R.F et al. unpublished. [NZ_CP009217]).

The synthesis of both tyrosine and phenylalanine involves the conversion of chorismate into
prephenate by a chorismate mutase. The following step is specific for each amino acid, involving
prephenate dehydratase for phenylalanine, and prephenate/cyclohexenyl dehydrogenase for
tyrosine. Similarly to other Alphaproteobacteria, in Deianiraea these three enzymatic activities are
encoded by three distinct genes, differently from the other Proteobacteria classes, presenting two

genes, in which different isoforms of chorismate mutase are fused with the each of the other two



enzymes. The last step is the amination of both tyrosine and phenylalanine, performed by a

generalist amino acid aminotransferase (e.g. Deia_00080, Deia 00820, Deia_00902).

Phylogenetic analyses: Used eight genes (operationally subdividing Deia 00424 into three distinct
genes according to the homology-predicted enzymatic activities) and 71 organisms, 1,250 sites. For
the phylogenomics, used 59 ortholog genes and 10,126 sites.

Figure 13.1 Maximum likelihood tree of the eight concatenated genes involved in the aromatic
amino acids biosynthesis with the LG+I+G+F substitution model with 100 bootstrap pseudo-
replicates. The position of Deianiraea genes is unsupported. Scale bar stands for estimated
sequence divergence. Number on branches stand for bootstrap values.

Figure 13.2 Reference maximum likelihood phylogenomic tree of the organisms employed for
phylogenesis in 13.1 with the LG+I+G substitution model with 100 bootstrap pseudo-replicates.
The five proteobacterial classes (as indicated in the figure) are all monophyletic and highly
supported, including the positioning of Deianiraea within Alphaproteobacteria, which is consistent
with the phylogenomic analyses. Scale bar stands for estimated sequence divergence. Number on

branches stand for bootstrap values.
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Branched chain amino acids synthesis

The biosynthesis of the three branched chain amino acids (valine, leucine, isoleucine) involves
a number of shared enzymes (Salmon et al. 2006). Typically, 3-methyloxybutanoate, common
intermediate of leucine and valine, is obtained in three enzymatic steps from two pyruvate
molecules. Two isozymes working in the first step were found in Deianiraea (Deia 00067
acetolactate/acetohydroxybutanoate synthase large subunit; Deia 01102
acetohydroxybutanoate/acetolactate synthase large subunit). A putative homologue is present in
“Occidentia massiliensis” (Rickettsiaceae) (Mediannikov et al. 2014). Another ORF (Deia 1007)
with similarities to the accessory regulatory subunit of acetolactate synthase was identified, but,
since the alignment involved only partial length of database reference sequences (data not shown),
it was judged non-functional and not further considered. The gene for the second step of the
pathway (ketol-acid reductoisomerase) is also present in few Anaplasmataceae, namely “Ca.
Neoehrlichia lotoris” (Daugherty, S.C et al. unpublished [LANXO01000001]) and Anaplasma spp.
(Dark et al. 2009).

For the synthesis of valine from 3-methyloxybutanoate, a single additional step is needed,
exerted by the branched-chain aminotransferase. Contrarily to other genes of the pathway, this is
present in several Rickettsiales, having a likely a broader generalist amino acid aminotransferase
activity, or possibly acting on the biosynthetic intermediates derived from hosts.

For leucine biosynthesis from 3-methyloxybutanoate, three specific enzymatic reactions are
necessary, involving four proteins (two enzymes and a dimeric complex formed by the other two
proteins), plus a fourth terminal amination step performed by the same branched-chain
aminotransferase as for valine.

The most common bacterial biosynthetic pathway for isoleucine starts from the deamination of
threonine, to produce 2-oxobutanoate. This compound is then processed by the same sequential four

enzymes as for valine (including terminal aminotransferase), to obtain isoleucine. The specific gene



for the initial step (threonine deaminase IlvA) is not present in Deianiraea, differently from other
Alphaproteobacteria. A detailed inspection allowed to determine that ORF Deia_ 00356, initially
flagged as an additional homologue of the leucine synthesis protein 2-isopropylmalate synthase,
displays higher homology and similar domain architecture to citramalate synthase (data not shown).
Citramalate synthase is involved in an alternative pathway for the synthesis of isoleucine found in a
growing number of bacteria (Xu et al. 2004; Risso et al. 2008), including Alphaproteobacteria
(Tang et al. 2009; McKinlay et al. 2010). Starting from pyruvate and acetyl-CoA, citramalate is
formed. This compound is then processed by the two terminal leucine synthesis enzymes (excluding
the aminotransferase) to obtain 2-oxobutanoate, which can then enter the canonical pathway. As
possible additional alternative, methionine can also be a source of 2-oxobutyrate, through the

hydrolytic action of methionine gamma-synthase/lyase.

Phylogenetic analysis: Used eight genes and 73 organisms, 2,674 sites. For the phylogenomics,
used 42 ortholog genes and 6,630 sites.

Figure 13.3 Maximum likelihood tree of the eight concatenated genes involved in the branched
amino acids biosynthesis with the LG+I+G substitution model with 100 bootstrap pseudo-
replicates. The position of Deianiraea genes is consistent with organismal phylogeny in 16.7 with
high support. Scale bar stands for estimated sequence divergence. Number on branches stand for
bootstrap values.

Figure 13.4 Reference maximum likelihood phylogenomic tree of the organisms employed for
phylogenesis in 13.3 with the LG+I+G substitution model with 100 bootstrap pseudo-replicates.
The five proteobacterial classes (as indicated in the figure) are all monophyletic and supported,
including the positioning of Deianiraea within Alphaproteobacteria, which is consistent with the
phylogenomic analyses. Scale bar stands for estimated sequence divergence. Number on branches

stand for bootstrap values.
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Figure 13.4
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Cysteine synthesis

In most bacteria cysteine biosynthesis is exerted by a two-step pathway, starting from serine. In
the Deianiraea genome only the second enzyme is encoded (Deia 00050: O-acetylserine
sulfhydrylase/cysteine synthase A CysK). Thus, its substrate(s) acetyl-serine (or phosphoserine)
should be either directly imported from Paramecium, or produced by an unidentified acetyl-(or
phosho)-transferase acting on serine (instead of the canonical serine acetyltransferase/kinase, absent
in Deianiraea). Alternatively, cysteine might also be produced from methionine via the reversed

trans-sulfuration pathway (methionine synthesis pathway) (Bender 2012; Makino et al. 2016)

Phylogenetic analyses: Used one gene and 69 organisms, 261 sites. For the phylogenomics, used
49 ortholog genes and 6,009 sites.

Figure 13.5 Maximum likelihood tree of the gene involved in the cysteine biosynthesis with the
LG+I+G substitution model with 100 bootstrap pseudo-replicates. The position of Deianiraea genes
and the main proteobacterial classes are unsupported. Scale bar stands for estimated sequence
divergence. Number on branches stand for bootstrap values.

Figure 13.6 Reference maximum likelihood phylogenomic tree of the organisms employed for
phylogenesis in 13.5 and with the LG+I+G substitution model with 100 bootstrap pseudo-replicates.
The five proteobacterial classes (as indicated in the figure) are all monophyletic and highly
supported, including the positioning of Deianiraea within Alphaproteobacteria, which is consistent
with the phylogenomic analyses. Scale bar stands for estimated sequence divergence. Number on

branches stand for bootstrap values.
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Histidine synthesis

Biosynthesis of histidine in bacteria is a multi-step pathway, involving ten enzymatic reactions,
starting from 5-phosphoribosyl diphosphate, in turn obtained from the pentose phosphate
intermediate ribose-5-phosphate via the ribose-phosphate diphosphokinase (Bender 2012; Winkler
and Ramos-Montafiez 2009). Depending on the organism, the number of genes involved in the
pathway typically varies from eight to ten, given that alternative combinations of fused or separated
of enzymatic activities for two pair of genes (regarding steps 2"+3™ and 6"+8"™) might occur.
Deianiraea possesses eight genes, with the two fused combinations. In particular, the presence of
the bifunctional fused imidazoleglycerol-phosphate dehydratase/histidinol-phosphatase HisB
(6"+8™ steps) is peculiar. Indeed, almost all Alphaproteobacteria possess separated genes for those
enzymatic activities (with possible exceptions (Tully et al. 2017)), while the fused HisB is more
common in other proteobacterial lineages, such as  Gammaproteobacteria  and
Epsilonproteobacteria. Among Rickettsiales, the gene for the enzyme catalysing the 7™ step
(Deia_00820 Histidinol-phosphate aminotransferase) finds a counterpart in Rickettsiales bacterium
Ac37b (Felsheim, R.F et al. unpublished. [NZ_CP009217]), and possibly in “Candidatus Rickettsia

asemboensis” (Jima et al. 2015).

Phylogenetic analyses Used nine genes (operationally subdividing HisB gene into two distinct
genes according to the homology-predicted enzymatic activities) and 72 organisms, 1,123 sites. For
the phylogenomics, used 56 ortholog genes and 7,917 sites.

Figure 13.7 Maximum likelihood tree of the nine concatenated genes involved in the histidine
biosynthesis with the LG+I+G+F substitution model with 100 bootstrap pseudo-replicates. The
Deianiraea genes are very far-related to any other organism. Scale bar stands for estimated
sequence divergence. Number on branches stand for bootstrap values

Figure 13.8 Reference maximum likelihood phylogenomic tree of the organisms employed for



phylogenesis in 13.7 with the LG+I+G substitution model with 100 bootstrap pseudo-replicates.
The five proteobacterial classes (as indicated in the figure) are all monophyletic and highly
supported, including the positioning of Deianiraea within Alphaproteobacteria, which is consistent
with the phylogenomic analyses. Scale bar stands for estimated sequence divergence. Number on

branches stand for bootstrap values.
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Methionine synthesis and metabolism

In bacteria (including Deianiraea), three enzymatic steps preliminary to the synthesis of
methionine lead from aspartate to homoserine (Bender 2012). The first difference of Deianiraea
respect to other Rickettsiales resides in the last step of this pathway, catalysed by the homoserine
dehydrogenase. This enzymatic activity is indeed absent in all other Rickettsiales except “Ca.
Arcanobacter lacustris” (Martijn et al. 2015), in which homoserine is likely the precursor of
threonine, which cannot be synthesised by any other Rickettsiales (including Deianiraea). In
Deianiraea, the homoserine dehydrogenase activity is fused to aspartate kinase (catalysing the first
step of homoserine synthesis), similarly to many Gammaproteobacteria and Deltaproteobacteria,
and differently respect to most Alphaproteobacteria, possessing separate genes for the two
enzymatic activities.

The bacterial pathway specific for methionine biosynthesis from homoserine involves three to
four steps (Ferla and Patrick 2014; Bender 2012). The first step is always the activation of
homoserine, mostly through acylation from a CoA carrier. This reaction can be catalysed
alternatively catalysed by distinct enzymes (MetA or MetX), depending on the phylogenetic
lineage. While among Alphaproteobacteria the two genes are almost equally abundant (Ferla and
Patrick 2014), Deianiraea lacks both. Considering that it possesses the enzymatic potential for the
following steps, most likely it is able to circumvent such apparent deficiency either by direct import
of activated homoserine, or by producing it autonomously through a different reaction. Interestingly,
according to blastp search, another ORF (Deia 00649) finds some homology to proteins annotated
as “Methionine biosynthesis protein MetW”, mostly belonging to other Alphaproteobacteria
(Supplementary material 15). This protein was suggested to be involved in the acylation of
homoserine, possibly in cooperation with MetX (Andersen et al. 1998; Alaminos and Ramos 2001).
Thus, ORF Deia 00649 was provisionally included in the Deianiraea gene set for methionine

biosynthesis, while further analyses would be obviously necessary to clarify this point.



Further synthetic steps involve the sulfurylation of the activated homoserine, to produce
homocysteine. Two alternative strategies are employed by bacteria, either a two-step trans-
sulfurylation route, catalysed by cystathionine gamma-synthase (MetB) and cystathionine beta-
lyase (MetC) using cysteine a sulfhydryl group donor, or a direct sulfurylation from free hydrogen
sulfide, catalysed by one among two possible O-acetylhomoserine thiolases (MetY or MetZ). The
four proteins (MetB, MetC, MetY, MetZ) are all homologous, and the apparently redundant
presence of multiple alternative pathways in the same bacterium is frequent. Two complete genes of
belonging to this homology group were identified in Deianiraea (Deia_00032, Deia_00704), plus
an additional much shorter ORF (Deia 00017), which was thus not considered in the analysis.
According to sequence identity, the complete genes were putatively assigned to bacterial MetC and
MetY, respectively. Both of these forms are common in Alphaproteobacteria. The presence of MetC
gene in absence of MetB might be explained by hypothesising a possible bifunctional activity,
involving also the gamma-synthase activity (Ferla and Patrick 2014). Among Rickettsiales, putative
MetC homologues were found also in some Anaplasmataceae, in particular several Wolbachia (e.g.
Foster et al. 2005), “Ca. Neoehrlichia lotoris” (Daugherty, S.C et al. unpublished:
[LANX01000001]), and few Anaplasma species (4. marginale and A. centrale) (Dark et al. 2009;
Herndon et al. 2010).

The last biosynthetic step is the methylation of homocysteine, to obtain methionine. Two
distinct homocysteine transmethylases can catalyse this reaction, and the two forms might coexist in
the same organism. Deianiraea has two different ORFs (Deia_00662, Deia_00705) belonging to the
same homology group, the cobalamin-independent homocysteine transmethylase MetE (methyl
group donor is S5-methyltetrahydropteroyl-tri-L-glutamate), differently than several other
Alphaproteobacteria, which more frequently display the cobalamin-dependent form.

Another ORF (Deia_00702), encoding the 5,10-methylenetetrahydrofolate reductase MetF,
was taken into account in the analysis. Though not directly involved in methionine biosynthesis, it

is as well related to methionine metabolism, and it is absent in all other Rickettsiales, thus it was



considered putatively relevant, and was included in the analysis.

Phylogenetic analyses: Used three genes and 70 organisms, 1,071 sites. For the phylogenomics,
used 53 ortholog genes and 9,246 sites.

Figure 13.9 Maximum likelihood tree of the three concatenated genes involved in the methionine
biosynthesis with the LG+I+G+F substitution model with 100 bootstrap pseudo-replicates. The
position of Deianiraea genes is unsupported. Scale bar stands for estimated sequence divergence.
Number on branches stand for bootstrap values.

Figure 13.10 Reference maximum likelihood phylogenomic tree of the organisms employed for
phylogenesis in 13.9 with the LG+I+G substitution model with 100 bootstrap pseudo-replicates.
The five proteobacterial classes (as indicated in the figure) are all monophyletic and highly
supported, including the positioning of Deianiraea within Alphaproteobacteria, which is consistent
with the phylogenomic analyses. Scale bar stands for estimated sequence divergence. Number on

branches stand for bootstrap values.
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Conclusions

Summing up, Deianiraea possesses the distinctive ability to synthesise eight amino acids more
than any other known Rickettsiales bacterium. The respective biosynthetic enzymes can be grouped
into five pathways. For each pathway, no evidence of recent HGT was found. Indeed, all the genes
are highly divergent from any other organism (mostly <50% identity), and no relevant trend of
higher similarity to very distantly related organisms was observed, since the identity values respect
to best hits on the entire nr protein database, on Proteobacteria, and Alphaproteobacteria (which
would be the closest relatives in the absence of HGT) are all comparable (Supplementary material
15). Moreover, for no pathway the combined result of phylogenetic analyses and GC content and
CAI deviation tests showed a clear evidence of recent HGT. For what concerns phylogenetic
analyses, in most cases, the whole pathway-specific dataset, lacked a sufficient phylogenetic signal,
as confirmed by the highly significant deviations respect to organismal phylogenies in SH tests.
Thus, it was not possible to reconstruct confidently the position of Deianiraca genes. Nevertheless,
given that they were always found with a very long branch (consistent with sequence divergence),
and that they were never found associated to a recent (family level or lower) group of bacteria, the
conclusion that those genes did not undergo any recent HGT was indirectly confirmed. Therefore,
the hypothesis that they could be inherited directly from Rickettsiales ancestor resulted fortified.
Based on these lines of reasoning, further hypotheses on the evolutionary trends of Deianiraea and

Rickettsiales in general were fittingly drawn.
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