Supplementary Information

Single-particle electroluminescence of CsPbBr₃ perovskite nanocrystals reveals particleselective recombination and blinking as key efficiency factors

Dharmendar Kumar Sharma^{1,2}, Shuzo Hirata³, Martin Vacha¹

¹Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan

²Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal 462-003, India

³Department of Engineering Science and Engineering, The University of Electro Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Correspondence and requests for materials should be addressed to D.S.K (<u>dksiitb@gmail.com</u>) and M.V. (<u>vacha.m.aa@m.titech.ac.jp</u>)

Supplementary Figure 1. (a) UV-visible absorption spectra (dotted line) and PL emission at 375 nm excitation. Inset shows color images of CsPbBr₃ without and with UV lamp radiation. (b) TEM- image and size distribution plot on top, shows cubic shape of CsPbBr₃ crystals of size ~ 16 nm (range 12 - 20 nm). (c) PL intensity decay curves of CsPbBr₃ NCs at 375 nm excitation and their corresponding double exponential fitting curves. (d) PL spectra of of CsPbBr₃ NCs synthesized at 200 °C and 225 °C, and their corresponding size distributions (e) and (f).

Supplementary Figure 2. Detailed structure of the EL device for single-particle detection, and scheme of the microscopic setup.

Supplementary Figure 3. a) Atomic force microscopic (AFM) image of aggregates of $CsPbBr_3 NCs$ on mica; Distributions of lateral size (b) and height (c) analyzed from the AFM images; d) Transmission electron microscopic (TEM) image of aggregates of $CsPbBr_3 NCs$ prepared under the same conditions as in a)

Supplementary Figure 4. Examples of EL super-resolution images of different aggregates at 14 V bias. The scale bar is 100 nm.

Supplementary Figure 5. AFM images of individual device layers obtained during the device preparation

Supplementary Figure 6. Microscopic characterization of an OLED device with a PVK/PBD emitting layer (without doping with perovskite NCs). (a) Microscopic EL image taken at 12 V; spectrally resolved EL (b) and PL (c) image of the same area of the device, showing high degree of device homogeneity and similarity between both excitation modes.

Supplementary Figure 7. I-V characteristics of an ITO / PEDOT:PSS / PVK:PBD / TPBi / LiF / Al device.

Supplementary Figure 8. Criteria for determining ON, Gray and OFF states for blinking analysis.

Supplementary Figure 9. Time-traces of emission intensity obtained from two individual aggregates during switching of the excitation modes. PL was excited at 488 nm with 26 W.cm⁻², EL with bias of 14 V

Supplementary Figure 10. Correlation of emission spectral maxima between PL and EL obtained on 37 NCs that were active in both excitation modes.

Layer	Thickness (nm) by AFM	Roughness rms (nm)	Preparation condition
ITO coated glass	56.2	-	as received
PEDOT:PSS	58 ± 6	1.162	spin coated as received, filtered by 0.45 μM
PVK:PBD:CsPbBr ₃	52 ± 10	0.270	1 wt % in toluene spin coated in two steps at 1000 rpm and 4000 rpm for 30s
ТРВі	15 ± 5	0.510	vapor deposition
LiF	1 ± 0.2 (expected, optimized for 20 nm)	2.13 nm (for ~11 nm thick film)	vapor deposition
Al	200 ± 10		vapor deposition

Supplementary Table 1. Preparation and characterization of individual layers of the light-emitting device

Supplementary Note 1

Spectroscopic characterization of CsPbBr₃ NCs in bulk solutions

UV-vis spectra of CsPbBr₃ NCs in toluene with 375 nm excitation show characteristic emission at ~ 516 nm (FWHM ~ 20 nm), comparable to prior reports (Supplementary Figure 1a). The size distributions of NCs obtained from transmission electron microscopy (TEM) show approximately cube-shaped structures with edge lengths of ~ 16 \pm 5 nm (Supplementary Figure 1b) indicating broader size distribution as compared to NCs reported for synthesis at \leq 200 °C, probably due to the high temperature (225 °C) set to synthesize slightly larger high-quality CsPbBr₃ NCs. We noticed however, that the PL emission width for these NCs synthesized at 225 °C remains comparable (~ 20 nm) to the CsPbBr₃ synthesized at ~200 °C which can be attributed to the moderate quantum confined effect (with the excitonic Bohr diameter of 7 ~ 11 nm) for these NCs. Comparison of the PL spectra and size distributions of the samples synthesized at ~200 °C and at ~225 °C (shown in Supplementary Figure 1d) further confirms the moderate quantum confined effect. Supplementary Figure 1c depicting the excited state lifetime of CsPbBr₃ in toluene shows two-exponential relaxation attributed conventionally to trap assisted and excitonic emissions.

Supplementary Note 2

Estimation of the charge recombination rate on a single CsPbBr3 nanocrystal

To estimate the charge recombination rate, we adopted the approach used for imaging of single organic molecules in OLED devices [1]. We assume Langevin-type recombination [2] in which the recombination rate n_r is given by

$$n_r = \frac{\pi r_c^2}{e} j \qquad (1)$$

where *j* is current density and r_c a capture radius. The capture radius r_c represents a critical distance at which the Coulomb binding energy between an electron and a hole equals the thermal energy *kT*. The r_c is given by

$$r_c = \frac{e^2}{4\pi\varepsilon kT} \tag{2}$$

For PVK, the r_c can be estimated as 23 nm. Adding half the NC edge length as a physical dimension of the NC gives an effective r_c value of 31 nm. To determine the current density, we prepared a matrix-only device with the same structure as the one used for the single-particle EL experiments but without the perovskite NCs doped. The current density was determined from an I-V dependence (Supplementary Figure 7) measured on this device. At 14 V, j = 0.08 A.cm⁻² which gives the recombination rate n_r of 1.2 x 10⁷ s⁻¹. The actual recombination rate will be influenced by many factors and its correct estimation is more complex, and as such the value of n_r obtained above should be treated as an upper limit of the true rate.

Supplementary References:

1. Nothaft, M.; Hoehla, S.; Nicolet, A.; Jelezko, F.; Fruehauf, N.; Pflaum, J.; Wrachtrup, J. Optical Sensing of Current Dynamics in Organic Light-Emitting Devices at the Nanometer Scale. *ChemPhysChem* 12, 2590-2595 (2011)

2. Blom, P. W. M.; de Jong, M. J. M.; Breedijk, S. Temperature dependent electron-hole recombination in polymer light-emitting diodes. Appl. Phys. Lett. **7**1, 930-932 (1997)