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Supplementary Methods 

 

Assessment of neuropathology indices 

Tissue was dissected from eight brain regions to quantify the load of parenchymal deposition of 

β-amyloid by image analysis and the density of abnormally phosphorylated paired helical 

filament tau (PHFtau)-positive neurofibrillary tangles by stereology, as previously described1–4. 

Bielschowsky silver stain was used to visualize neuritic plaques, diffuse plaques, and 

neurofibrillary tangles in the frontal, temporal, parietal, and entorhinal cortex and the 

hippocampus. We created standardized scores for each plaque and tangle count in each cortical 

area. These scaled scores for each region were then averaged across the five regions. as 

previously described2–5. We performed square root transformed for diffuse plaques, neuritic 

plaques, neurofibrillary tangles, β-amyloid, and PHFtau-tangles. Nigral neuronal loss was 

assessed in the substantia nigra in the mid to rostral midbrain, near or at the exit of the third 

cranial nerve, using H&E stain and six micron sections using a dichotomous scale (absent or 

present)6. Lewy bodies were assessed in six regions using a monoclonal phosphorylated antibody 

to a-synuclein7. TDP-43 staging from amygdala to limbic and neocortical regions was 

determined using monoclonal TDP-43 antibody8. Hippocampal sclerosis was evaluated in a 

coronal section of the mid-hippocampus at the level of the lateral geniculate body and was 

reported as present if there was severe neuronal loss and gliosis in the CA1 sector, subiculum or 

both9. Chronic macroscopic and microinfarcts infarcts were recorded during gross examination 

and confirmed histologically10. Cerebral amyloid angiopathy (CAA) was assessed in four 

neocortical regions using immunohistochemistry11. β-amyloid depositions in meningeal and 

parenchymal vessels in each region were rated and averaged to obtain a summary CAA measure. 

Severity of atherosclerosis was graded by gross examination of vessels in the circle of Willis, 



and arteriolosclerosis was graded on H&E stained sections of basal ganglia12. The complete list 

of brain pathologies assessed in this study is in Supplementary Table 2.  

 

 

 

Omics measurements 

Details on omics data processing were published previously13. Briefly, genotyping data was 

measured using DNA extracted from peripheral blood mononuclear cells or frozen brain tissue, 

and quality control steps were performed as described previously13,14. After the quality control 

steps, genotyping data included 7,159,943 SNPs in 2,093 subjects. DNA methylation data were 

generated using DNA extracted from DLPFC15 and pre-processed as described previously16. The 

pre-processed data consisted of ~130,000 methylation loci in 533 subjects. Histone H3 

acetylation on lysine 9 (H3K9AC) data was measured by Chromatin Immunoprecipitation 

(ChIP) assay using anti-H3K9AC mAb coupled with sequencing was performed in gray matter 

of DLPFC17. Quality control steps were described previously13,17,18. The pre-processed data 

consisted of 26,384 histone peaks in 516 subjects. RNAseq data was generated from DLPFC and 

quality control steps were performed as described previously19,20. The pre-processed data 

consisted of 13,484 genes in 432 subjects. To alleviate a large multiple testing burden, we 

followed the standard practice of reducing DNA methylation, histone acetylation, and gene 

expression to comethylated, coacetylated, and coexpressed modules21, each of which was 

composed of variables with similar patterns of methylation, acetylation, or expression, as 

measured across all individuals. Using SpeakEasy22, we identified 58 DNA comethylation 

modules, 80 histone coacetylation modules, and 49 coexpression modules13. The miRNA 

expression profiles were measured in DLPFC samples using the NanoString nCounter miRNA 



expression assay and pre-processing steps were performed as described previously13,23. The pre-

processed data consisted of 292 miRNAs in 543 subjects. Selected reaction monitoring (SRM) 

proteomics was performed using frozen DLPFC tissue for 67 proteins selected by the consortium 

members of Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD; 

https://www.synapse.org/#!Synapse:syn2580853)24. Pre-processing steps were described 

previously13,24. The pre-processed data consisted of 67 proteins in 527 subjects.  

 

Gene ontology (GO) enrichment analysis for histone coacetylation modules 

To examine whether histone coacetylation modules were involved in particular biological 

processes, we performed GO enrichment analysis. GO gene sets were downloaded from 

MSigDB v6.125,26. The GREAT algorithm27 was used for the enrichment analysis of cis regions 

of histone coacetylation modules with gene sets. The BSgenome.Hsapiens.UCSC.hg19 and 

TxDb.Hsapiens.UCSC.hg19.knownGene R packages were used for background information. The 

genomic region from 1,000 kb upstream of the transcriptional start site (TSS) to 1,000 kb 

downstream of the transcriptional end site (TES) was assigned for each gene in GO. If other 

genes were present within 1,000 kb upstream or downstream of the TSS or TES, respectively, of 

the gene of interest, the genomic region assigned for that gene was truncated at the point where 

the coding regions of other genes started. The genomic regions for all genes in each GO were 

then merged. Finally, a binomial test was used to evaluate whether the center locations of histone 

peaks in each module were enriched in the genomic region assigned to each GO. The Enrichment 

Map was utilized for visualization of the results 28. 

 

Estimation of AD-PRS effect explained by endophenotypes  



To evaluate the proportion of AD-PRS effect on motor function explained by endophenotypes, 

we compared the variance of motor function explained by AD-PRS and that given each 

molecular phenotype as follows:  

First, the total variance of motor function was computed as the total sum of squares (SS),  

𝑆𝑆"#"$% ='(𝑦* − 𝑦,).
*

 

where 𝑦* is motor function for 𝑖 individual, and 𝑦, is an average of motor function. Then motor 

function was regressed with AD-PRS alone, 

𝑓1(𝐴𝐷𝑃𝑅𝑆) = 𝑎1 + 𝑏1 ∗ 𝐴𝐷𝑃𝑅𝑆 + 𝜀1 

where 𝑎1 is an intercept, 𝑏1 is a coefficient for AD-PRS, and 𝜀1 is an error term. The SS for the 

residual of the first model was computed as  

𝑆𝑆;<=*>?$%1 ='(𝑦* − 𝑓*1).
*

 

and then the proportion of variance explained by AD-PRS was calculated as  

𝑃𝑉𝐸1 = 1 −
𝑆𝑆;<=*>?$%1

𝑆𝑆"#"$%
. 

Next, motor function was regressed with AD-PRS and a mediator (M),  

𝑓.(𝐴𝐷𝑃𝑅𝑆,𝑀) = 𝑎1 + 𝑏. ∗ 𝐴𝐷𝑃𝑅𝑆 + 𝑐. ∗ 𝑀 + 𝜀. 

where 𝑎. is an intercept, 𝑏. is a coefficient for AD-PRS, 𝑐. is a coefficient for a mediator, and 𝜀. 

is an error term. The SS for the residual of the second model was computed as 

𝑆𝑆;<=*>?$%. ='(𝑦* − 𝑓*.).
*

 

and then the proportion of variance explained by AD-PRS was calculated as  

𝑃𝑉𝐸GHIJK. = L1 −
𝑆𝑆;<=*>?$%.

𝑆𝑆"#"$%
M ∗ 𝑅𝐼GHIJK 



The component 𝑅𝐼GHIJK is the relative contribution of AD-PRS to the variance explained by the 

second model and was calculated using the variance decomposition method proposed by Chevan 

and Sutherland29.The method is implemented in relaimpo R package30. Lastly, the percent of 

AD-PRS effect explained by a mediator (PAEM) was computed as  

𝑃𝐴𝐸𝑀 =
𝑃𝑉𝐸1 − 𝑃𝑉𝐸GHIJK.

𝑃𝑉𝐸1 ∗ 100. 

 

Estimation of Bayesian network 

To infer the relationships among AD-PRS, endophenotypes, and a motor function, we used a 

Bayesian network, which is a multivariate probabilistic model whose conditional independence 

relations can be represented by a directed acyclic graph (DAG) with vertices 𝑉 = P𝑉1, … , 𝑉RS, 

and directed edges (𝑖, 𝑗) ∈ 𝐸 ⊂ 𝑉 × 𝑉 (note that we use the notation 𝑖 and 𝑉*, interchangeably, to 

refer to a node). A vertex 𝑗 in a DAG 𝐺 corresponds to a random variable 𝑋Z in the Bayesian 

network. Assuming the local directed Markov property, each variable is independent of its non-

descendant variables conditional on its parent variables. Thus, the state of 𝑋Z can be determined 

only by the state of parent variables, which is formally expressed by the conditional probability, 

𝑃(𝑋Z	|	𝑋]^), where 𝑋Z state occurs under given parents’ state 𝑋]^. Therefore, the probability 

where observed data, 𝑋, is generated from a given DAG 𝐺 can be factored as 𝑃(𝑋	|	𝐺) 	=

∏ 𝑃(𝑋Z	|	𝑋]^)
R
Z`1 , where 𝑋 = P𝑋1, … , 𝑋RS

a, 𝐺Z is the set of parents of 𝑗, and 𝑋]^ 	= 	 b𝑋*: 𝑖 ∈ 𝐺Zd. 

To learn the DAG structure, which is the process of finding 𝐺 with high 𝑃(𝑋	|	𝐺), we used a 

Markov chain Monte Carlo (MCMC) method to sample DAGs based on the posterior 

distribution of DAG structures 

𝑃(𝐺	|	𝑋) =
𝑃(𝑋	|	𝐺)𝑃(𝐺)

∑ 𝑃(𝑋	|	𝐺)𝑃(𝐺)]∈𝒢
	, 



where 𝑃(𝐺) is a prior on the network structure 𝐺, and 𝒢 represents the space of all DAGs with 𝑝 

vertices. The MCMC sampling allows us to obtain ensembles of DAGs with high 𝑃(𝑋	|	𝐺) and 

avoid overfitting to the data. To utilize genetic information as a clue to infer the directions of 

other edges, we restricted a direction of edges so that AD-PRS can have only out-going edges to 

other nodes. We did not pose any restrictions for non-genetic nodes. We ran 300,000 steps of 

MCMC sampling using the REV algorithm31 and discarded the first 2,400 steps as a burn-in. 

Then, edge frequencies in the sampled networks were counted, and a consensus network was 

generated by taking the regulation that presented most frequently among the three possible: 

node1 regulates node2, node2 regulates node1, and node1 is independent of node2. The detailed 

implementation of learning network structure based on systems genetics data is described 

elsewhere32. Given the estimated network structure, each variable was regressed with its parent 

variables and obtained variance explained by each parent variable and p-value associated with it. 
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Supplementary Figures 

 

 
Supplementary Figure 1. Correlation between PRSs from different GWAS panels.  
 
  
 

  
Supplementary Figure 2. Association of motor phenotypes with the AD-PRS in omics cohort. 
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