1	Supplementary Information
2	
3	
4	Highly structured homolog pairing reflects functional level of organization of
5	the <i>Drosophila</i> genome
6	
7	AlHaj Abed et al.
8	

2	
3	Highly structured homolog pairing reflects functional level of organization of
4	the Drosophila genome
5	
6	Jumana AlHaj Abed [*] , Jelena Erceg [*] , Anton Goloborodko [*] , Son C. Nguyen, Ruth B.
7	McCole, Wren Saylor, Geoffrey Fudenberg, Bryan R. Lajoie, Job Dekker, Leonid A.
8	Mirny [†] , Ting (Cting) Wu [†]
9	
10	*These authors contributed equally to this work.
11	[†] Correspondence to: <u>leonid@mit.edu</u> (L.A.M.); <u>twu@genetics.med.harvard.edu</u> (Ct.W.)

Supplementary figures and legends

а

b

	PnM	2-4h Embryos
Total mappable reads (1e6)	75.38	49.05
<i>cis</i> reads (1e6)	55.44	46.21
% <i>cis</i> reads of total	73.55%	94.20%
trans reads (thom & thet) (1e6)	19.95	2.84
% trans reads (thom & thet) of total	26.47%	5.79%
% thom reads	16.29%	2.10%
% thet reads	10.16%	3.68%
cis: trans (thom & thet)	2.78	16.25
(PnM:Embryo) <i>cis</i>		1.20
(PnM:Embryo) <i>trans</i>		7.02
· · · ·		

Supplementary Figure 2. *Trans* reads are highly abundant in PnM cells. a, Pie chart
comparing percentage of non-duplicated *cis* and *trans* reads recovered after haplotype-resolved
mapping to hybrid genome in PnM, where *cis* interactions refer to read pairs with a SNV on each
side mapping to the same homolog and *trans* interactions refer to read pair with a SNV on each

1	side mapping to a different homolog or chromosome. Data from PnM untreated cells showing
2	PnM total <i>trans</i> -reads are almost a quarter of total reads. b , Comparison of mappable, non-
3	duplicated reads in PnM and 2-4 h embryos ¹ shows that the percent of <i>trans</i> -homolog (<i>thom</i>)
4	mappable reads in PnM (16.29%) are ~8-fold those of embryos (2.10%). c, Thom signature in
5	PnM cells is greater than <i>thom</i> in embryos at all linear separations, s, in kilobases (kb). d , <i>Thom</i> -
6	to-cis contact frequencies in 2-4 h embryos and cells. Around 100 kb separation in PnM cells,
7	thom interaction frequency is almost equal to cis interaction frequency. This contrasts to the
8	pairing signature that is observed in 2-4 h old embryos.

2 Supplementary Figure 3. Cell cycle analysis of PnM cells. Staining of cells with propidium

2 Supplementary Figure 4. Haplotype-resolved contact maps reveal compartments between homologs and concordance of *cis* and *thom* interactions. a, The *thom* contact map at 2L at 40 3 kb resolution and (left) a map of Pearson's correlation coefficients between rows and columns of 4 5 the *thom* contact map (right). Both maps show a plaid-like pattern indicative of A-B compartmentalization of loci on homologous chromosomes. **b**, Paternal and maternal *cis* contact 6 maps within 5-20 Mb at 2L are highly concordant. c, Thom contact map within 5-20 Mb at 2L. d, 7 Regions as in b, and c showing *thom* contact frequency depletion detected in blue (circles 8 pointing to some *thom* depleted regions). 9

Supplementary Figure 5. Examples of loops or long-range interaction peaks detected in *cis* paternal and maternal contact maps, as well as *thom* contact maps a, Examples in 2L, 2R,
 and 3L chromosome arms b, Examples of loops not detected in all three maps.

2 Supplementary Figure 6. Pairing score distribution and breakdown into tight and loose 3 regions in PnM genome. a, Genome-wide distribution of pairing score (PS) in PnM shows a well-pronounced peak at higher values of PS and a tail extending into the lower values of PS. b, 4 5 We interpret the PS distribution with a model, where each bin can be either tightly or loosely paired. We can separate the peak from the tail of the distribution by fitting it with a sum of two 6 Gaussians. Left panel: All genomic bins with PS < -0.71 are considered loosely paired (since 7 they are more likely to belong to the low-PS Gaussian) and the bins with PS > -0.71 are 8 considered tightly paired. Two right panels: the Gaussian fitting procedure and the resulting 9 thresholds were reproducible per replicate. c, The length distribution of loosely and tightly paired 10 regions. d, The breakdown of tight and loose pairing based on the threshold produced 11 comparable tight-to-loose ratios for each biological replicate. 12

1

Supplementary Figure 7. P_{thom}(s), P_{cis}(s) for tight and loose regions of different sizes. Top,
P_{thom}(s), P_{cis}(s), middle, slope, and bottom, is P_{thom}(s)/P_{cis}(s) contact frequency within tightly and
loosely paired regions. a, 200-400 kb length and b, 100-200 kb length. In tighly paired regions, *thom* and *cis* contact frequency curves show two modes of decay, shallow and steep, while in
loosely paired regions, the curves have only one, shallow mode. Shaded area shows the region
used to determine the percent pairing in a, by calculating the geometric mean of the P_{thom}(s)/
P_{cis}(s) at larger genomic separations (100-300 kb, or 100-150 kb).

Supplementary Figure 8. Representative examples of pairing relative to genomic
compartment type and gene expression. a-c, 2 Mb-long example regions described with *cis*and *trans*-homolog (*thom*) contact maps (two upper panels), pairing (PS) and *cis* scores (CS)
(middle panel) and measures of transcriptional activity, eigenvector and RNA-seq (two lower
panels). High PS correlates with high levels of gene expression, and enrichment of A-type
compartments. Shaded area, shows some weakly paired regions, indicating a lower eigenvector
rank, and generally lower expression levels. a, 2L, 6-8 Mb, b, 2R, 12-14 Mb and c, 3L, 2-4 Mb.

2 Supplementary Figure 9. *Thom* interaction of ANT-C and BX-C. a, Long-range *cis*-

interactions that were detected in previous studies between ANT-C and BX-C^{2,3} are detected in
PnM reference map (non-allele-specific mapping), **b**, and *thom* and *cis* maps, indicating that this
well-known interaction in *cis*, is also detected in *thom* maps, and is within the same compartment
in our haplotype-maps.

untreated cells, and mock replicates, for two biological replicates as illustrated by a drop in the
 PS-CS distribution. P-values determined using bootstrapping (Supplementary methods).

а

Supplementary Figure 12. The effect of knocking down Slmb or TopII on 200-400 kb
regions of tight and loose pairing. a, Top, plots of P(s)_{thom} and P(s)_{cis}, bottom, slopes, within
tightly (left) and loosely paired (right) regions of 200-400 kb length. b, P(s)_{thom} / P(s)_{cis} relative

1	to genomic separation, s, in tightly and loosely paired regions. Shaded area shows the region
2	used to determine the percent pairing in a , by calculating the geometric mean of the $P(s)_{thom}$ /
3	P(s) _{cis} at larger genomic separations of 100-300 kb. A comparison between tight and loose
4	pairing thom and cis contact frequency shows a drop in both tight and loose pairing for Slmb and
5	TopII relative to untreated cells.

Supplementary Figure 14. Determining optimal resolution for *cis* and *thom* contact maps.
The curves show the fraction of non-zero pixels (y-axis) at various genomic separations (x-axis)
in *cis* and *thom* contact maps of various resolutions. We find that the 4 kb resolution maps have
<50% empty pixels (the horizontal dashed line) at genomic separations corresponding to the
TAD interactions (<~100kb).

1 Supplementary Tables

			Indels			SNVs		
Chrom	Chrom size	#057	#439	hom	#057	#439	hom	het SNVs/kb
chr2L	23011544	5820	5910	9415	66894	70989	68091	5.99
chr2R	21146708	5144	5396	8828	55659	58689	60606	5.41
chr3L	24543557	6068	5599	10374	67299	64261	73011	5.36
chr3R	27905053	6494	6402	9676	66777	68709	65627	4.86
chr4	1351857	1	4	136	2	15	929	0.01
chrX	22422827	8405	8386	5193	40674	44055	38063	3.78

Supplementary Table 1. Summary of SNV frequency per chromosome

	Untreated	RNAi Treatment		
	PnM	Mock	Slmb	TopII
Total reads (x1e6)	604.12	167.46	158.14	164.81
Total non-haplotype-specific mapped reads (x1e6)	411.00	116.87	108.68	115.22
% Non-haplotype-specific mappability	68.03	69.79	68.72	69.91
Total haplotype-specific mapped reads (x1e6)	75.38	23.12	21.51	22.98
% Haplotype-specific mappability	12.48	13.80	13.60	13.94
Cis reads (x1e6)	55.44	16.86	15.80	17.09
Trans reads (x1e6)	19.95	6.25	5.72	5.89
Ratio cis:trans	2.78	2.70	2.76	2.90
% Cis of total sequenced reads	9.18	10.07	9.54	10.37
% Trans of total sequenced reads	3.30	3.73	3.62	3.57
Total haplotype-specific mapped reads without X (x1e6)	45.95	14.08	13.16	13.89

2 **Supplementary Table 2.** Summary of non-haplotyped (reference-mapped), and haplotype-

3 specific read pairs recovered for untreated PnM and RNAi treated cells, with two biological

4 replicates merged per sample.

	Percent boundaries Correlation ChIP-seq for		Cell type	Accession number
ChIP-seq	overlapping ChIP peaks	peaks over input vs pairing score, rs		
Nup98	70.7	0.467	Kc167	<u>GSM2133770</u>
RNAPII	71.1	0.462	Kc167	<u>GSM1536014</u>
GAF	25.8	0.459	Kc167	<u>GSM2133762</u>
GAF	54.7	0.310	Kc167	<u>GSM1318358</u>
GAF	41.4	0.116	S2	<u>GSM998826</u>
BEAF	58.4	0.452	Kc167	<u>GSM1535963</u>
BEAF	52.8	0.277	Kc167	<u>GSM807545</u>
BEAF	50.4	0.250	Kc167	<u>GSM762845</u>
Cap-H2	59.6	0.449	Kc167	<u>GSM1535966, 67</u>
TFIIIC	50.1	0.448	Kc167	<u>GSM1536019, 20</u>
Mrg15	48.1	0.439	S2	<u>GSM2443790,91</u>
Fs1h	32.5	0.422	Kc167	<u>GSM1535987, 88</u>
Mod	32.9	0.388	Kc167	<u>GSM892321, 22</u>
CP190	77.6	0.384	Kc167	<u>GSM1535980</u>
CP190	77.1	0.342	Kc167	<u>GSM807541</u>
CP190	76.9	0.184	Kc167	<u>GSM762836</u>
СВР	78.4	0.372	Kc167	<u>GSM1535970, 71</u>
ZIPIC	66.3	0.368	Kc167	<u>GSM2133769</u>
Cohesin	76.1	0.348	Kc167	<u>GSM1536009, 10, 11</u>
Ibf2	45.1	0.308	Kc167	<u>GSM2133766</u>
Ibf1	54.8	0.287	Kc167	<u>GSM2133767</u>
Pita	40.0	0.281	Kc167	<u>GSM2133768</u>
Chromator	45.3	0.280	Kc167	<u>GSM1318357</u>
Chromator	53.5	0.250	Kc167	<u>GSM1535975, 76</u>
CTCF	23.9	0.208	Kc167	<u>GSM807543</u>
CTCF	51.9	0.174	Kc167	<u>GSM762842</u>
CTCF	13.6	-0.068	Kc167	<u>GSM1535983</u>
DREF	36.5	0.200	Kc167	<u>GSM1535984, 85</u>
DREF	46.8	-0.149	Kc167	<u>GSM977023, 24</u>
Su(Hw)	50.3	0.057	Kc167	GSM762839

Supplementary Table 3. The summary of the overlap between PnM boundaries and ChIP-seq
 peaks from published data sets, and their correlation with tight pairing. ChIP-seqs are arranged
 based on their correlation coefficient (rs, Spearman's), red to blue color assigned from highest

- 1 (0.467) to lowest (-0.149) r_s values. All reported correlations have p-values P < 0.0001.
- 2 Discrepancies in the correlations for the same protein across different data sets could be due
- 3 antibody quality, type of cells used, or different cell batches used in different labs.

Locus	Quadrant	Expression in PnM	Pairing	Assays confirming transvection
dpp	1	yes	tight	<i>trans</i> -allelic complementation ⁴
eya	1,2	yes/low	tight	<i>trans</i> -allelic complementation ⁵
Gpdh1	2	no	tight	trans-allelic complementation ⁶
esg	3,4	yes/low	loose	transgene insertion at endogenous locus and PSS ⁷
ap	1	yes	tight	trans-allelic complementation ⁸
eve	2	no	tight	<i>trans</i> -homing, transgene insertion, PSS, LacZ expression ⁹ , H3C ¹⁰
inv	3,4	yes/low	loose	transgene insertion, PSS, LacZ expression in discs ¹¹
en	1	yes	tight	transgene insertion, PSS, LacZ expression in embryos, imaginal discs, p-element homing ^{7,12,13}
vg	1	yes	tight	<i>trans</i> -allelic complementation ¹⁴ , transgene insertion ¹⁵ .
mbl	1,2	yes/low	tight	<i>trans</i> -allelic complementation ¹⁶
Men	1,2	no	tight	<i>trans</i> -allelic complementation ^{17,18}
bw	1,2	yes/low	tight	transgene insertion, PEV, PSS ¹⁹⁻²²
Scr	1,2	no	tight	<i>trans</i> -allelic complementation ^{23,24}
SS	2	no	tight	transgene insertion and expression in photoreceptors ²⁵
Ubx	2,3	very low	tight, loose	<i>trans</i> -allelic complementation ²⁶⁻²⁹
abd-A	2,3	very low	tight, loose	<i>trans</i> -allelic complementation, transgene insertion, PSS, LacZ expression ³⁰
Abd-B	2	very low	tight	trans -allelic complementation ³⁰⁻³³

Supplementary Table 4. Examples of known transvected loci on the autosomes and their
 location in Fig. 3d. Quadrant 1, and 2, represents regions in the genome that are tightly paired
 and are expressed or not expressed at all, respectively. *Pairing sensitive silencing (PSS), high
 resolution chromosome conformation capture (H3C), position effect variegation (PEV). *The summary of loci above includes at least one endogenous locus study, or endogenous locus regulatory region.*

Assay	Slmb	ТорИ
qPCR showing mRNA depletion vs. mock	75.2 %	82.5 %
Average FISH drop in colocalization vs. mock	18.47 %	14.07 %
Average FISH drop in colocalization vs. untreated sample	30.16 %	27.35 %
APS change vs. mock	9.46 %	8.95 %
APS change vs. untreated sample	13.29 %	12.80 %

- **Supplementary Table 5.** Summary of different pairing assays for Slmb and TopII knockdown
- 3 samples relative to mock sample. APS: aggregated pairing score.

Probe	dm3 Coordinates	OligoLibraryID	Total #	Target	Secondary oligo ID used
target			probes	size (NID)	
28B	chr2L: 7,256,488-7,936,487	Mycroarray-6151	10000	0.680	Sec5
69C	chr3L: 12,170,682-12,844,681	Mycroarray-6150	10000	0.674	Sec1
BX-C	chr3R: 12,482,502-12,797,965	Mycroarray-6010	2394	0.316	Sec6
16E	chrX: 17,406,557-18,106,556	Mycroarray-6148	10000	0.700	Sec6
HOPs 2L	chr2L:10,731-1,999,862	Mycroarray	2410	2.000	2L-057: Sec6, 2L-439: Sec5
HOPs 3L	chr3L: 19,809-1,999,387	Mycroarray	2304	2.000	3L-057: Sec6, 3L-439: Sec5

Supplementary Table 6. Oligopaints probe target library summary

Name	Primer (5'-3')
28B-F	TAGCGCAGGAGGTCCACGACGTGCAAGGGTGTCGCTCGGTCTCCGTTCGTCTC
28B-R	TAATACGACTCACTATAGGGGGGGCTAGGTACAGGGTTCAGC
69C-F	CACCGACGTCGCATAGAACGGAAGAGCGTGTGCGCTCGGTCTCCGTTCGTCTC
69C-R	TAATACGACTCACTATAGGGGGGGCTAGGTACAGGGTTCAGC
BX-C-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCAGTATCGTGCAAGGGTGAATGC
BX-C-R	TAATACGACTCACTATAGGGGAGCAGTCACAGTCCAGAAGG
16E-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCACGCTCGGTCTCCGTTCGTCTC
16E-R	TAATACGACTCACTATAGGGGGGGCTAGGTACAGGGTTCAGC
HOPs-057c-2L-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCAATGCGTTCGGTCTCCGTCAAC
HOPs-057c-2L-R	TAATACGACTCACTATAGGGAATCGCGACGTGTGATGGAAC
HOPs-057w-2L-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCAATTTGTCGACCCGAGTCGAAC
HOPs-057w-2L-R	TAATACGACTCACTATAGGGAACCGGTCGGGATTCCGTAAC
HOPs-439c-2L-F	TAGCGCAGGAGGTCCACGACGTGCAAGGGTGTAACATACGCCTCGGGTTGGAC
HOPs-439c-2L-R	TAATACGACTCACTATAGGGAGTGTCGCGTCGGCCAGAAAC
HOPs-439w-2L-F	TAGCGCAGGAGGTCCACGACGTGCAAGGGTGTACCCGATACGTCGTGGGATTC
HOPs-439w-2L-R	TAATACGACTCACTATAGGGACTCGGCGTCTTCCGACGATG
HOPs-057c-3L-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCAACCGGGTCCCGTACATTTGCC
HOPs-057c-3L-R	TAATACGACTCACTATAGGGATGGTAACGCAACGGATCTCG
HOPs-057w-3L-F	CACACGCTCTCCGTCTTGGCCGTGGTCGATCAACATTCGCGCACGCTAATGTC
HOPs-057w-3L-R	TAATACGACTCACTATAGGGAAGCGGCGTTCGACACCTTTG
HOPs-439c-3L-F	TAGCGCAGGAGGTCCACGACGTGCAAGGGTGTAGAGGGCGGTGCGGTACTAAG
HOPs-439c-3L-R	TAATACGACTCACTATAGGGACCGTCAGGTCGACGCTACAC
HOPs-439w-3L-F	TAGCGCAGGAGGTCCACGACGTGCAAGGGTGTAAGGAGCGTCCGCACCGAATG
HOPs-439w-3L-R	TAATACGACTCACTATAGGGACATTGGGTGCGATGACGAAC

Supplementary Table 7. PCR primers for amplifying Oligopaints libraries

Target	flyRNAi ID#		Primer (5'-3')
Slmb	DRSC32609	Fwd	TAATACGACTCACTATAGGGAGAAAGCAGGAGCCGGTGAA
		Rev	TAATACGACTCACTATAGGGAGACAAAAGGCATCTGGTCTTCT
TopII	DRSC03459	Fwd	TAATACGACTCACTATAGGGTTTGCCAGAGCGATATCTC
		Rev	TAATACGACTCACTATAGGGCCATAGTGGCTCGATCTTTT

Supplementary Table 8. dsRNA synthesis primers

Name	Primer (5'-3')
Act5C-F	CACCGGTATCGTTCTGGACT
Act5C-R	AGGGCAACATAGCACAGCTT
RP49-F	CCGCTTCAAGGGACAGTATC
RP49-R	GACAATCTCCTTGCGCTTCT
Slmb-F	ACACCCTTATCCACCACTGC
Slmb-R	CAAAGTCCACCACATTGACG
TopII-F	CGCAAGTCAAGCAAGATCAA
TopII-R	GCTTCCCGCACATTTAGAAG

Supplementary Table 9. qPCR primers

	PnM	Maternal genome	Paternal genome
	genome	(DGRP-057)	(DGRP-439)
Number of raw read pairs	154,862,547	63,470,151	62,515,671
Number of mapped, paired, and de-duplicated read pairs	131,879,436	58,974,713	58,287,559

1

Supplementary Table 10. Summary of the number of read pairs recovered from sequencing the
 PnM hybrid, maternal, and paternal genome libraries and used for phasing the hybrid-haplotype

5 PnM genome and determining SNVs *de novo*.

Type of reads	Rep1	Rep2
cis	27,500,435	28,017,074
cis 3kb	16,314,399	16,908,792
cis 10kb	14,978,208	15,590,307
cis 100kb	10,247,013	10,738,792
<i>cis</i> 2L, 2R, 3L	10,467,549	10,608,473
<i>cis</i> 2L, 2R, 3L 3kb	4,927,548	5,105,874
<i>cis</i> 2L, 2R, 3L 10kb	4,405,081	4,590,017
<i>cis</i> 2L, 2R, 3L 100kb	2,692,950	2,837,605
thom	5,822,100	6,034,950
thom 3kb	5,548,717	5,769,358
thom 10kb	5,097,220	5,322,011
thom 100kb	3,299,001	3,478,983
thom 2L, 2R, 3L	4,466,718	4,629,258
thom 2L, 2R, 3L 3kb	4,254,561	4,423,056
thom 2L, 2R, 3L 10kb	3,901,426	4,072,986
thom 2L, 2R, 3L 100kb	2,516,559	2,652,904
thet	3,961,794	4,413,743

Supplementary Table 11. Breakdown of haplotype-resolved read pairs at different genomic

- 3 separation per replicate. *thom: trans* homologous, *thet: trans* heterologous

- .

2

Supplementary Note 1

3	Dividing the genome into regions of tight and loose pairing, and P(s) ^{tight} and P(s) ^{loose} curves
4	
5	For each type of pairing, we calculated P(s) curves over large regions with a relatively
6	narrow size range of 200-400 kb, or 100-200 kb (Supplementary Fig. 7). Within 200-400 kb
7	tightly paired regions, the $P_{cis}(s)$ and $P_{thom}(s)$ curves showed two modes: (i) a shallow mode at
8	shorter separations $<$ 30kb, where $P_{thom}(s)$ was noticeably lower than $P_{cis}(s)$ (at 1-3 kb,
9	$P_{thom}(s)/P_{cis}(s)$ is 0.66), and where both decayed relatively slowly with distance (P(s) ~ s ^{α} , α
10	~0.25-0.5); and (ii) a steep mode at larger separations $>$ 30 kb, where the two curves were almost
11	equal ($P_{thom}(s)/P_{cis}(s)=0.93$) and decayed more rapidly ($P(s) \sim s^{\alpha}, \alpha \sim 1.0-1.5$) (Fig. 2h, left panel).
12	In loosely paired regions, $P_{thom}(s)$ and $P_{cis}(s)$ had only one shallow mode, where $P_{thom}(s) < P_{cis}(s)$
13	at all separations, (Fig. 2h, right panel); and both curves decayed slowly (P(s) ~ s^{α} , α ~0.25-0.5).
14	We observed similar behavior of $P_{cis}(s)$ and $P_{thom}(s)$ in regions of 100-200 kb (Supplementary
15	Fig. 7b).
16	
17	In <i>cis</i> , the existence of the shallow mode in the $P_{cis}(s)$ curves reflects formation of

domains, as the slow decay of contact frequency with distance (100X increase in distance leads to only 10X drop in contact frequency) is inconsistent with random folding of the chromatin^{34,35}. Importantly, the transition into the steep mode occurs at the average domain size³⁴. Thus, our results suggested that an individual tightly paired region in *cis* consists of a series of smaller domains (~10-30 Kb), while an individual loosely paired region could correspond to a single domain.

2 We used the deviation of $P_{\text{thom}}(s)$ from $P_{\text{cis}}(s)$ in tightly and loosely paired regions to infer the precision of homologous pairing. If two homologous chromosomes were connected with 3 each other at every base pair (either by direct base-pair-complementarity or by a sequence-4 5 specific binding protein or other mechanism), $P_{\text{thom}}(s)$ would equal $P_{\text{cis}}(s)$ at all separations. 6 However, if homologous loci were linked with each other intermittently, pairs of loci at shorter distances would contact less frequently in *thom* than in *cis* ($P_{thom}(s) \leq P_{cis}(s)$), and at sufficiently 7 large separations pairs of loci would contact each other as often in *thom* as in *cis* ($P_{thom}(s) =$ 8 9 P_{cis}(s)). In our data, in tight regions, *thom* and *cis* contacts approached each other in frequency at $s = \sim 10-30$ kb, and, in loose regions, only for loci located on the ends of the region (i.e. at $s \sim 150$ 10 kb for 100-200 kb regions and at s ~300 kb for 200-400 kb regions) (Supplementary Fig. 7). 11 Thus, we concluded that our data was consistent with a model, where tightly paired regions are 12 connected in *thom* every ~10-30 kb, within the average domain size in these regions, and 13 probably at domain boundaries, and loosely paired regions are connected only at their 14 boundaries. This allowed us to hypothesize that (a) the difference between tightly and loosely 15 paired region is due to higher frequency of *thom* connections, in tightly paired regions (b) pairing 16 17 at loose regions is affected by pairing at the flanking tight regions. To conclude, within our resolution limit (~16 kb), and given that in tightly paired regions, *thom* contacts at the highest 18 registration appeared as frequent as *cis* contacts at s = -5 kb and, in loose regions, the frequency 19 20 of such *thom* contacts matched that of *cis* contacts at s = -30 kb (Fig. 2h), pairing in tight regions is more precise, likely due to more frequent connections between homologs within tight regions, 21 22 possibly at domain boundaries. Furthermore, we found that *thom* contact frequency approached 23 93.2% of *cis* in tightly paired regions (at s = 100-300 kb) (defined as a geometric mean of

1

1	thom/cis contact frequency at s =100-300kb), suggesting that as many as 93.2% of cells in our					
2	sample are exhibiting pairing at those regions (Supplementary Fig. 7). The fraction of cells					
3	without pairing, could represent a population of cells that are undergoing mitosis. Using the same					
4	approach, we found that the fraction of entirely unpaired tight regions in Slmb and TopII					
5	knockdowns increased by 6.80% and 7.50%, relative to mock, and 12.2% and 12.9%, relative to					
6	untreated sample (Supplementary Fig. 12).					
7						
8	Supple	ementary References				
9	1	Erceg, J. <i>et al.</i> The genome-wide, multi-layered architecture of chromosome pairing in early Drosophila				
10 11 12	2	Sexton, T. <i>et al.</i> Three-dimensional folding and functional organization principles of the Drosophila genome <i>Call</i> 148 458-472 doi:10.1016/j.cell.2012.01.010 (2012)				
12 13 14	3	Bantignies, F. <i>et al.</i> Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. <i>Cell</i> 144 , 214-226, doi:10.1016/j.cell.2010.12.026 (2011).				
15 16	4	Gelbart, W. M. Synapsis-dependent allelic complementation at the decapentaplegic gene complex in Drosophila melanogaster. <i>Proc Natl Acad Sci U S A</i> 79 , 2636-2640 (1982).				
17 18	5	Leiserson, W. M., Bonini, N. M. & Benzer, S. Transvection at the eyes absent gene of Drosophila. <i>Genetics</i> 138 , 1171-1179 (1994).				
19 20 21	6	Gibson, J. B. R., D. S.; Bartoszewski, S.; Wilks, A. V. Structural Changes in the Promoter Region Mediate Transvection at the sn-Glycerol-3-Phosphate Dehydrogenase Gene of Drosophila melanogaster. <i>Biochemical Genetics</i> 37 , 301-315 (1999)				
22 23	7	Kassis, J. A. Unusual properties of regulatory DNA from the Drosophila engrailed gene: three "pairing- sensitive" sites within a 1.6-kb region. <i>Genetics</i> 136 , 1025-1038 (1994).				
24 25	8	Gohl, D., Muller, M., Pirrotta, V., Affolter, M. & Schedl, P. Enhancer blocking and transvection at the Drosophila apterous locus. <i>Genetics</i> 178 , 127-143, doi:10.1534/genetics.107.077768 (2008).				
26 27 28	9	Fujioka, M., Wu, X. & Jaynes, J. B. A chromatin insulator mediates transgene homing and very long-range enhancer-promoter communication. <i>Development</i> 136 , 3077-3087, doi:10.1242/dev.036467 (2009). Fujioka M. Mistry H. Schedl P. & Jaynes J. B. Determinants of Chromosome Architecture: Insulator				
29 30	11	Pairing in cis and in trans. <i>PLoS Genet</i> 12 , e1005889, doi:10.1371/journal.pgen.1005889 (2016). Cunningham, M. D., Brown, J. L. & Kassis, J. A. Characterization of the polycomb group response				
31 32		elements of the Drosophila melanogaster invected Locus. <i>Mol Cell Biol</i> 30 , 820-828, doi:10.1128/mcb.01287-09 (2010).				
33 34 25	12	Kassis, J. A., VanSickle, E. P. & Sensabaugh, S. M. A fragment of engraled regulatory DNA can mediate transvection of the white gene in Drosophila. <i>Genetics</i> 128 , 751-761 (1991).				
35 36 37	15	engrailed polycomb-group response elements in Drosophila melanogaster. <i>PLoS One</i> 7, e30437, doi:10.1371/journal.pone.0030437 (2012)				
38 39	14	Coulthard, A. B., Nolan, N., Bell, J. B. & Hilliker, A. J. Transvection at the vestigial locus of Drosophila melanogaster. <i>Genetics</i> 170 , 1711-1721, doi:10.1534/genetics.105.041400 (2005).				
40 41 42	15	Schoborg, T., Kuruganti, S., Rickels, R. & Labrador, M. The Drosophila gypsy insulator supports transvection in the presence of the vestigial enhancer. <i>PLoS One</i> 8 , e81331, doi:10.1371/journal.pone.0081331 (2013).				

- 16 Juni, N. & Yamamoto, D. Genetic analysis of chaste, a new mutation of Drosophila melanogaster 1 2 characterized by extremely low female sexual receptivity. J Neurogenet 23, 329-340. 3 doi:10.1080/01677060802471601 (2009). 4
 - 17 Merritt, T. J., Duvernell, D. & Eanes, W. F. Natural and synthetic alleles provide complementary insights into the nature of selection acting on the Men polymorphism of Drosophila melanogaster. *Genetics* 171. 1707-1718, doi:10.1534/genetics.105.048249 (2005).
 - Bing, X., Rzezniczak, T. Z., Bateman, J. R. & Merritt, T. J. Transvection-based gene regulation in 18 Drosophila is a complex and plastic trait. G3 (Bethesda) 4, 2175-2187, doi:10.1534/g3.114.012484 (2014).
 - 19 Sass, G. L. & Henikoff, S. Pairing-dependent mislocalization of a Drosophila brown gene reporter to a heterochromatic environment. Genetics 152, 595-604 (1999).
- 20 Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization 12 in Drosophila. Nature 381, 529-531, doi:10.1038/381529a0 (1996).
- Csink, A. K., Bounoutas, A., Griffith, M. L., Sabl, J. F. & Sage, B. T. Differential gene silencing by trans-13 21 14 heterochromatin in Drosophila melanogaster. Genetics 160, 257-269 (2002).
- 15 22 Henikoff, S. & Dreesen, T. D. Trans-inactivation of the Drosophila brown gene: evidence for 16 transcriptional repression and somatic pairing dependence. Proc Natl Acad Sci U S A 86, 6704-6708 17 (1989).
- 18 23 Pattatucci, A. M. & Kaufman, T. C. The homeotic gene Sex combs reduced of Drosophila melanogaster is 19 differentially regulated in the embryonic and imaginal stages of development. Genetics 129, 443-461 20 (1991).
- 21 24 Southworth, J. W. & Kennison, J. A. Transvection and silencing of the Scr homeotic gene of Drosophila 22 melanogaster. Genetics 161, 733-746 (2002).
- Johnston, R. J., Jr. & Desplan, C. Interchromosomal communication coordinates intrinsically stochastic 23 25 expression between alleles. Science 343, 661-665, doi:10.1126/science.1243039 (2014). 24 25
 - Lewis, E. B. The Theory and Application of a New Method of Detecting Chromosomal Rearrangements in 26 Drosophila melanogaster. The American Naturalist 88, 225-239 (1954).
- 27 27 Gemkow, M. J., Verveer, P. J. & Arndt-Jovin, D. J. Homologous association of the Bithorax-Complex 28 during embryogenesis; consequences for transvection in Drosophila melanogaster. Development 125, 4541-29 4552 (1998).
- 30 28 Hartl, T. A., Smith, H. F. & Bosco, G. Chromosome alignment and transvection are antagonized by 31 condensin II. Science 322, 1384-1387, doi:10.1126/science.1164216 (2008).
- 32 29 Martinez-Laborda, A., Gonzalez-Reyes, A. & Morata, G. Trans regulation in the Ultrabithorax gene of 33 Drosophila: alterations in the promoter enhance transvection. *Embo j* **11**, 3645-3652 (1992).
- 34 30 Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565-570 (1978).
- 35 31 Ronshaugen, M. & Levine, M. Visualization of trans-homolog enhancer-promoter interactions at the Abd-B Hox locus in the Drosophila embryo. Dev Cell 7, 925-932, doi:10.1016/j.devcel.2004.11.001 (2004). 36
- 37 32 Hagstrom, K., Muller, M. & Schedl, P. A Polycomb and GAGA dependent silencer adjoins the Fab-7 38 boundary in the Drosophila bithorax complex. Genetics 146, 1365-1380 (1997).
- Muller, M., Hagstrom, K., Gyurkovics, H., Pirrotta, V. & Schedl, P. The mcp element from the Drosophila 39 33 melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153, 1333-1356 40 41 (1999).
- 42 34 Fudenberg, G., Abdennur, N., Imakaev, M., Goloborodko, A. & Mirny, L. A. Emerging Evidence of Chromosome Folding by Loop Extrusion. Cold Spring Harb Symp Quant Biol, 43 doi:10.1101/sqb.2017.82.034710 (2018). 44
- 45 35 Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51-56, doi:10.1038/nature24281 (2017). 46
- 47

6

7

8

9

10

11