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Comparison of SEABED Segmentation Results with Existing 
Methods 
 
To yield meaningful and usable subpopulations, we considered the performance of SEABED 
with respect to hierarchical clustering (Euclidean Minimum Distance and single-linkage) and 
K-Means clustering (Euclidean Minimum Distance). To enable equitable comparisons, both 
methods were constrained to find the identical number of subpopulations as SEABED. We 
were primarily concerned with factors impacting segmentation such as selecting the overall 
dimensionality of the decomposition, the aggregate separability of the subpopulations, and 
the size of the subpopulations. The latter two factors are especially important since they 
directly impact the ability to reliably extract distinct biomarkers.  
 
Two compounds, PLX4720-2 (BRAF inhibitor) and PI-103 (PI3K inhibitor), were examined in 
Fig. 3 using SEABED. Using the same number of subpopulations found by SEABED, 25, we 
also executed hierarchical clustering and K-Means to also be evaluated for 25 
subpopulations. Our results in Supplementary Table S2 demonstrate that SEABED identifies 
the most balanced subpopulation sizes, with the largest minimum and median subpopulation 
size, which is conducive to finding biomarkers. Similarly, we evaluated two different cluster 
validation measures to evaluate the uniqueness of each pair of subpopulations. Our results 
in Supplementary Table S3 demonstrate that SEABED finds competitive separation values 
for the silhouette metric and also has the highest subpopulation homogeneity (RMSSTD). 
Furthermore, SEABED did not require a prior definition of the number of subpopulations, 
which is a mandatory input for K-Means.  
 
Finally, we investigated what biomarkers were found by K-Means and hierarchical clustering 
for the drug pair in Fig. 3b (PLX4720-2 (BRAF inhibitor) and PI-103 (PI3K inhibitor)). In 
Supplementary Fig. S6, the results for SEABED are compared to the two competing 
methods. Hierarchical clustering produced one large cluster and several singleton results, 
making biomarker discovery in sensitive regions impractical. K-Means clustering found two 
subpopulations enriched for ​BRAF​ mutations, but with higher P-values. For K-Means 
clustering, the divergent region had more subpopulations, but they were substantially smaller 
than the ones found by SEABED. 
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Supplementary Figures

 
Supplementary Fig. S1 Differences in evaluating drug response individually and by 
comparing two drugs through segmentation. (A) ​Heatmap showing the global 
monotherapy response within 30 different cancer types (vertical axis) treated with 265 drugs 
(horizontal axis). The range of colours illustrates the percentage of cell lines of a particular 
cancer type that are sensitive to a given drug, with red being a lower percentage and yellow 
being a higher percentage. ​(B)​ Scatter plot showing the log(IC​50​) values of individual cell 
lines coloured by the subpopulation they belong to (​Fig. 1c​). Segmentation was carried out 
based on their response to a BRAF inhibitor (SB590885) and a MEK inhibitor (CI-1040). ​(C) 
Similar to ​(B)​ but showing the AUC values of individual cell lines. 
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Supplementary Fig. S2 Distribution of subpopulations with differential drug response 
after segmentation when comparing multiple drugs. (A)​ Segmentation of 
pharmacological pattern of response for MAPK and AKT/PI3K pathway targets. There are 
five different MEK inhibitors (RDEA119-2, CI-1040, PD-0325901, selumetinib, and 
trametinib) showing the segmentation of 745 cell lines into subpopulations having distinct 
pharmacological patterns of response (see boxplots). Significance testing reveals enriched 
mutations in the subpopulations (blue boxes). ​(B) ​Scatter plot showing subpopulations (pink) 
sensitive to both trametinib (MEK inhibitor) and AS605240 (PI3K inhibitor). ​(C) ​Scatter plot 
showing subpopulations (yellow) sensitive to SB590885 (BRAF inhibitor) but resistant to 
GSK2126458 (PI3K inhibitor)​. (D) ​Scatter plot showing subpopulations (green) sensitive to 
KIN001-102 (AKT inhibitor) but resistant to trametinib (MEK inhibitor). ​(E) ​Scatter plot 
showing subpopulations (blue) sensitive to RDEA119-2 (MEK inhibitor) but resistant to 
ZSTK474 (PI3K inhibitor) and sensitive to ZSTK474 but resistant to RDEA119-2. Enriched 
mutations, cancer tissue types, and/or expression pathway markers are labeled beside each 
subpopulation. Enriched expression pathway markers represent either the activated or 
inactive pathways in the subpopulation. They are labeled as “​pathway name​” up for activated 
pathways or down for inactive pathways. 
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Supplementary Fig. S3 Average Pearson correlation coefficient of each drug pair. ​The 
average correlation coefficient of each drug pair was calculated by first constructing the 
variables vector as ​x. ​The average IC​50​ value of the subpopulations is represented as vector 
c​ and the size of the subpopulations as vector ​s​. We compute  ​and then ​c​ is stacked z = c ° s  
with ​z​ in sequence horizontally to construct the variables vector ​x​. ​z​ is a vector where each 
entry is the summation of the IC​50​ value of each cell line grouped in the same subpopulation; 
the correlation coefficient matrix could be calculated by employing vector ​x​. The average 
value in the correlation coefficient matrix is next calculated by taking the upper triangular 
matrix (represented as ​U​) of the correlation coefficient matrix, then use a diagonal matrix 
which is 1 on the main diagonal to be subtracted from ​U​ to get the matrix ​V​. Finally, the 
value of ​V ​is summed and divided by the number of unique subpopulation ​l​. 

n​ is the number of the subpopulation resulting in the average correlation n (n )/2l =  *  − 1  
coefficient value for the drug pair. 
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Supplementary Fig. S4​ ​Efficacy identified in drug combinations showing divergent 
response.​ ​(A), (B), (C), (D)​ Subpopulations from comparison of response to MEK inhibitor 
(horizontal axis) to four different PI3K inhibitors (vertical axis) plotted by the average 
log(IC​50​) of each subpopulation. ​(E), (F)​ Subpopulations resulting from comparison of BRAF 
inhibitor (horizontal axis) to two PI3K inhibitors (vertical axis). Enriched mutations, cancer 
tissue types, and/or expression pathway markers are labeled beside each subpopulation. 
Enriched expression pathway markers represent either the activated or inactive pathways in 
the subpopulation. They are labeled as “​pathway name​” up for activated pathways or down 
for inactive pathways. ​(G)​ Scatter plot of individual cell lines without subpopulations shown in 
panel ​(E)​. All cell lines with ​BRAF ​mutation are coloured gold. The dashed lines indicate the 
20th percentile of log(IC​50​) values for each drug. ​(H) ​Response to combinations of MEK and 
PI3K inhibitors tested in cell lines, and ​(I)​ BRAF and PI3K inhibitors tested in patient-derived 
xenograft (PDX) tumours. Higher synergy score in cell lines indicate greater response to the 
combination therapy, and lower % change in tumor volume indicate greater response in PDX 
tumours. 
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Supplementary Fig. S5 Analysis of the distribution of ​KRAS​ mutant NSCLC cell lines 
treated with docetaxel (microtubules) and selumetinib (MEK inhibitor). (A)​ Scatter plot 
showing the percentage of ​KRAS ​mutant NSCLC cell lines within each subpopulation. The 
subpopulations contain cell lines in all levels of the segmentation process. ​(B) ​Scatter plot 
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illustrating the distribution of individual NSCLC cell lines treated with docetaxel and 
selumetinib. These cell lines are from subpopulations at the terminal level of the 
segmentation process. ​(C) ​Scatter plot showing the percentage of NSCLC cell lines with the 
KRAS​ p.G12C cell lines within each subpopulation. ​(D)​ Scatter plot showing the percentage 
of NSCLC cell lines with the ​KRAS​ p.G12V mutation within each subpopulation. ​(E)​ Scatter 
plot of subpopulations illustrating the percentage of NSCLC cell lines in each subpopulation 
of pan-cancer cell lines. ​(F)​ Same as panel ​(E)​ but for aerodigestive cancer cell lines.  
 
 
 

 
Supplementary Fig. S6 Comparison of clustering approaches for a drug pair. (A) 
Subpopulations and biomarkers produced by SEABED for the same drug pair (PLX4720-2 
and PI-103). ​(B) ​Subpopulations identified using K-Means clustering for the same drug pair 
and biomarkers detected using the same technique. ​(C) ​Subpopulations identified using 
hierarchical clustering for the same drug pair. 20 of the clusters produced by hierarchical 
clustering contained only one cell line. Both K-Means and hierarchical clustering were set to 
generate the same number of clusters as SEABED. 
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Supplementary Tables 
 
 

  Selumetinib + 
Docetaxel  

 Placebo + 
Docetaxel  

Hazard 
Ratio 

P-value 

Participants (​KRAS​ mutation positive) Analyzed   254   256      

Median Progression-Free Survival (Inter-Quartile 
Range)  

 3.9  (1.5 to 5.9)   2.8  (1.4 to 5.5) 0.93 0.4355 

Median Overall Survival (Inter-Quartile Range)   8.7  (3.6 to 16.8)   7.9  (3.8 to 20.1)  1.05 0.6431 

Supplementary Table S1​ Primary and secondary endpoints for the SELECT-1 Trial 
evaluating the efficacy of selumetinib and docetaxel in locally advanced or metastatic 
NSCLC ​(Jänne et al., 2017)​. 
 
 

 K-Means Hierarchical Clustering SEABED 

Minimum  4 1 20 

Median 36 1 33 

Maximum 81 846 83 

Supplementary Table S2​ ​Minimum, median and maximum of subpopulation sizes for 
different segmentation techniques for PLX4720-2 (BRAF inhibitor) and PI-103 (PI3K 
inhibitor) in Fig. 3.  
 
 

 K-Means Hierarchical Clustering SEABED 

Silhouette 
Coefficient 

0.323 ± 0.037 0.036 ± 0.018 
 

0.231 ± 0.056 
 

RMSSTD 0.228 ± 0.135 0.854 ± 0.050 0.198 ± 0.103 

Supplementary Table S3​ ​Mean pairwise​ ​cluster validation results for two different 
segmentation techniques for PLX4720-2 (BRAF inhibitor) and PI-103 (PI3K inhibitor) in Fig. 
3. Larger silhouette values indicate greater separation, while smaller values of RMSSTD 
indicate higher cluster homogeneity. 
 
 
 
Key Resources Table 
  
REAGENT or 
RESOURCE 

SOURCE LOCATION 
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Deposited Data 

The 
Genomics of 
Drug 
Sensitivity in 
Cancer 
(GDSC) 
database 

(Garnett et al., 2012; Iorio et al., 
2016) 

https://www.cancerrxgene.org/ 

Cancer Cell 
Line 
Encyclopedia 
(CCLE) 

(Barretina et al., 2012) https://portals.broadinstitute.org/ccle 

Cancer 
Therapeutics 
Response 
Portal 
(CTRP) 

(Basu et al., 2013; Rees et al., 
2016; Seashore-Ludlow et al., 
2015) 

https://portals.broadinstitute.org/ctrp/ 

Menden et 
al. dataset 

(Menden et al.)   

Gao et al. 
dataset 

(Gao et al., 2015)   

Raw and 
analysed 
datasets 

This paper Supplementary Tables S4 and S5 

Software and Algorithms 

SEABED 
code 

https://github.com/szen95/SEABED N/A 

Matplotlib (Hunter, 2007) N/A 

Numpy (Oliphant, 2006) N/A 

Pandas (McKinney, 2017) N/A 

Bioconductor 
(R) 

www.bioconductor.org N/A 

graph-tool https://graph-tool.skewed.de N/A 
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