# SUPPLEMENTAL INFORMATION

Gingival Solitary Chemosensory Cells Are Immune Sentinels for Periodontitis

Zheng et al.

### Contents:

Supplementary Figures 1-6 Supplementary Tables 1-3



Supplementary Figure 1. Taste Signaling Molecules Expressed in Gingival Tissue (Related to Figure 1) (A) RT-PCR was used to examine expression in mouse tissues of all 35 Tas2rs. The cDNA templates were derived from mouse gingival tissue. Tas2rs shown in red represent those expressed in gingiva. \*The Tas2r144 band represents a non-specific PCR product with unexpected size. (B) RT-PCR for Gpr41, Gpr43, Gpr120 and Cd36 in taste buds and gingiva. TB: taste buds; RT (+/-): with/without reverse transcription. (C) Immunofluorescence staining for  $\alpha$ -gustducin and Plc $\beta$ 2 in gingival tissues from Gnat3<sup>-/-</sup>, choline acetyltransferase (ChAT)-GFP, and TrpM5-GFP mice. The white dotted lines outline the tooth margins. T: the tooth facing side; V: the vestibular groove facing side. Yellow dotted lines indicate the fields with mannifed views. Scale hors: 150 um magnified views. Scale bars: 150 µm.



### Supplementary Figure 2. Tas2r105 Responded to Acylated Homoserine Lactones (AHLs) (Related to Figure 1)

(A) HEK293 cells were transfected with Ga16Gust44 plus one of the 10 Tas2rs found to be expressed in gingival tissue, or with empty vector (Mock). Cells were loaded with Fluo-4 calcium dye and then stimulated with five bacterially produced or synthetic AHLs. Fluorescence intensity changes indicating intracellular calcium concentrations were monitored with a FlexStation 3. Data are presented as means  $\pm$  SEM (n=3 independent experiments, except some assays where n=4, 6 or 7 independent experiments, see details in Source Data file). \*\*, p < 0.01, \*\*\*, p < 0.001; one-way ANOVA test followed by Dunnett's test to compare experimental groups with mock control.

(B) Representative calcium response curves of HEK293 cells expressing Tas2R105 and G $\alpha$ 16Gust44 to AHLs. MeOH, a control group with methanol at the corresponding concentration as in the AHL stimuli. Representative data of 3 independent experiments.

(C) Calcium response curves of HEK293 cells expressing Tas2r105 and Gα16Gust44 to denatonium benzoate (Den) and cycloheximide (CHX). Vehicle control groups comprised Dulbecco's PBS (DPBS) or 0.05% DMSO at the corresponding concentration as in the stimuli. Representative data of 3 independent experiments.



Supplementary Figure 3. The Commensal Oral Microbial Composition Differed between Wild-Type (WT) and Gnat3<sup>-/-</sup> Mice (Related to Figure 2) (A) Percentage of community abundance at the genus level in WT and Gnat3<sup>-/-</sup> mice at weaning day (wd) and at 8 and 16 weeks (wk) of age. (B) Percentage change of nine most abundant genera in WT and Gnat3<sup>-/-</sup> mice. Data are means  $\pm$  95% confidence interval (n=8 mice). \*, p < 0.05, \*\*, p < 0.01, \*\*\*, p < 0.001; Wilcoxon rank-sum test.





Expression of pro-inflammatory cytokines (A) and antimicrobial peptides (B) determined by qPCR. Results are normalized against  $\beta$ -actin mRNA expression (means ± SEM, n=3 independent experiments). IL-1 $\beta$ , -6, -17: interleukin-1 $\beta$ , -6, -17, respectively; RANKL: receptor activator of nuclear factor kappa-B ligand; Defb1-3:  $\beta$ -defensin 1-3, respectively; Camp: cathelicidin antimicrobial peptide LL-37. \*\*, p < 0.01, Student's t test. Source data are provided as a Source Data file.



Supplementary Figure 5. The Alpha Diversity of Ligature Microbiota Was Lower in Gnat3<sup>+/-</sup> Mice (Related to Figure 4) The  $\alpha$  diversity of the ligature microbiome was compared between wild-type (WT) and Gnat3<sup>+/-</sup> mice using Shannon (A), Simpson (B), Chao (C), and Ace (D) indices. The Shannon index is positively correlated with a diversity, while the Simpson index is negatively correlated. Ace and Chao indices, representing the operational taxonomic units in samples, are also positively correlated with α diversity. Data are presented as standard box plots, with the boxes presenting the first and third quartiles and the whiskers representing the 5th and 95th percentiles (n=10 mice). \*, p < 0.05, \*\*, p < 0.01, \*\*\*, p < 0.001; Wilcoxon rank-sum test.



Supplementary Figure 6. Ligature-Induced Periodontitis Is More Severe in Cohoused Mice Lacking Gnat3 (Related to Figure 3 and 4)
(A) Ligatured maxillae from cohoused WT and Gnat3<sup>-/-</sup> mice. Scale bars: 500 μm.
(B) Quantitation of relative alveolar bone loss (ABL) calculated by subtracting the ABL of the unligatured side from the ABL of the ligatured side. Results for each mouse are plotted; the red lines indicate the means (n=3 mice). \*\*, p < 0.01, Student's t test.</li>
(C) MicroCT analysis of alveolar bone (n=3 mice). BV/TV: bone volume/tissue volume. \*\*, p < 0.01, Student's t test.</li>
(D) Principal component analysis (PCA) of microbiota recovered from ligatures around molars of WT and Gnat3<sup>-/-</sup> mice (n=3 mice). Each circle represents an individual ligature sample, colored by genotype.
(E) The Shannon index (positively correlated with α diversity) of the ligature microbiome was compared between WT and Gnat3<sup>-/-</sup> mice.

Error bars in C and E represent the SEM. Source data are provided as a Source Data file.

| REAGENT or RESOURCE                               | SOURCE                      | IDENTIFIER                                |  |
|---------------------------------------------------|-----------------------------|-------------------------------------------|--|
| Antibodies                                        | 0001102                     |                                           |  |
| Rabbit anti-g-gustducin antibody                  | Santa Cruz                  | Cat no. SC-395 RRID:                      |  |
|                                                   | Santa Gruz                  | AB 673678                                 |  |
| Goat anti-Plcβ2 antibody                          | Santa Cruz                  | Cat. no. SC-31759, RRID:<br>AB 2163242    |  |
| Chicken anti-GFP antibody                         | Millipore                   | Cat. no. AB16901, RRID:<br>AB 11212200    |  |
| Alex Fluor 594 donkey anti-rabbit IgG             | Molecular Probes            | Cat. no. A-21207, RRID:<br>AB 141637      |  |
| Alex Fluor 488 donkey anti-goat IgG               | Molecular Probes            | Cat. no. A-11055, RRID:<br>AB 142672      |  |
| Alex Fluor 488 donkey anti-chicken IgY            | Jackson<br>ImmunoResearch   | Cat. no. 703-546-155,<br>RRID: AB_2340376 |  |
| Bacterial Strains                                 |                             |                                           |  |
| One Shot™ TOP10 Chemically                        | Thermo Fisher               | Cat. no. C404003                          |  |
| Competent E. coli                                 | Scientific                  |                                           |  |
| Biological Samples                                | -                           |                                           |  |
| Murine gingival tissues                           | This study                  | N/A                                       |  |
| Murine taste buds                                 | This study                  | N/A                                       |  |
| Murine maxillae                                   | This study                  | N/A                                       |  |
| Murine oral swabs (microbiota)                    | This study                  | N/A                                       |  |
| Recovered ligatures (microbiota)                  | This study                  | N/A                                       |  |
| Chemicals, Peptides, and Recombinant              | Proteins                    | <u>.</u>                                  |  |
| l asl                                             | Churchill Lab Univ          |                                           |  |
|                                                   | Colo. Denver                |                                           |  |
| Esal                                              | Churchill Lab., Univ.       |                                           |  |
|                                                   | Colo. Denver                |                                           |  |
| 3-oxo-C12-HSL                                     | Sigma-Aldrich               | Cat. no. 09139                            |  |
| C6-HSL                                            | Sigma-Aldrich               | Cat. no. 09926                            |  |
| C8-HSL                                            | Sigma-Aldrich               | Cat. no. 10940                            |  |
| Denatonium benzoate                               | Sigma-Aldrich               | Cat. no. 52487                            |  |
| Cycloheximide                                     | Sigma-Aldrich               | Cat. no. C7698                            |  |
| Isoproterenol                                     | Sigma-Aldrich               | Cat. no. 1351005                          |  |
| Critical Commercial Assays                        |                             |                                           |  |
| Dispase II                                        | Roche                       | Cat. no. 04942078001                      |  |
| Collagenase A                                     | Roche                       | Cat. no. 10103578001                      |  |
| PureLink™ RNA Mini Kit                            | Thermo Fisher<br>Scientific | Cat. no. 12183025                         |  |
| RQ1 RNase-Free DNase                              | Promega                     | Cat. no. M6101                            |  |
| SuperScript™ VILO™ Master Mix                     | Thermo Fisher<br>Scientific | Cat. no. 11755050                         |  |
| Platinum™ <i>Taq</i> DNA Polymerase               | Thermo Fisher<br>Scientific | Cat. no. 10966026                         |  |
| pcDNA™3.1/Zeo <sup>(+)</sup>                      | Thermo Fisher<br>Scientific | Cat. no. V86020                           |  |
| Lipofectamine 2000                                | Thermo Fisher<br>Scientific | Cat. no. 11668019                         |  |
| Fluo-4                                            | Thermo Fisher<br>Scientific | Cat. no. F14201                           |  |
| Fura-2                                            | Thermo Fisher<br>Scientific | Cat. no. F14185                           |  |
| PurFlock <sup>™</sup> Ultra Sterile Flocked Swabs | Puritan                     | Cat. no. 253318U BT                       |  |

## Supplementary Table 1. Key Resources (Related to Figures 1-5).

| PureLink™ Microbiome DNA<br>Purification Kit             | Thermo Fisher                              | Cat. no. A29790            |  |  |  |
|----------------------------------------------------------|--------------------------------------------|----------------------------|--|--|--|
| Dioo Croon kit                                           | Thormo Eicher                              | Cat pa D11406              |  |  |  |
| Pico-Green kit                                           | Scientific                                 | Cat. no. P11496            |  |  |  |
| 6-0 silk ligatures                                       | Fine Science Tools                         | Cat. no. 1802060           |  |  |  |
| TaqMan Fast Universal Master Mix                         | Applied Biosystems                         | Cat. no. 4444557           |  |  |  |
| Fast SYBR Green Master Mix                               | Applied Biosystems                         | Cat. no. 4385612           |  |  |  |
| Deposited Data                                           | •                                          |                            |  |  |  |
| 16S rDNA sequencing raw data                             | http://www.ncbi.nlm.n<br>ih.gov/Traces/sra | Acc. no. SRP126006.        |  |  |  |
| Experimental Models: Cell Lines                          |                                            |                            |  |  |  |
| Human embryonic kidney 293<br>(HEK293) PEAKrapid cells   | ATCC                                       | Cat. no. CRL-2828          |  |  |  |
| Experimental Models: Organisms/Strains                   | ŝ                                          |                            |  |  |  |
| Wild-type mice (C57BL/6J background)                     | Monell Chemical                            |                            |  |  |  |
|                                                          | Senses Center                              |                            |  |  |  |
| Gnat3 <sup>-/-</sup> mice (C57BL/6J background)          | Monell Chemical<br>Senses Center           |                            |  |  |  |
| Pou2f3 <sup>-/-</sup> mice (C57BL/6J background)         | From Dr. Ichiro                            |                            |  |  |  |
|                                                          | Matsumoto (Monell                          |                            |  |  |  |
|                                                          | Chemical Senses                            |                            |  |  |  |
|                                                          | Center)                                    |                            |  |  |  |
| ChAI-GFP mice (FVB/N background)                         | From Sukumar                               |                            |  |  |  |
|                                                          | (Univ Colo Denver)                         |                            |  |  |  |
| TrpM5-GEP mice (C57BL/6.1                                | Monell Chemical                            |                            |  |  |  |
| background)                                              | Senses Center                              |                            |  |  |  |
| Recombinant DNA                                          | Ł                                          | <u>-</u>                   |  |  |  |
| pcDNA™3.1/Hvaro <sup>(+)</sup> -Gα16aust44               | From P.J.                                  |                            |  |  |  |
| pcDNA <sup>™</sup> 3.1/Zeo <sup>(+)</sup> -RSST-Tas2r105 | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r108              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r118              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r119              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r126              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r134              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r135              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r137              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r138              | This study                                 |                            |  |  |  |
| pcDNA™3.1/Zeo <sup>(+)</sup> -RSST-Tas2r143              | This study                                 |                            |  |  |  |
| Software and Algorithms                                  |                                            |                            |  |  |  |
| Image J                                                  | NIH                                        | https://imagej.nih.gov/ij/ |  |  |  |
| Image pro plus 6.0                                       | Media Cybernetics                          |                            |  |  |  |
| Usearch version 7.1                                      | Drive5                                     | http://drive5.com/uparse/  |  |  |  |
| I-Sanger                                                 | Majorbio co.                               | http://www.i-sanger.com/   |  |  |  |
| Prism software                                           | GraphPad Software                          | U                          |  |  |  |
|                                                          | Inc.                                       |                            |  |  |  |

| Sample type | Comparison groups                                            | ANOSIM (p value) | Adonis (p value) |
|-------------|--------------------------------------------------------------|------------------|------------------|
| Oral swab   | WT: wd vs. 8wk vs. 16wk<br>(see Fig. 2 F)                    | 0.006            | 0.02             |
|             | Gnat3 <sup>./.</sup> : wd vs. 8wk vs. 16wk<br>(see Fig. 2 G) | 0.001            | 0.001            |
|             | WT, wd vs. Gnat3 <sup>./.</sup> , wd<br>(see Fig. 2 H)       | 0.001            | 0.001            |
|             | WT, 8wk vs. Gnat3 <sup>./.</sup> , 8wk<br>(see Fig. 2 I)     | 0.038            | 0.042            |
|             | WT, 16wk vs. Gnat3 <sup>./.</sup> , 16wk<br>(see Fig. 2 J)   | 0.002            | 0.001            |
| Ligature    | WT vs. Gnat3 <sup>.,.</sup> (see Fig. 3F)                    | 0.001            | 0.001            |

### Supplementary Table 2. Analysis of Microbiome Data (Related to Figures 2 and 4).

Abbreviations: ANOSIM = analysis of similarities; Adonis = multivariate analysis of

variance; wd = weaning day.

# Supplementary Table 3. Sequences of Primers and Probes (Related to Figures 1,

## 3-5).

| Name          | Sequence (5'-3')       | Name          | Sequence (5'-3')      | Name          | Sequence (5'-3')            |
|---------------|------------------------|---------------|-----------------------|---------------|-----------------------------|
| Gnat3_131F    | GAGAGCAAGGAATCAGCCAG   | Tas2r119_276F | TCTGGTTTGCCACATGGCTT  | Tas2r143_99F  | AGAGTGGATGAGGAACCGGA        |
| Gnat3_252R    | GTGCTTTTCCCAGATTCACC   | Tas2r119_658R | GGCATGTCTGCTAGGTTCCC  | Tas2r143_683R | GCCATGGTATGTGCCTGAGT        |
| Trpm5_952F    | TTCCCCAGCGAGTGTTTCTC   | Tas2r120_282F | CACTTGGCTGGGGACCATAC  | Tas2r144_651F | CTCACTCAAGAGGCACACCC        |
| Trpm5_1221R   | CCATTCCACGTCCCCATTGA   | Tas2r120_669R | GTGGACCATGGTGCTCTGAT  | Tas2r144_757R | TGAGAGAGTGGCTGGTCGAT        |
| Plcb2_1954F   | CCTGGAGGTGACAGCTTATGA  | Tas2r121_658F | CGAGACCCCAGCACTAAAGC  | Gpr41_F       | CAGAGTGCCAGTTGTCCAATA       |
| Plcb2_2078R   | GCTCCGTGAAGGAAGAGACA   | Tas2r121_888R | CATCACCCAAAGACTGGCTTG | Gpr41_R       | ATGCCAGGAACCAACAGACT        |
| Tas2r102_26F  | AGGCGACGCTGTTATATGCC   | Tas2r122_181F | CAACAATTGCTGGTGCCTCT  | Gpr43_F       | CAAACTCGGGATGCTTCAG         |
| Tas2r102_354R | AAGCCAGAGGCTGAAGTGAC   | Tas2r122_771R | GGAGCTTGCCACAATAAGCA  | Gpr43_R       | AGCAGCAACAGGAGCAAGTC        |
| Tas2r103_565F | ACCCCATTCGCTGTGTCTTT   | Tas2r123_102F | AGTGAACATCATGGACTGGGT | Gpr120_F      | GGGGACCAGGAAATTCCGATT       |
| Tas2r103_877R | AGGCTTGCCTCAGCTTACTG   | Tas2r123_249R | TCTCCTAGGCAAATGTGGGC  | Gpr120_R      | CGCGATGCTTTCGTGATCTG        |
| Tas2r104_434F | TTCCGCTAGCTGTGAAGGTC   | Tas2r124_393F | GCTTCTGGGAAGCTTGGTGT  | Cd36_F        | GCAGCCTCCTTTCCACCTTT        |
| Tas2r104_881R | AGTGCCCTCATAGTGGCTTG   | Tas2r124_681R | ATTTCTGTGGGCCGTAGCAC  | Cd36_R        | TGTCTGGATTCTGGAGGGGT        |
| Tas2r105_294F | GTTTGCCACCAGCCTAAGCA   | Tas2r125_666F | CACCACCACAGCTGCACATA  | Actb_251F     | GGTCAGAAGGACTCCTATGTGG      |
| Tas2r105_506R | TCCCAGTACATCTCCGAGGTC  | Tas2r125_935R | CAGGGAACCAACATCCGTACA | Actb_353R     | TGTCGTCCCAGTTGGTAACA        |
| Tas2r106_2F   | TGCTGACTGTAGCAGAAGGA   | Tas2r126_140F | TCCTCTTCAGTTTGGGCACC  | Defb3_56F     | TGTCTCCACCTGCAGCTTTTAG      |
| Tas2r106_134R | AAGCCAGCTGTGGAGAACTT   | Tas2r126_424R | CGGACACCAAGATAGAGCCC  | Defb3_166R    | AACTGCCAATCTGACGAGTGT       |
| Tas2r107_119F | GCTCGGAGTTTTAGGGGACA   | Tas2r129_671F | TTGCAGATGCCCACATCAGA  | Defb2_86F     | CCACTCCAGCTGTTGGAAGTTT      |
| Tas2r107_873R | AGAGGCATGTGGCTGTCAAA   | Tas2r129_818R | GCTGCAACAATCTCGCAGAA  | Defb2_221R    | TTCTCTGGGAAACAGCTCCC        |
| Tas2r108_112F | AGTCGCAGAATTGCCTCTCC   | Tas2r130_37F  | GCTGTTGGTGAGGCCTTAGT  | Defb1_151F    | GGAGCCAGGTGTTGGCATTC        |
| Tas2r108_688R | GCCTCATAGCACCCATGTGA   | Tas2r130_546R | GACAGAGGCATGTCCAGCTT  | Defb1_305R    | AGCTCTTACAACAGTTGGGCT       |
| Tas2r109_587F | CTGTCCCCGTTGTTTTGTCC   | Tas2r131_314F | CCCACATTTCCCATCCCCTT  | Camp_381F     | TCAGCTGTAACGAGCCTGGTG       |
| Tas2r109_915R | CAACACAGAGAGAGAGAGGCGT | Tas2r131_618R | GTCAAGGCTTCGGGAGTGTT  | Camp_556R     | GCCAAGGCAGGCCTACTAC         |
| Tas2r110_700F | CAGGTCAATGCCAAACCACC   | Tas2r134_457F | ATGGCGGCCTGTGAAAACTA  | ll1b_119F     | TGCCACCTTTTGACAGTGATG       |
| Tas2r110_969R | GCACCTCAGACAATGCAACA   | Tas2r134_663R | GTGAGCCTGGGTGCTGTAAT  | ll1b_338R     | AAGGTCCACGGGAAAGACAC        |
| Tas2r113_632F | ATATGCAGCACACCGCCAAA   | Tas2r135_543F | GAGTGGCCATCAACCTTGGA  | ll6_187F      | GAGGATACCACTCCCAACAGACC     |
| Tas2r113_811R | CCAGAGCCCAGACAAACAAA   | Tas2r135_830R | GCAGAACTGAGTACCAGCGT  | II6_327R      | AAGTGCATCATCGTTGTTCATACA    |
| Tas2r114_7F   | AGCACAATGGAAGGTGTCCT   | Tas2r136_712F | CCCAGTGCTTCAACCCACAT  | ll17_284F     | CCTGGACTCTCCACCGCAA         |
| Tas2r114_622R | GCCTGCGATGTCTCCAAAGT   | Tas2r136_963R | CCAGAACCTTGCTCTCACCT  | II17_488R     | CCCACCAGCATCTTCTCGAC        |
| Tas2r115_692F | AGACTGTGGTTGCCTTCCTC   | Tas2r137_19F  | ACAAGCAAGGATCAGGGTGG  | Rankl_368F    | CGAGCGCAGATGGATCCTAA        |
| Tas2r115_922R | AGGTTTTCTCACGCTTGCAC   | Tas2r137_657R | CAGAAGGTAGGCAACCAGGG  | Rankl_614R    | CCACATCCAACCATGAGCCT        |
| Tas2r116_569F | TTGCTGTGTCACTGGTCACT   | Tas2r138_618F | AGCTTTCCTGGTTTCCTCGG  | Uni_152F      | CGCTAGTAATCGTGGATCAGAATG    |
| Tas2r116_684R | TCTGATGTGGGCCTTAGTGC   | Tas2r138_983R | GGAGGAACCTTGTGGACTGG  | Uni_220R      | TGTGACGGGCGGTGTGTA          |
| Tas2r117_92F  | ATGGGTTCATGGTCCTGGTC   | Tas2r139_3F   | GGCTCAACCCAGCAACTACT  | Uni_177P      | CACGGTGAATACGTTCCCGGGC      |
| Tas2r117_560R | AACACCTGCCTGTGACACTT   | Tas2r139_432R | CCACAGAAGCCAGGGCATTA  | NI1060_F      | ACGGGAGTAAAAGGATTTGAGGCTAAT |
| Tas2r118_127F | TCACCGGTGGAGACGATTCT   | Tas2r140_665F | CCAGCACCACAGCCCATATT  | NI1060_R      | AATATTCATACTCATATCGCCTCCTTA |
| Tas2r118_356R | CTCAGCCAGAGGAAGATGGG   | Tas2r140_847R | TTAGGACACAAGAGTGGCCC  |               |                             |