
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In the present manuscript, Dr Alessia Visconti et al. confirm greater similarity for functional 

potentials of metabolic pathways than for taxonomic compositions across shotgun-sequenced 

metagenomics of stool-derived microbial DNA from a mixed group (predominantly middle-aged and 

elderly women) of 322 monozygotic twins, 402 dizygotic twins and 280 singletons from UK.  

In subsets of the individuals (n = 479) where untargeted metabolomics profiling of faecal water was 

available, the investigators confirm their previously reported study that the faecal metabolome to 

some extent reflect the gut microbial activity. In individuals where both metagenomics as well as 

faecal and blood metabolomics data were available the authors describe various interesting 

correlations between the three omics profiles. Also, by applying P-gain statistics they identify six key 

bacterial species that are likely to play a role in mediation of cross-talks between faecal and blood 

metabolites. Additionally, the authors report correlations between methanogens, blood threonate 

and three measures of host adiposity.  

 

Comments  

 

The microbiome part of the project are undertaken with standard methods. However, there are 

several limitations of applied microbiome data including no information on adjustment for variation 

in stool consistency, sample variation of bacterial cell counts or adjustment for drug intake.  

 

From studies of large-scale populations like the US Human Microbiome Project it has already been 

reported, that the gut microbiota is relatively more shared among individuals at the functional 

potential level than at the taxonomic level [doi:10.1038/nature11550]. Thus, the metabolic 

pathways similarity was firstly reported in a study of 18 females who shared more than 93% of the 

enzyme-level functional groups. The observation was validated and extende in the much larger 

populations in MetaHIT [Nature 464, 59-65 (2010)]. The first part of the present results are therefore 

a further validation of important observations.  

 

Also as emphasized in a previous report by the the TwinsUK investigators the faecal metabolome 

does reflect faecal microbiome activity to a considerable extent [doi: 10.1038/s41588-018-0135-7]. 

As such, there is no doubt that carefully conducted faecal metabolic profiles act as a proxy for a 

functional readout of the gut microbiome. Hence, in part two of the results, the authors extend their 

previously reported findings.  



 

Age is a known regulator of the faecal microbiome and metabolome [doi: 10.1038/s41588-018-

0135-7]. In the actual study, the authors do not give detailed age distribution of all the enrolled 

participants. The paper will benefit from analyses of the effects of age on the microbiome-fecal 

metabolome-blood metabolome interplays.  

The multiple correlations between the microbiome and two-compartments metabolomes are of 

interest. Yet, what matters for human biology is to promote novel insights between the intestinal 

microbiome, the various biological compartments metabolomes and the human host physiology as 

for instance has been done by other investigators (PMID: 30382244 or PMID: 30401435). Apart from 

correlations between microbial features and a vitamin C metabolite and host adiposity measures, 

the authors do not expand their analyses to host nutrient metabolism or hormone actions. The 

paper will gain in originality if such analyses are done and added.  

 

The commercial approach applied for metabolomics is a considerable concern. This reviewer 

strongly recommend the authors to add detailed information about quality assured methods used 

for the metabolomics profiling to the supplementary information. Otherwise, it will not be possible 

for independent investigators to reproduce the present findings when applying comparable non-

commercial methodologies. For the current version of the manuscript, it is not possible to give a 

balanced judgement of the quality and accuracy of the metabolomics methodologies. When finally 

reported the metabolomics data needs to be deposited in the MetaboLights database or similar 

public databases.  

 

Obviously, a particular challenge in metabolomics is the interpretation of the large amount of data. 

The present study lacks adequate information on statistical procedures to permit replication. It is not 

clear in what order and to which metabolites each method was applied.  

Another major issue in untargeted metabolomics is the accuracy of quantitation. In untargeted 

profiling, the analytes eluting from the LC system must be ionized to allow their transition from the 

liquid phase into the gas phase before they can enter the orifice of the mass spectrometry. Among 

other factors, such as the structural composition of the analyte, the efficiency of the ionization 

process is dependent on co-eluting metabolites. High-abundant metabolites may suppress the 

ionization of low-abundant metabolites by picking up most of the available charges at the cone of 

the spray tip. Thus, the signal intensity is not solely dependent on the concentration of the 

metabolite. The ionization efficiency, on the other hand, is in part determined by the “matrix”. In 

Supplement, the authors are encouraged to deliver robust evidence showing how to avoid the 

influence from co-eluting metabolites or contaminants on the quantitation accuracy for the 

presented analytes.  

 

If the authors performed accurate quantification by generating calibration curves of areas-under-

the-curve for peaks against serial amount of reference standards for metabolites, the accurate 



concentrations should be given as numbers followed by units. If not, this reviewer recommends to 

use abundance (without units) instead of concentration.  

 

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

 

Visconti et al. present a concise manuscript that reports on the association of faecal and blood 

metabolites with gut microbial taxa and their metabolic repertoire. The manuscript is well written. 

The authors chose a small but efficient set of tools to analyse the microbiome and evaluate 

associations. The manuscript is however weak on the interpretation of the results with respect to 

microbial and human physiology. There are some critical omissions of methods, ethics and data 

statements. Overall, the manuscript does provide compelling evidence for the appropriateness of 

functional analyses of the human microbiome in health in disease, but would strongly profit from 

addressing the points detailed below.  

 

Major points:  

 

- There is a strong focus of this manuscript on the greater similarity of pathways across individuals 

compared to taxonomic profiles. This is probably the least novel aspect in the findings of this 

manuscript and I would advice to abbreviate its presentation in favor of a more balanced discussion 

of its representation in published literature and the clarification of the points below that are more 

novel and less intuitively grasped.  

 

- The authors interpret their results to indicate that “coordinated action of multiple taxa is required 

to affect the metabolome”. This would suggest some kind of cross-feeding, which certainly exists in 

the human microbiome. However, the observed patterns could also be due to functional redundancy 

and are probably more easily explained as such. In particular, the approach chosen by the authors to 

test for the presence of pathways in the microbiome only takes into account (near-to) complete 

pathways, indicating that intra-microbiome interactions that rely on cross-feeding may be 

overlooked in the analysis.  



I would urge the authors to include this alternative interpretation, potentially replacing the less likely 

currently presented view.  

 

- There is no ethics statement.  

 

- There is no data availability statement for the raw data.  

 

- I am missing a discussion on the functional relevance of the observed associations. For example, 

sebacate, is this rather unusual metabolite assumed to be produced by gut microbes? Are any of the 

metabolites related to pharmaceuticals that could also affect the microbiome? In the discussion, it is 

very briefly mentioned that the associations are often between pathways and unrelated 

metabolites. I would like to know more about this in the results section. What proportion of 

associations with metabolites that appear in the pathway (or superpathway) and how many are 

unexplained associations? on a related note, it should be explicitly mentioned already in the results 

section that the associations may be positive or negative and potentially which proportion has which 

direction. On the other hand, I am missing some obvious candidates for microbial interaction, 

namely the bile acids. Were these not as commonly associated? or not measured? A discussion of 

this would be helpful. Another point with relevance to the interpretation of the data is in the 

discussion “90% of the microbial species interact with their surrounding metabolic environment“ - I 

fail to see how the other 10% survive.  

 

 

Further points:  

 

In the abstract, it would be helpful to mention which similarity measure is being applied.  

 

Similarly, it would be helpful to mention the method employed for association testing in the results 

section and the legend of figure 2. It may be obvious to researchers from the human genetics field, 

but after reading the presentation of results from unrelated subjects in the first part of the results 

section, I didn’t realize that the association analysis actually uses kinship information. On a related 

note, the methods section should state whether pedigree information or genomic data was used in 

the association models.  

 

The methods section is lacking details on sampling, and especially storage conditions and duration. It 

is also unclear whether faecal samples for metagenomics and metabolomics are the same samples 



or were taken at different points in time. Similarly, it is unclear whether the blood samples were 

taken at the same time.  

 

Numbers of reads: an average of 39 M QC’ed and filtered reads is mentioned in the abstract and the 

results section. However, in the methods section, it is mentioned that roughly 27M reads were 

sequenced per samples were sequenced. These numbers don’t add up.  

 

Figure 2: the N stated at the top of the figure is misleading. Indeed, none of the displayed analyses 

were performed with 1004 individuals, as the original cohort was larger and the cohorts used for the 

two analyses are both considerably smaller. The 1004 should be replaced with the sample numbers 

for both arms.  

On a related note, for the comparisons of associations in blood and faecal samples, were all results 

used or only those relating to the cohort that had faecal and blood metabolites measured?  

 

The differences of correlations in the absence or presence of species could be due to common 

reasons for correlation and species presence. Eg. if metabolite comes from a food source that also 

allows for the microbial species’ growth. This test for differences in correlation therefore is no proof 

of interaction.  

 

Figure 3: the arrows for the bile acids are a bit confusing. Bile acids aren’t produced in the blood, as 

is suggested, and they are transformed by the microbiome, so the arrows shouldn’t end at the 

microbiome.  

 

The discussion lists some limitations of the presented study. I would argue that another limitation is 

that the microbiome analyses are not quantitative, i.e. there is no estimate of microbial density and 

therefore it is impossible to say if a relative abundance of one pathway in one sample is more or less 

than the abundance in another sample.  

 

Language:  

throughout:  

- I would replace “gut lumen metabolic content” (and similar) by “faecal metabolic content”, 

because that is where the metabolites were measured. Also, gut lumen could refer to different gut 

sections and is therefore less precise.  



- there are several instances where the authors refer to pathways or species “affecting” or 

“controlling” metabolite abundances. Since the analyses are associative, these terms are over-

interpretative and should (at least in the results section) be replaced by more appropriate choices.  

 

Intro, paragraph 1:  

- “variations in its composition induces” should be “induce”  

Intro, paragraph 2:  

- “16S amplicon data” should be “16S rRNA gene amplicon data” (or “16S rRNA amplicon data”, if it 

refers to RNA-based assays)  

- “host’s health” should be “hosts’ health” or “host health”  

Gut microbiota composition is host-specific whereas its functions are shared across subjects:  

par 1:  

- should be “Subdoligranulum genus”  

- “Microbial metabolic profiling” is a bit misleading. “Microbial metabolic pathway detection” might 

be more to the point.  

par. 2:  

- “pathway prevalence within our sample strongly correlated with the number of species in which it 

could be detected” - does the detection refer to the same sample or the overall dataset?  

The microbiome is involved in the crosstalk between the gut lumen and host systemic metabolism:  

- In my opinion, the term “crosstalk” is inadequate here, as it indicates some kind of signalling 

process. It would probably help to define already here what kind of mechanisms could lead to the 

observed patterns and choose a term that reflects them.  

par. 1, last sentence - introduce singular article for “species” or change “was” to “were”  

par. 2, 3rd sentence - “two metabolite levels” would be more clear than “two metabolites”, since 

this can refer to the same metabolite in two matrices.  

Discussion - end of par. 3 - are the associations with vitamin B metabolites in blood or faeces or 

both?  
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Reviewers' comments: 
 
Reviewer #1  & Reviewer #2 
 
The multiple correlations between the microbiome and two-compartments metabolomes 
are of interest. Yet, what matters for human biology is to promote novel insights between 
the intestinal microbiome, the various biological compartments metabolomes and the 
human host physiology as for instance has been done by other investigators (PMID: 
30382244 or PMID: 30401435).  
Apart from correlations between microbial features and a vitamin C metabolite and host 
adiposity measures, the authors do not expand their analyses to host nutrient 
metabolism or hormone actions. The paper will gain in originality if such analyses are 
done and added. 
 
Visconti et al. present a concise manuscript that reports on the association of faecal and 
blood metabolites with gut microbial taxa and their metabolic repertoire. The manuscript 
is well written. The authors chose a small but efficient set of tools to analyse the 
microbiome and evaluate associations. The manuscript is however weak on the 
interpretation of the results with respect to microbial and human physiology. There are 
some critical omissions of methods, ethics and data statements. Overall, the manuscript 
does provide compelling evidence for the appropriateness of functional analyses of the 
human microbiome in health in disease, but would strongly profit from addressing the 
points detailed below.  
 
Answer: We acknowledge that our manuscript places limited focus on physiological impact, 
apart from a number of examples inspired by the top results from our analyses. This is due to 
the fact that the goal of our study was to investigate, in human and at a very high level of detail, 
the interplay between the metagenome and the microbial and host metabolisms in order to a) 
understand which faecal and blood metabolites associate with the abundances of microbial 
species and metabolic pathways, and, particularly, b)to identify trios of microbiota/faecal 
metabolite/blood metabolite that are likely to be interconnected, thus highlighting potential 
interactions between the systemic and faecal environments.  
In this study we present several thousand (39,074) novel associations and potential 
interconnections between the microbiome and both the gut and the systemic metabolic 
environments, many of which may be involved in disease risk. Therefore, while interesting, we 
believe that focusing the manuscript on a particular disease or trait would obfuscate the main 
scope of this research, that is, to make available to the scientific community a new resource 
providing a wide picture of the dialogue between the microbiome and the faecal and blood 
metabolome, which has never been explored at this level of detail in a large human dataset. Our 
findings are made fully available through extensive Supplementary Materials and through a Web 
portal (http://173.212.245.153:3838/hli) where they can be queried and visualised both 
graphically and as interactive tables. These results provide scientists with a unique resource 
that will, for example, help in pinpointing potential biomarkers and targets capable of modulating 
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the abundances of metabolites and of species and functions relevant for human health for 
further investigations, or inform microbiology research on potential new metabolic functions of 
the gut microbiome. While we strongly agree with the Reviewer that the results of our study 
provide a large resource permitting future integration with physiological phenotypic data, we feel 
that such an investigation is beyond the scope of the current study.    
 
We now emphasised this in the manuscript by adding to the Discussions: 
“Moreover, with this study, we make available to the scientific community a unique resource 
providing a detailed investigation of the dialogue between the microbiome and the faecal and 
blood metabolome, which will help in pinpointing potential biomarkers and targets capable of 
modulating the abundances of metabolites and of species and functions relevant for human 
health for further investigations, and inform microbiology research on potential new metabolic 
functions of the gut microbiome. Results are made fully available through extensive 
Supplementary Materials and through a Web portal (http://173.212.245.153:3838/hli) where they 
can be queried and visualised both graphically and as interactive tables.” 
 
and to the abstract: 
“This study provides the scientific community with an unique resource describing the dialogue 
between the microbiome and the systemic and faecal metabolic environments.” 
 
From studies of large-scale populations like the US Human Microbiome Project it has 
already been reported, that the gut microbiota is relatively more shared among 
individuals at the functional potential level than at the taxonomic level 
[doi:10.1038/nature11550]. Thus, the metabolic pathways similarity was firstly reported in 
a study of 18 females who shared more than 93% of the enzyme-level functional groups. 
The observation was validated and extende in the much larger populations in MetaHIT 
[Nature 464, 59-65 (2010)]. The first part of the present results are therefore a further 
validation of important observations. 
 
There is a strong focus of this manuscript on the greater similarity of pathways across 
individuals compared to taxonomic profiles. This is probably the least novel aspect in the 
findings of this manuscript and I would advice to abbreviate its presentation in favor of a 
more balanced discussion of its representation in published literature and the 
clarification of the points below that are more novel and less intuitively grasped. 
 
Answer:  
We agree, the first part of our results is indeed a validation and refinement of previous findings. 
Nonetheless, we provide here novel estimates, on a large dataset, of the metabolic pathways vs 
species similarity across and between unrelated subjects. We have now amended the first 
paragraph of the Discussions as follow: 
“A previous report on a small sample of female subjects (N = 18) showed that, despite a high β-
diversity at the phyla level, between 26-53% of the ‘enzyme’-level functional groups were 
shared among samples19. Higher similarity of microbial metabolic pathways vs organismal 
abundances was also observed by the larger (N=242) Human Microbiome Project20. This may 
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be explained by the high functional redundancy of pathways across different microbial 
species21. Our larger study validates these findings, and estimates that 12% of the microbiome 
metabolic potential (as described by the MetaCyc microbial metabolic pathways) is present in all 
individuals. More in general, a random pair of unrelated subjects shares on average 82% of 
their microbial metabolic pathways, while this is the case for only 43% of the species.”  
We also edited the abstract as:  
“We observed that a random pair of unrelated subjects shares, on average, a far greater 
number of functional metabolic pathways (82%) than of species (43%).” 
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Reviewer #1  
 
In the present manuscript, Dr Alessia Visconti et al. confirm greater similarity for 
functional potentials of metabolic pathways than for taxonomic compositions across 
shotgun-sequenced metagenomics of stool-derived microbial DNA from a mixed group 
(predominantly middle-aged and elderly women) of 322 monozygotic twins, 402 dizygotic 
twins and 280 singletons from UK. In subsets of the individuals (n = 479) where 
untargeted metabolomics profiling of faecal water was available, the investigators 
confirm their previously reported study that the faecal metabolome to some extent reflect 
the gut microbial activity. In individuals where both metagenomics as well as faecal and 
blood metabolomics data were available the authors describe various interesting 
correlations between the three omics profiles. Also, by applying P-gain statistics they 
identify six key bacterial species that are likely to play a role in mediation of cross-talks 
between faecal and blood metabolites. Additionally, the authors report correlations 
between methanogens, blood threonate and three measures of host adiposity. 
 
The microbiome part of the project are undertaken with standard methods. However, 
there are several limitations of applied microbiome data including no information on 
adjustment for variation in stool consistency, sample variation of bacterial cell counts or 
adjustment for drug intake. 
 
Answer: We agree with the Reviewer’s concerns. Unfortunately, neither stool consistency nor 
bacterial cell counts were collected for this dataset. We now included this limitation in the 
Discussions Section:  
“Forth, stool consistency and microbial cell count, which can have an influence on the gut 
microbiota composition49,50, were not recorded in this study.“ 
 
Out of 1,004 individuals with metagenomics data, 411 of them self-reported whether they were 
taking antibiotics, proton proton inhibitors (PPI), and/or metformin, which have all been shown to 
have a strong effect on the metagenome composition [DOI: 10.1016/j.cell.2012.10.052, DOI: 
10.1038/nature15766, DOI: 10.1136/gutjnl-2015-310861]. Only 13, 26 and 33 out of these 411 
individuals were using metformin, PPI, and antibiotics, respectively, with two individuals taking 
both metformin and PPI, and two other individuals taking both PPI and antibiotics, while 343 
individuals (84%) were not taking any of these medications.  
We believe that the resulting sample is too small to understand the influence of drug intake on 
the observed associations between the gut microbiota and both faecal and blood metabolites. 
Nonetheless, we run a new analysis where the intake of any of these these drugs was included 
as confounder, and compared the obtained results to those obtained, in the same subset of 
samples, when the drug intake was not taken into account (Supplementary Table 3, 
Supplementary Data D10-D13). We obtained very similar results, observing correlations of the 
betas from association larger than 0.95 (P < 2.2x10-16) for all experimental settings. All 
associations concordantly showed the same direction, while the overlap of those that passed 
threshold for significance after multiple testing correction (FDR=5%) was between 87-98%. 
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We have now added these results in the manuscript, but leave it to the judgement of both Editor 
and Reviewer whether they are interesting enough to be included in the manuscript, or whether 
they should be better removed. 
 
We add in the Results Section: 
“Similarly, correction for drug intake (antibiotics, metformin, and proton-proton inhibitor -- PPI), 
which was assessed in a small subset of our study sample (N=411, Methods), appeared to 
minimally affect the number of significant associations between the metagenome and the faecal 
and blood metabolome (Supplementary Table 3, Supplementary Data D10-D13).” 
 
in the Discussions: 
“We also observed, in a small subset of our study sample, that antibiotics, metformin, or PPI 
intake had a minimal effect on the associations between the microbiome and the metabolome, 
although this is likely due to the limited number of individuals taking any of these three drugs.” 
 
and in the Methods: 
“Effect of medication 
Self-reported use of antibiotics, proton-proton inhibitor (PPI) drugs, and metformin was available 
for 411 individuals with metagenomic data. Only 13, 26 and 33 out of these 411 individuals were 
using metformin, PPI, and antibiotics, respectively, with two individuals taking both metformin 
and PPI, and two other individuals taking both PPI and antibiotics, while 343 individuals (84%) 
were not taking any of these medications. We compared the results obtained using an 
association model that included only sex and age at the sample collection as covariates with 
those obtained, in the same set of individuals, using an association model which had also 
information on the use of the three reported drugs (each drug included as fixed effect in the 
PopPAnTe linear mixed model and coded as: 1 = taking the drug or 0 = non taking the drug). 
Associations passing an FDR threshold of 5% in both experimental settings and showing 
concordant direction of effects were considered unaffected by these drugs.”  
 
Supplementary Table 3. Number of associations observed, in a subset of 411 individuals, 
when not correcting for use of antibiotics, metformin and PPI at sample collection, and number 
of associations that remained significant (5% FDR), showing also concordant direction of 
effects, when the information on these three drugs was taken into account. 
 

  Without correction for drug intake Overlap 
N (%) 

Faeces Species 1000 917  (91.7%) 

Pathways 6292 5847 (92.9%) 

Blood Species 43 42 (97.7%) 

Pathways 569 498 (87.5%) 
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Also as emphasized in a previous report by the the TwinsUK investigators the faecal 
metabolome does reflect faecal microbiome activity to a considerable extent [doi: 
10.1038/s41588-018-0135-7]. As such, there is no doubt that carefully conducted faecal 
metabolic profiles act as a proxy for a functional readout of the gut microbiome. Hence, 
in part two of the results, the authors extend their previously reported findings. 
 
Answer: We agree with the Reviewer. Indeed, in our study we extend Zierer’s work [DOI: 
10.1038/s41588-018-0135-7] by a) identifying association at the species level (whereas Zierer 
et al’s study, based on 16S rRNA gene amplicon data, was limited to the genus level), and b) 
studying the association with the MetaCyc microbial metabolic pathways inferred from the 
metagenomics data. We now extend the Discussions as: 
“The results at the taxonomic level were comparable to those previously reported in a recent 
study on the TwinsUK cohort leveraging 16S rRNA gene amplicon data11. In both studies, we 
observed that over 90% of microbes were associated with a vast proportion of the measured gut 
metabolites (>80%). The WMGS data used in this study allowed us to extend these 
observations, by improving the precision of the taxonomic associations at the species level 
rather that at the genus level. [...] Additionally, the WMGS data allowed the inference of 
microbial metabolic pathways and their association with the faecal metabolome, which could not 
be performed on the previous TwinsUK study.” 
 
Age is a known regulator of the faecal microbiome and metabolome [doi: 10.1038/s41588-
018-0135-7]. In the actual study, the authors do not give detailed age distribution of all 
the enrolled participants. The paper will benefit from analyses of the effects of age on the 
microbiome-fecal metabolome-blood metabolome interplays. 
  
Answer: We agree with the Reviewer regarding the known effect of age on both microbiome 
and metabolome, which we indeed included as covariate in all of our analyses. Our sample 
includes predominantly active middle-aged woman, with a mean age of 65.0 ± 7.8 (range: 47.8 - 
87.9), as now reported both in Supplementary Table 1 and in Supplementary Figure 5. To 
assess the effect of age as suggested by the Reviewer, we have now run for comparison the 
association studies without including age at sample collection as a covariate. We observed that, 
at 5% FDR, the number of significant associations showing the same directions of effects 
between both faecal and blood metabolites and the microbiome (both as metabolic pathways 
and species) was minimally affected by age (Supplementary Table 2), and the correlations 
between the betas from the linear models, including and not including age, were larger than 
0.97 (P < 2.2x10-16) for all experimental settings. This is in line with previous observations that 
show that, while it is well known that the human gut microbiome changes massively during 
infancy (mostly in the first three years of life, e.g., [DOI: 10.1038/nature11053]), it remains 
relatively stable across adulthood [DOI: 10.1073/pnas.1423854112, DOI: 
10.1126/science.1237439] in absence of external perturbations. We have amended the 
manuscript accordingly. 
 
Results: “We observed that age at the sample collection had a negligible effect on the number 
of significant associations identified between faecal and blood metabolites and both microbial 
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metabolic pathways and species (Methods, Supplementary Table 2, Supplementary Data 
D6-D9, Supplementary Figure 5).”  
 
Discussions: “In our dataset, composed predominantly of active middle-aged women, we 
observed that associations between the gut microbiome and both the gut and systemic 
metabolisms were minimally impacted by age. This is in line with previous observations that 
show that, in absence of external perturbation, the gut microbiome of healthy adults remains 
relatively stable for years33,34.” 
 
Methods: 
“Age effect. 
To assess the effect of age in our analyses, associations of faecal and blood metabolites with 
species and microbial metabolic pathways transformed relative abundances were carried out 
using PopPAnTe, with only pairs of metabolites-species/pathways with at least 50 observations 
tested for association. We compared, in the same dataset, the results of two models: one 
including only sex as covariate, and the other including both sex and age at sample collection. 
In both models, associations passing an FDR threshold of 5% and having concordant direction 
of effects in the two experimental settings were considered as unaffected by age.” 
 
 

 
Supplementary Figure 5. Age distribution in the study dataset. 
  
 
 
 
 



8 

Supplementary Table 2. Number of associations observed when correcting for age at the 
sample collection, and number of associations that remain significant, at 5% FDR, showing also  
concordant direction of effects, when age was not taken into account.  
 

  Correcting for age 
N 

Overlap 
N (%) 

Faeces Species 2493 2237 (89.7%) 

Pathway 16133 15646 (97.0%) 

Blood Species 254 234 (92.1%) 

Pathways 2030 1980 (97.5%) 

 
 
The commercial approach applied for metabolomics is a considerable concern. This 
reviewer strongly recommend the authors to add detailed information about quality 
assured methods used for the metabolomics profiling to the supplementary information. 
Otherwise, it will not be possible for independent investigators to reproduce the present 
findings when applying comparable non-commercial methodologies. For the current 
version of the manuscript, it is not possible to give a balanced judgement of the quality 
and accuracy of the metabolomics methodologies.  
 
Answer: We have not included a detailed description of the two metabolomic datasets used in 
our study because both the faecal [DOI: 10.1038/s41588-018-0135-7] and the blood 
metabolome [DOI: 10.1038/ng.3809] were already described in previous publications from our 
group. We add them below as they appear in their original manuscripts.  
 
For the faecal metabolome [DOI: 10.1038/s41588-018-0135-7]: 
“Sample preparation for global metabolomics 
Samples were stored at –80 °C until processing. Sample preparation was carried out as 
described previously at Metabolon, Inc. Lyophilized fecal samples were extracted at a constant 
per-mass basis. Briefly, recovery standards were added before the first step in the extraction 
process for quality-control purposes. To remove protein, dissociate small molecules bound to 
protein or trapped in the precipitated protein matrix, and recover chemically diverse metabolites, 
proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills 
Genogrinder 2000), then centrifuged. The resulting extract was divided into five fractions: (i) 
acidic positive-ion conditions chromatographically optimized for more hydrophilic compounds; 
(ii) acidic positive-ion conditions chromatographically optimized for more hydrophobic 
compounds; (iii) basic negative-ion-optimized conditions with a separate dedicated C18 column; 
(iv) negative ionization after elution from a HILIC column; (v) reserved for backup. 
Three types of controls were analyzed in concert with the experimental samples: a pooled 
sample generated from a small portion of each experimental sample of interest served as a 
technical replicate throughout the platform run; extracted water samples served as process 
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blanks; and a cocktail of standards spiked into every analyzed sample allowed for instrument 
performance monitoring. Instrument variability was determined by calculation of the median 
relative s.d. (RSD) for the standards that were added to each sample before injection into the 
mass spectrometers (median RSDs were determined to be 5%; n = 31 standards). Overall 
process variability was determined by calculating the median RSD for all endogenous 
metabolites (i.e., noninstrument standards) present in 90% or more of the pooled technical-
replicate samples (median RSD = 12%, n = 832 metabolites). Experimental samples and 
controls were randomized across the platform run. 
Mass spectrometry analysis 
Extracts were subjected to UPLC–MS/MS35. The chromatography was standardized, and no 
further changes were made after the method was validated. As part of Metabolon's general 
practice, all columns were purchased from a single manufacturer's lot at the outset of 
experiments. All solvents were similarly purchased in bulk from a single manufacturer's lot in 
sufficient quantity to complete all related experiments. For each sample, vacuum-dried samples 
were dissolved in injection solvent containing eight or more injection standards at fixed 
concentrations, depending on the platform. The internal standards were used to ensure both 
injection and chromatographic consistency. Instruments were tuned and calibrated for mass 
resolution and mass accuracy daily. 
All methods used a Waters Acquity UPLC and a Thermo Scientific Q-Exactive high-
resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) 
source and an Orbitrap mass analyzer operated at 35,000 mass resolution. The sample extract 
was dried, then reconstituted in solvents compatible with each of the four methods. Each 
reconstitution solvent contained a series of standards at fixed concentrations to ensure injection 
and chromatographic consistency. One aliquot was analyzed by using acidic positive-ion 
conditions, which were chromatographically optimized for relatively hydrophilic compounds. In 
this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18, 
2.1 × 100 mm, 1.7 µm) with water and methanol containing 0.05% perfluoropentanoic acid and 
0.1% formic acid. Another aliquot was also analyzed by using acidic positive-ion conditions; 
however, it was chromatographically optimized for relatively hydrophobic compounds. In this 
method, the extract was gradient eluted from the same aforementioned C18 column with 
methanol, acetonitrile, water, 0.05% perfluoropentanoic acid, and 0.01% formic acid, and was 
operated at an overall higher organic content. Another aliquot was analyzed by using basic 
negative-ion-optimized conditions and a separate dedicated C18 column. The basic extracts 
were gradient eluted from the column with methanol and water, as well as 6.5 mM ammonium 
bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization after elution from a 
HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) with a gradient consisting of 
water and acetonitrile with 10 mM ammonium formate, pH 10.8. The MS analysis alternated 
between MS and data-dependent MSn scans using dynamic exclusion. The scan range varied 
slightly between methods but covered 80–1,000 m/z. 
Compound identification, quantification, and data curation 
Metabolites were identified by automated comparison of the ion features in the experimental 
samples to a reference library of chemical standard entries that included retention time, 
molecular weight (m/z), preferred adducts, and in-source fragments as well as associated MS 
spectra, and were curated by visual inspection for quality control in software developed at 



10 

Metabolon. Identification of known chemical entities was based on comparison to metabolomic 
library entries of purified standards. Commercially available purified standard compounds have 
been acquired and registered into LIMS for distribution to the various UPLC-MS/MS platforms 
for determination of their detectable characteristics. Additional mass-spectral entries have been 
created for structurally unnamed biochemicals, which have been identified on the basis of their 
recurrent nature (both chromatographic and mass spectral). These compounds have the 
potential to be identified by future acquisition of a matching purified standard or by classical 
structural analysis. Peaks were quantified through area-under-the-curve analysis. Raw area 
counts for each metabolite in each sample were normalized to correct for variation resulting 
from instrument interday tuning differences by the median value for each run day, and the 
medians were therefore set to 1.0 for each run. This procedure preserved variation among 
samples but allowed metabolites of widely different raw peak areas to be compared on a similar 
graphical scale. 
A total of 1,116 different metabolites were measured in the 786 fecal samples, of which 210 
metabolites were observed in less than 20% of the samples and thus were excluded from 
further analysis because of lack of power. 345 metabolites were observed in more than 20% but 
less than 80% of the samples and were thus analyzed qualitatively as dichotomous traits 
(observed in a sample versus not observed). The remaining 570 metabolites, which were 
observed in at least 80% of all samples, were scaled by run-day medians, log-transformed and 
scaled to uniform mean 0 and s.d. 1 and analyzed quantitatively (Fig. 1). Metabolite ratios were 
calculated from the run-day median-normalized metabolite levels and subsequently log-
transformed and scaled to a mean of 0 and s.d. of 1. 
We analyzed effects of sample storage time (i) in the refrigerator before samples were frozen 
and (ii) in the freezer before further analysis. To this end, we regressed metabolite 
concentrations against storage times. After correcting for multiple testing, we found significant 
storage effects on seven metabolites (FDR <0.05; Supplementary Fig. 5). We thus corrected all 
further analyses for both storage time in the refrigerator and freezer, to avoid spurious results. 
Despite correcting all models for the storage time, we cannot ultimately eliminate a potential 
confounding effect due to storage time, and future studies should investigate the influence of 
storage time on fecal metabolites.” 
 
For the blood metabolome [DOI: 10.1038/ng.3809]: 
“The non-targeted metabolomics analysis was performed at Metabolon (Durham, North 
Carolina, USA) on a platform consisting of four independent ultra-high-performance liquid 
chromatography–tandem mass spectrometry (UPLC–MS/MS) instruments. Samples were 
prepared using the automated MicroLab STAR system from Hamilton Company. Several 
recovery standards were added before the first step in the extraction process for quality control 
purposes. To remove protein, to dissociate small molecules bound to protein or trapped in the 
precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 
precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) 
followed by centrifugation. The resulting extract was divided into five fractions: two for analysis 
by two separate reverse-phase (RP)/UPLC–MS/MS methods with positive-ion-mode 
electrospray ionization (ESI), one for analysis by RP/UPLC–MS/MS with negative-ion-mode 
ESI, one for analysis by HILIC/UPLC–MS/MS with negative-ion-mode ESI, and one reserved for 
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backup. Samples were placed briefly on a TurboVap (Zymark) to remove the organic solvent. 
The sample extracts were stored overnight under nitrogen before preparation for analysis. 
Several types of controls were analyzed in concert with the experimental samples: a pooled 
matrix sample generated by taking a small volume of each experimental sample (or, 
alternatively, a pool of well-characterized human plasma) served as a technical replicate 
throughout the data set; extracted water samples served as process blanks; and a cocktail of 
quality control standards that were carefully chosen not to interfere with the measurement of 
endogenous compounds was spiked into every analyzed sample, allowed instrument 
performance monitoring and aided chromatographic alignment. Instrument variability was 
determined by calculating the median relative standard deviation (RSD) for the standards that 
were added to each sample before injection into the mass spectrometers. Overall process 
variability was determined by calculating the median RSD for all endogenous metabolites (i.e., 
non-instrument standards) present in 100% of the pooled-matrix samples. Experimental 
samples were randomized across the platform run with quality control samples spaced evenly 
among the injections. All methods used a Waters ACQUITY ultra-performance liquid 
chromatographer and a Thermo Scientific Q-Exactive high-resolution mass spectrometer 
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer 
operated at 35,000 mass resolution. The sample extract was dried and then reconstituted in 
solvents compatible with each of the four methods. Each reconstitution solvent contained a 
series of standards at fixed concentrations to ensure injection and chromatographic 
consistency. One aliquot was analyzed using acidic positive-ion conditions, chromatographically 
optimized for more hydrophilic compounds. In this method, the extract was gradient eluted from 
a C18 column (Waters UPLC BEH C18–2.1 × 100 mm, 1.7 μm) using water and methanol, 
containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot 
was also analyzed using acidic positive-ion conditions; however, it was chromatographically 
optimized for more hydrophobic compounds. In this method, the extract was gradient eluted 
from the same afore-mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA 
and 0.01% FA and was operated at an overall higher organic content. Another aliquot was 
analyzed using basic negative-ion-optimized conditions on a separate dedicated C18 column. 
The basic extracts were gradient eluted from the column using methanol and water, however, 
with 6.5 mM ammonium bicarbonate at pH 8. The fourth aliquot was analyzed via negative 
ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 
μm) using a gradient consisting of water and acetonitrile with 10 mM ammonium formate, pH 
10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic 
exclusion. The scan range varied slightly between methods but covered 70–1,000 m/z. Raw 
data files are archived and extracted as described below. Raw data were extracted, peak 
identified and quality control processed using Metabolon's hardware and software. These 
systems are built on a web service platform using Microsoft's .NET technologies, which run on 
high-performance application servers and fiber-channel storage arrays in clusters to provide 
active failover and load balancing. Compounds were identified by comparison to library entries 
of purified standards or recurrent unknown entities. Metabolon maintains a library based on 
authenticated standards that contains the retention time/index (RI), mass-to-charge ratio 
(m/z)and chromatographic data (including MS/MS spectral data) on all molecules present in the 
library. Furthermore, biochemical identifications are based on three criteria: retention index 
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within a narrow RI window of the proposed identification, accurate mass match to the library ±10 
ppm, and MS/MS forward and reverse scores between the experimental data and authentic 
standards. MS/MS scores are based on a comparison of the ions present in the experimental 
spectrum to the ions present in the library spectrum. While there may be similarities between 
these molecules based on one of these factors, the use of all three data points can distinguish 
and differentiate biochemicals. More than 3,300 commercially available purified standard 
compounds have been acquired and registered into LIMS for analysis on all platforms for 
determination of their analytical characteristics. Additional mass spectral entries have been 
created for structurally unnamed biochemicals, which have been identified by virtue of their 
recurrent nature (both chromatographic and mass spectral). These compounds have the 
potential to be identified by future acquisition of a matching purified standard or by classical 
structural analysis. A variety of curation procedures were carried out to ensure that a high-
quality data set was made available for statistical analysis and data interpretation. The quality 
control and curation processes were designed to ensure accurate and consistent identification 
of true chemical entities and to remove those representing system artifacts, misassignments 
and background noise. Metabolon data analysts used proprietary visualization and interpretation 
software to confirm the consistency of peak identification among the various samples. Library 
matches for each compound were checked for each sample and corrected if necessary.” 

To clarify this, we extended the Methods Section of our manuscript, and direct the readers 
towards these references to provide them with the necessary information for potential 
replication. More in details, the following was added to the Methods Section: 
“Metabolite were measured from fecal samples and blood by Metabolon, Inc., Morrisville, North 
Carolina, USA, by using an untargeted UPLC-MS/MS platform as previously described11,32. 
Briefly, faecal samples were lyophilised  then extracted at a constant per-mass basis while 
blood samples were used directly for extraction at a constant per-volume basis. Proteins and 
other macromolecules were removed using methanol precipitation. Samples were run using four 
different methods as described by Zierer et al.11 (faecal metabolome) and Long et al.32 (blood 
metabolome), against three controls (a pooled sample, extracted water -blank- and a cocktail of 
standards). Metabolites were identified by comparison to a referenced library of chemical 
standards56, and area-under-the-curve analysis was performed for peak quantification and 
normalised to day median value. To ensure high quality of the dataset, control and curation 
processes were subsequently used to ensure true chemical assignment and remove artefacts 
and background noise. Further details to help reproducing the present findings using 
comparable non-commercial methodologies are available in Zierer et al.11, for faecal 
metabolome and Long et al.32, for blood metabolome, and in the Supplementary Methods.”  
 
When finally reported the metabolomics data needs to be deposited in the MetaboLights 
database or similar public databases. 
 
Answer: Data on TwinsUK twin participants are available to bona fide researchers under 
managed access due to governance and ethical constraints. Raw data should be requested via 
our website (http://twinsuk.ac.uk/resources-for-researchers/access-our-data/) and requests are 
reviewed by the TwinsUK Resource Executive Committee (TREC) regularly.  
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Obviously, a particular challenge in metabolomics is the interpretation of the large 
amount of data. The present study lacks adequate information on statistical procedures 
to permit replication. It is not clear in what order and to which metabolites each method 
was applied. 
 
Answer: We are sorry that our experimental design was not clear, and that some information 
were lacking. While Figure 2 described the main analysis, we have now added a novel 
Supplementary Figure (Supplementary Figure 6, also below) describing the analysis pipeline for 
the P-gain analysis. We also hope that the clarifications added in the Methods Section regarding 
the metabolomics profiling will improve replicability. 
 
.  

 
 
Supplementary Figure 6. Data selection process for the P-gain analysis. 
 
 
Another major issue in untargeted metabolomics is the accuracy of quantitation. In 
untargeted profiling, the analytes eluting from the LC system must be ionized to allow 
their transition from the liquid phase into the gas phase before they can enter the orifice 
of the mass spectrometry. Among other factors, such as the structural composition of 
the analyte, the efficiency of the ionization process is dependent on co-eluting 
metabolites. High-abundant metabolites may suppress the ionization of low-abundant 
metabolites by picking up most of the available charges at the cone of the spray tip. 
Thus, the signal intensity is not solely dependent on the concentration of the metabolite. 
The ionization efficiency, on the other hand, is in part determined by the “matrix”. In 
Supplement, the authors are encouraged to deliver robust evidence showing how to 
avoid the influence from co-eluting metabolites or contaminants on the quantitation 
accuracy for the presented analytes. 
 
Answer: The Reviewer is correct that non-targeted metabolomics approaches utilized for 
discovery work are susceptible to ionization effects derived from co-eluting metabolites 
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(including highly abundant metabolites). As outlined in the Methods, all sample extracts were 
processed and analyzed using four different analytical methods, which allowed for cross-
platform confirmation of the data. 
We now add in the Supplementary Methods the following: 
“Co-eluting metabolites 
About 60% of metabolites reported by Metabolon are identified and measured across more than 
one platform (or on the same platform using different quantions), although data from only one of 
the platforms per metabolite were presented in this manuscript. It is unlikely that a given 
metabolite would encounter the same influence from co-eluting metabolites, such as ion 
suppression, on more than one platform. Furthermore, as part of Metabolon's standard QC 
process, correlations of cross-platform (or cross-library entry) measurements were examined to 
identify influencing factors. When a poor correlation was identified, data from the suspect 
platform was not reported back; rather, metabolite data were reported from another platform 
when at least two other correlated platforms were present. 
In some cases, co-eluting metabolites that have identical masses and similar structures are 
known or suspected to be present in the data set (e.g., 2-hydroxybutyrate and 2-
hydroxyisobutyrate or 3-methylglutarate and 2-methylglutarate).  These isobaric metabolites are 
presented in the data tables as "metabolite 1/metabolite 2".  These metabolites are not 
resolvable by the chromatography used for the reported platform and were not measured as 
resolvable metabolites on the remaining three platforms. The metabolite levels presented, 
therefore, may represent contributions from one or both of the reported metabolites.  Based on 
findings from many thousands of studies that have been run across the Metabolon platform, 
these isobaric metabolite entries have been determined to represent a very minor percentage of 
metabolites reported.” 
 
If the authors performed accurate quantification by generating calibration curves of 
areas-under-the-curve for peaks against serial amount of reference standards for 
metabolites, the accurate concentrations should be given as numbers followed by units. 
If not, this reviewer recommends to use abundance (without units) instead of 
concentration. 
 
Answer: The Reviewer is correct, and we now replace "concentration" by "abundance" when 
referring to metabolites in the manuscript. 
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Reviewer #2  
 
The authors interpret their results to indicate that “coordinated action of multiple taxa is 
required to affect the metabolome”. This would suggest some kind of cross-feeding, 
which certainly exists in the human microbiome. However, the observed patterns could 
also be due to functional redundancy and are probably more easily explained as such. In 
particular, the approach chosen by the authors to test for the presence of pathways in 
the microbiome only takes into account (near-to) complete pathways, indicating that 
intra-microbiome interactions that rely on cross-feeding may be overlooked in the 
analysis. I would urge the authors to include this alternative interpretation, potentially 
replacing the less likely currently presented view. 
  
Answer: We agree that the observed patterns could be due to functional redundancy, and we 
now emphasise this interpretation in the Discussions. On the other hand, the fact that most of 
the metabolic pathways are associated with metabolites apparently unrelated to their functions 
may suggest that functional redundancy is not the only possible explanation. Since 
characterising intra-microbiome interactions relying on cross-feeding is not possible in our 
analyses, we downplay this alternative explanation in the Discussions by writing:  
“We suggest that this large number of associations with metabolic pathways is likely due to 
functional redundancy. Nonetheless, the majority of the metabolic pathways, especially in 
faeces, were associated with metabolites apparently unrelated to their functions, with only 20 
and 44% of the faecal metabolite-pathway associations and blood metabolite-pathway 
associations linking metabolites with the MetaCyc metabolic pathways either producing or 
consuming them. Therefore, we cannot exclude that part of the observed associations with 
pathways are driven by the concerted action of microbial sub-communities rather than only by 
the specific function of  the pathways.” 
 
We also adjusted the abstract by replacing “the coordinated action of multiple taxa is required to 
affect the metabolome” by: “the action of multiple taxa is required to affect the metabolome” 
 
There is no ethics statement. 
There is no data availability statement for the raw data. 
  
Answer: We acknowledge that this important aspect has been overlooked. We now write in the 
manuscript (Methods Section): 
“St. Thomas’ Hospital Research Ethics Committee approved the study, and all twins provided 
informed written consent.” 
and in the Data availability Section: 
“Data on TwinsUK twin participants are available to bona fide researchers under managed 
access due to governance and ethical constraints. Raw data should be requested via our 
website (http://twinsuk.ac.uk/resources-for-researchers/access-our-data/) and requests are 
reviewed by the TwinsUK Resource Executive Committee (TREC) regularly. The raw 
metagenomic sequences are available from the European Nucleotide Archive website (study 
accession number: PRJEB32731).” 
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I am missing a discussion on the functional relevance of the observed associations. For 
example, sebacate, is this rather unusual metabolite assumed to be produced by gut 
microbes?   
 
Answer: Sebacate is indeed an unusual metabolite, and the current literature on its biological 
role and provenance is very limited. We have now included the following part in the Discussions: 
“Sebacate was the faecal metabolite that associated with the greatest number of species and 
metabolic pathways. Sebacate metabolism has been poorly studied. However, a 
pharmacokinetic study of sebacate in rats has revealed, post-ingestion, a low systemic 
bioavailability, suggesting that this may be explained by direct beta-oxidation of sebacate (i.e., 
sebacate degradation) by the liver, and that only traces of the compound could be detected in 
faeces38. Another study on rats also revealed the absence of sebacate in faeces after 
intravenous injection of the radioactive compound39,  indicating that it is unlikely that systemic 
sebacate level affects the gut microbiome through its excretion in the gut. Sebacate can be 
used as primary carbon source by some gut commensals (Pseudomonas aeruginosa and 
Pseudomonas multilivoran)40.Thus, the observed low post-ingestion level of sebacate in both 
faeces and blood in rats, and the numerous associations identified by our study between faecal 
and blood sebacate and the gut microbiome may also be due to its utilisation by gut bacteria as 
carbon source. Endogen sebacate, naturally found in blood, can be synthesised, in rats, through 
omega-oxidation in starvation periods, before undergoing beta-oxidation to produce succinate 
and be used as energy source through neoglucogenese41,42. It was also reported that gut 
bacteria may affect liver beta-oxidation through modulation of the immune system in mice43. 
Therefore, an alternative/complementary hypothesis might be that the high number of 
associations observed between blood sebacate and the gut microbiome might picture the effect 
that the gut microbiome exerts on liver functions44.” 
 
Are any of the metabolites related to pharmaceuticals that could also affect the 
microbiome? 
 
Answer: This is an interesting point, since drugs may affect both the metabolic activity of the 
gut microbiome and its composition. To assess this, we followed two approaches. First, we run 
a novel analysis where the use of metformin, proton-proton inhibitor (PPI), and antibiotics (which 
was available for 411 individuals belonging to our study sample) was taken into account, and 
compared the obtained results to those obtained, in the same subset of samples, when the use 
of these drugs was not taken into account. This approach and its results are detailed in the 
answer to the first point raised by Reviewer #1.  
 
Additionally, we checked the associations between the microbiome and drugs and drug-related 
metabolites characterised through the Metabolon platform to understand whether drugs and 
drug-related metabolites detected in the faeces were associated with changes in the gut 
microbiome composition and activity. Of the 82 drugs and drug-related metabolites detected by 
the Metabolon platform, 11 were available for a sufficient number of samples (N≥50). Using 
these eleven metabolites in faeces, we observed, at FDR 5%, six associations between six 
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species and three metabolites, and 101 associations between 82 microbial metabolic pathways 
and six metabolites. 
 
We have added to the Results Section: 
“Eleven of the 82 drug or drug-derived metabolites detected by the Metabolon platform in faeces 
were present in at least 50 samples with matching metagenomics data. At the species level, we 
observed six associations with three of these metabolites passing an FDR threshold of 5% 
(Supplementary Data D2). One association was between 3-hydroxyquinine (a degradation 
product of quinine, used against malaria, but also contained as a flavouring in beverages, 
including tonic water) and unclassified Anaerotruncus spp. (β=0.68, SE=0.18. P=4.02x10-5). 
Two negative associations were identified between salicylic acid (a precursor of aspirin) and 
Methanobrevibacter smithii (β=-0.53, SE=0.17, P = 2.21x10-4) and unclassified Anaerotruncus 
spp. (β=-0.62, SE=0.17, P=2.13x10-4). Finally, N-carbamylglutamate (a drug that can be used 
for the treatment of hyperammonemia) was associated with F. prausnitzii (β=0.68, SE = 0.18, P 
= 2.21x10-4), Odoribacter splanchnicus (β=0.88, SE=0.25, P=3.93x10-4), and Blautia 
hydrogenotrophica (β=-0.57, SE=0.15, P = 1.17x10-4). At FDR 5%, a total of 101 associations 
were observed between microbial metabolic pathways and faecal metabolites annotated as 
drugs or and drug-derived metabolites (Supplementary Data D3). Namely: 3-(N-acetyl-L-
cystein-S-yl) acetaminophen (26 associations, metabolite derived from paracetamol), 3-
hydroxyquinine (1 association), 4-acetamidophenol (24 associations, metabolite derived from 
paracetamol), carboxyibuprofen (2 associations, metabolite derived from ibuprofen), N-
carbamylglutamate (8 associations) and salicylic acid (40 associations).”   
 
We add the following sentences to the Discussions:  
“Drugs can be metabolised by the gut microbiota, and they may affect both the metabolic 
activity of the gut microbiome and its composition27,28. In our analyses, we identified 
associations between six species and 101 microbial metabolic pathways and six out of eleven 
drugs and drug-related metabolites detected in faeces through the Metabolon platform in a 
sufficient number of subjects.” 
 
In the discussion, it is very briefly mentioned that the associations are often between 
pathways and unrelated metabolites. I would like to know more about this in the results 
section. What proportion of associations with metabolites that appear in the pathway (or 
superpathway) and how many are unexplained associations? 
  
Answer: We thank the Reviewer for making this point. This piece of information was indeed 
overlooked in the Results Section. We now provide more detailed information on the number of 
metabolites included in the pathways they are associated to. The MetaCyc databases was 
queried via the SmartTables function (“pathways of compound” option) in order to assign 
compounds to pathways. We then annotated the metabolites using the InChi Keys, which were 
available for 627/679 and 198/222 faecal and blood metabolites with at least one significant 
association in faeces and blood, respectively. In faeces, 155 out of the 627 annotated faecal 
metabolites were assigned to at least one of the MetaCyc metabolic pathways. These 155 
metabolites were involved in 4,891 unique metabolite-pathway associations, of which 20% 
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(N=999) encompassed a metabolite included in the associated pathway (20%). In blood, 42 out 
of the 198 annotated metabolites were assigned to at least one of the MetaCyc metabolic 
pathways. These 42 metabolites were involved in 419 unique metabolite-pathways associations, 
186 of which encompassing a metabolite included in the associated pathway (44%).  
We now write in the Results Section: 
“Notably, in both faeces and blood, the majority of the metabolic pathways were associated with 
metabolites apparently unrelated to their functions. Indeed, only 999 out of 4,891 unique faecal 
metabolite-pathway associations (20%) and 186 out of 419 unique blood metabolite-pathway 
associations (44%), respectively, linked 155 faecal and 42 blood metabolites to pathways either 
producing or consuming them (Methods).” 
 
We also include the following paragraph to the Discussions: 
“Nonetheless, the majority of the metabolic pathways, especially in faeces, were associated with 
metabolites apparently unrelated to their functions, with only 20 and 44% of the faecal 
metabolite-pathways associations and blood metabolite-pathways associations linking 
metabolites with the MetaCyc metabolic pathways either producing or consuming them”. 
 
Finally, we extended the Methods as: 
“Linking metabolites to MetaCyc metabolic pathways 
We downloaded from the MetaCyc61 Web interface (version 22.6) the list of all compounds 
(univocaly identified using the MetaCyc compound identifier, and, when available, the InChi 
Key). Then, using the MetaCyc SmartTables function (“pathways of compound” option; 
https://metacyc.org/PToolsWebsiteHowto.shtml#TAG:__tex2page_sec_6), we generated a table 
assigning them to the pathways they belonged to. Finally, for all the metabolites associated to at 
least one pathway in faeces and/or blood, we generated a second table listing their InChi Key, 
when known. We were able to annotate 627/679 and 198/222 faecal and blood metabolites, 
respectively. An inner joint of the two tables, using the InChi Key as key, highlighted that 155 
and 42 of the faecal and blood metabolites annotated in the previous step (and involved in 
4,891 and 419 unique associations, respectively) were assigned to at least one of the MetaCyc 
metabolic pathways. This table was used to evaluate the proportion of metabolites associated to 
pathways that also included the metabolites as substrate or product.”  
 
on a related note, it should be explicitly mentioned already in the results section that the 
associations may be positive or negative and potentially which proportion has which 
direction. 
  
Answer: We agree with the Reviewer’s comment and added the percentage of positive 
associations in the Results Section. For faecal:  
“We observed 48% and 51% positive associations with microbial metabolic pathways and 
species, respectively.” 
For blood:  
“At a 5% FDR, we identified 2,030 associations with microbial metabolic pathways and 254 
associations with microbial species, of which 44 and 43% were positive, respectively.”  
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On the other hand, I am missing some obvious candidates for microbial interaction, 
namely the bile acids. Were these not as commonly associated? or not measured? A 
discussion of this would be helpful. 
  
Answer: We agree with the Reviewer that the interaction between bile acids and the gut 
microbiome has been extensively described in the literature and worth discussing. Bile acids 
were measured in both blood and faeces, and the following section was added to the 
Discussions: 
“Bile acids (BAs) metabolism has been associated with gut microbiota composition in many 
studies. Indeed, the gut microbiota shapes the composition of the BA pool (by hydrolysis and 
hydroxy group dehydrogenation of primary BAs to secondary BAs) and BAs can affect the 
growth of certain gut bacteria35-37. In faeces, 5% and 3% of the total number of associations 
between faecal metabolites and metabolic pathways and species, respectively, were with BAs, 
over 80% of which were with secondary BAs. In blood, 6% of all associations with species and 
3% of all associations with metabolic pathways were with BAs. Again, secondary BAs were 
more associated (over 70% of all BAs associations) than primary BAs with both species and 
metabolic pathways.” 
  
Another point with relevance to the interpretation of the data is in the discussion “90% of 
the microbial species interact with their surrounding metabolic environment“ - I fail to 
see how the other 10% survive. 
  
Answer: This was indeed an unfortunate wording. We now write in the Discussions Section: 
“At 5% FDR, we identified association between the faecal metabolites and 90% of the microbial 
species and 99.7% of the microbial metabolic pathways.” 
 
In the abstract, it would be helpful to mention which similarity measure is being applied. 
 
Answer: Similarity was evaluated as the ratio between the number of species/pathways present 
in both members of the unrelated pairs of individuals, and the number of species/metabolic 
pathways that were present in at least one of the members of the pair. Following the Reviewer’s 
suggestion, we now write in the abstract:  
“We observed that a random pair of unrelated subjects shared, on average, a far greater 
number of functional metabolic pathways (82%) than species (43%).” 
 
and in the Methods Section: 
“Shared species and microbial metabolic pathways between unrelated individuals. 
For all individuals in our datasets, we codified the absence/presence of a microbial 
species/metabolic pathways with 0 and 1, respectively. Then, after having identified all possible 
pairs of unrelated individuals (N=1,006,288), we assessed for each pair the percentage of 
shared species/pathways as the ratio between the number of species/pathways which were 
present in both members and the number of species/metabolic pathways which were present in 
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at least one of them. The distribution of percentages obtained for species and pathways across 
all pairs were then compared using a paired Wilcoxon’s test.” 
 
Similarly, it would be helpful to mention the method employed for association testing in 
the results section and the legend of figure 2. It may be obvious to researchers from the 
human genetics field, but after reading the presentation of results from unrelated 
subjects in the first part of the results section, I didn’t realize that the association 
analysis actually uses kinship information. On a related note, the methods section 
should state whether pedigree information or genomic data was used in the association 
models. 
  
Answer: We agree with the Reviewer and edited the Results Section as: 
“713 annotated metabolites were measured in more than 50 individuals and tested for 
association with the gut microbiome at both taxonomic and functional levels using PopPAnTe12, 
which uses a variance component framework and the matrix of the expected kinship between 
each pair of individuals to model the resemblance between family members. Sex and age at 
sample collection were included as covariates (Methods, Figure 2).” 
 
We also added the following sentences to the legend of Figure 2: 
“Association testing was performed using PopPAnTe12, in order to model the resemblance 
between family members. Sex and age at the sample collection were included as covariates.” 
 
and in the Methods Section: 
“Associations of faecal and blood metabolites with species and microbial metabolic pathways 
transformed relative abundances were carried out using PopPAnTe12, which uses a variance 
component framework and the matrix of the expected kinship between each pair of individuals, 
generated using the pedigree information, to model the resemblance between family members.” 
 
The methods section is lacking details on sampling, and especially storage conditions 
and duration. It is also unclear whether faecal samples for metagenomics and 
metabolomics are the same samples or were taken at different points in time. Similarly, it 
is unclear whether the blood samples were taken at the same time. 
  
Answer: We acknowledge that these information were overlooked in the previous version of the 
manuscript. Twins collected their fecal samples at home, and the samples were refrigerated for 
up to 2 days prior to their annual clinical visit at King’s College London, at which pointed they 
were stored at −80°C for an average of 2.3 ± 1.0 years at -80°C before processing. Blood 
samples were stored at −80°C for an average of 1.8 ± 1.2 years before processing.  The faecal 
samples used for metagenomics profiling were also used for metabolomics profiling, while blood 
metabolites were profiled using samples collected on average 0.9 ± 1.3 years apart. We now 
write, in the Methods Section:  
“The TwinsUK adult twin registry includes about 14,000 subjects, predominantly females, with 
disease and lifestyle characteristic similar to the general UK population51. Metagenomics 
sequencing was performed on 1,054 randomly selected samples, while faecal and blood 
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metabolomics was assessed in 479 and 859 individuals with metagenomics data, respectively. 
Twins collected fecal samples at home, and the samples were refrigerated for up to 2 days prior 
to their annual clinical visit at King’s College London, when they were stored at −80°C for an 
average of 2.3 ± 1.0 at -80°C before processing. Both faecal metabolomics and WMGS data 
were generated on the same faecal samples. Blood samples, collected during the clinical visit, 
were stored at −80°C for an average of 1.8 ± 1.2 years before processing. Faecal and blood 
samples were collected, in average, 0.9 ± 1.3 years apart.” 
 
Numbers of reads: an average of 39 M QC’ed and filtered reads is mentioned in the 
abstract and the results section. However, in the methods section, it is mentioned that 
roughly 27M reads were sequenced per samples were sequenced. These numbers don’t 
add up. 
 
Answer: We agree with the Reviewer that the reporting of the average number of reads was 
confusing. 27M is the average number of paired-end reads sequenced (54M reads in total), 
while 39M refers to the average number of reads after quality control, which discarded 
problematic samples (including four samples with less than 15M reads), and which does not 
distinguish anymore between forward and reverse reads. We now write: 
“Sequencing of 1,054 samples yielded an average number of reads of 54M per sample before 
quality control.”  
and maintained that: 
“Finally, we removed individuals not of European ancestry (N=9, self-reported via questionnaire) 
resulting in 1,004 samples with an average number of reads of 39M.” 
 
Figure 2: the N stated at the top of the figure is misleading. Indeed, none of the displayed 
analyses were performed with 1004 individuals, as the original cohort was larger and the 
cohorts used for the two analyses are both considerably smaller. The 1004 should be 
replaced with the sample numbers for both arms. 
  
Answer: We modified Figure 2 following the Reviewer’s comment. We removed N=1004 and 
included “N = 479” on the faecal metabolome side, and “N = 859” on the blood metabolome 
side, as reported below: 
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Caption: Study design and number of associations between the gut microbiome and the faecal 
and blood metabolome. The top of the Figure reports the number of microbial species and 
metabolic pathways which were detected in at least 50 individuals with metabolomics and 
WMGS data, and that were used in the study, and the number of associations tested. The 
bottom of the Figure reports the number of associations that were significant at an FDR 5%, 
along with the number and percentage of metabolites, microbial species, and microbial 
metabolic pathways involved. Association testing was performed using PopPAnTe12, in order to 
model the resemblance between family members. Sex and age at the sample collection were 
included as covariates. 
  

On a related note, for the comparisons of associations in blood and faecal samples, were 
all results used or only those relating to the cohort that had faecal and blood metabolites 
measured? 
 
Answer: To fully exploit these datasets, we carried out the metagenome-wide association 
studies using all the available samples for both faeces and blood. Conversely, the P-gain 
statistics was assessed using subjects having both faecal and blood metabolomic profiles 
available.  
 
We now clarify this in the Methods Section (Metagenome-wide association study): 
“Only pairs of metabolites-species/pathways with at least 50 observations were tested for 
association. In these analyses, we used all the available samples with faecal metabolites 
(N=479) and with blood metabolites (N=859).“ 
and (Gut-host metabolic dialogue) 
“All association tests were carried out between pairs of co-associated metabolites and 
metagenomic data with at least 100 complete observations (i.e., having metagenomic data and 
metabolic profile for both co-associated metabolites available). “ 
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The differences of correlations in the absence or presence of species could be due to 
common reasons for correlation and species presence. Eg. if metabolite comes from a 
food source that also allows for the microbial species’ growth. This test for differences in 
correlation therefore is no proof of interaction. 
 
In light of the Reviewer’s comment, we realised that the description of this analysis step in our 
manuscript has been kept too short, and it is consequently slightly unclear. After identifying 
multiple associations between the microbiome and both faecal and blood metabolites, we 
wondered whether associations between the same microbiota (or pathway) and metabolites in 
both blood and faeces were enriched for independent blood and faecal associations (particularly 
given that the blood and faecal metabolites were often not the same), or whether they were 
actually suggesting that the faecal metabolite -  blood metabolite  - species/pathway trios were 
in some way interconnected. Therefore, with this test we were not seeking to test for interaction, 
but simply to justify and support our choice of performing a P-gain analysis focussed on these 
associated trios. The differential correlation analysis suggested that at last some of the 
observed associations between a species (or pathway) and metabolites in both faeces and 
blood were likely not independent signals, and we felt justified to proceed with the P-gain 
analysis using these associated trios. 
  
To make it more clear we have now modified the Results Section: 
“These results suggested that at least some of the observed faecal and blood metabolite 
associations were likely not randomly coincident at the same species (or pathway), thus 
supporting the analysis of this subset of faecal metabolite - blood metabolite - species/pathway 
trios with the P-gain approach.” 
 
Figure 3: the arrows for the bile acids are a bit confusing. Bile acids aren’t produced in 
the blood, as is suggested, and they are transformed by the microbiome, so the arrows 
shouldn’t end at the microbiome. 
  
Answer: We modified Figure 3 following the Reviewer’s comment. 
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Caption: Summary of possible mechanisms of host-microbiome metabolic dialogue. The Figure 
highlights the possible four mechanisms implicated in the interplay between the gut microbiome, 
the faecal metabolome, and the blood metabolome. (1) Small dashed lines: metabolites are 
produced by the microbiota and then absorbed, resulting in associations between the 
microbiome and both the blood and faecal metabolites. (2) Large dashed lines: the microbiome 
affects the gut barrier integrity, resulting in alteration of metabolites absorption (i.e., the same 
metabolite is associated with a species/pathway in both blood and faeces, but the directions of 
effects are opposite). (3) Light continuous line: metabolites produced by the host, such as bile 
acids, affect microbial growth. (4) Bold continuous line: direct microbiome  to host cell 
interactions that results in host systemic modulation (i.e., species are associated with blood 
metabolites but not with faecal metabolites). 
 
The discussion lists some limitations of the presented study. I would argue that another 
limitation is that the microbiome analyses are not quantitative, i.e. there is no estimate of 
microbial density and therefore it is impossible to say if a relative abundance of one 
pathway in one sample is more or less than the abundance in another sample. 
 
Answer: We agree with the Reviewer that using relative abundances instead of actual 
concentrations is another limitation of the study and that this should be mentioned in the 
Discussions. We have now added the following sentence to the Discussions:  
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“Finally, the results obtained in this study are not quantitative, since all analyses were carried 
out using relative abundances. This imply that the identified associations report the effect of 
microbial species/metabolic pathways proportion rather than of their actual concentration.”  
 
Language: 
throughout: 
- I would replace “gut lumen metabolic content” (and similar) by “faecal metabolic 
content”, because that is where the metabolites were measured. Also, gut lumen could 
refer to different gut sections and is therefore less precise. 
- there are several instances where the authors refer to pathways or species “affecting” 
or “controlling” metabolite abundances. Since the analyses are associative, these terms 
are over-interpretative and should (at least in the results section) be replaced by more 
appropriate choices. 
 
Answer:  We agree with this Reviewer. We have now changed all occurrences of “gut lumen 
metabolic content” with “faecal metabolic content” or similar expressions. Also, we have 
substituted the words “affecting” and “controlling” with “associating”. 
 
Intro, paragraph 1: 
- “variations in its composition induces” should be “induce” 
Intro, paragraph 2: 
- “16S amplicon data” should be “16S rRNA gene amplicon data” (or “16S rRNA 
amplicon data”, if it refers to RNA-based assays) 
- “host’s health” should be “hosts’ health” or “host health” 
Gut microbiota composition is host-specific whereas its functions are shared across 
subjects: 
par 1: 
- should be “Subdoligranulum genus” 
- “Microbial metabolic profiling” is a bit misleading. “Microbial metabolic pathway 
detection” might be more to the point. 
The microbiome is involved in the crosstalk between the gut lumen and host systemic 
metabolism: 
par. 1, last sentence - introduce singular article for “species” or change “was” to “were” 
par. 2, 3rd sentence - “two metabolite levels” would be more clear than “two 
metabolites”, since this can refer to the same metabolite in two matrices. 
 
Answer: We are grateful to the Reviewer for the the thoughtful review. We have now fixed 
these mistakes.  
 
Gut microbiota composition is host-specific whereas its functions are shared across 
subjects: 
par. 2: 
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- “pathway prevalence within our sample strongly correlated with the number of species 
in which it could be detected” - does the detection refer to the same sample or the overall 
dataset? 
 
Answer: The detection refers to the whole dataset. To improve clarity, we amended the 
sentence as follow:  
“As a consequence, pathway prevalence strongly correlated with the number of species in 
which it could be detected in the overall dataset (Spearman’s ρ = 0.34; P=9.4×10−9), i.e., 
pathways present in the largest number of species were also those with the highest prevalence 
(and vice versa)”. 
 
The microbiome is involved in the crosstalk between the gut lumen and host systemic 
metabolism: 
- In my opinion, the term “crosstalk” is inadequate here, as it indicates some kind of 
signalling process. It would probably help to define already here what kind of 
mechanisms could lead to the observed patterns and choose a term that reflects them. 
 
Answer: We agree that the term “crosstalk” may be misleading, and we now use “dialogue” or 
“communication”. 
 
Discussion - end of par. 3 - are the associations with vitamin B metabolites in blood or 
faeces or both? 
 
Answer: These associations were with the faecal metabolites. We now write: “B vitamins in 
faeces were strongly associated with both species and metabolic pathways, with riboflavin 
(vitamin B2), nicotinate (vitamin B3), pantothenate (vitamin B5), pyridoxine (vitamin B6), biotin 
(vitamin B7) associated with 9 to 27 species and with 48 to 155 microbial pathways 
(Supplementary Data D2 and D3). Finally, 16 associations were observed between faecal 
vitamin E (alpha, beta, gamma and delta tocopherol) and species/pathways.” 
 



Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In the revised manuscript the authors have satisfactorily addressed the technical issues I had raised 

in my original review. However, still the manuscript would be markedly improved by specifying the 

analytical platforms where each metabolite was identified. The authors might consider to create one 

more column clarifying the type of platform applied along with each metabolite in the 

supplementary data, which is necessary for other investigators to choose technical approach when 

performing similar profilings.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The revised manuscript by Visconti et al. is much improved and I am satisfied by the responses to my 

earlier questions. I thank the authors for their careful revisions.  

However, I am concerned about the sampling design. It is now stated that the faecal and blood 

samples were taken on average 0.9 +/- 1.3 years apart. Given the variation of at least some 

proportion of blood metabolites (e.g. doi 10.1016/j.molmet.2018.06.008), and also the microbiome 

(e.g. 10.1128/mSystems.00144-16), I would expect that many of the reported associations are false 

positives.  

Do the authors have any estimates on the variability of the microbial taxa and the metabolites which 

they find associated from which they could estimate effect sizes that are robust to temporal 

variability? 



Reviewers' comments: 
 
Reviewer #1   
 
In the revised manuscript the authors have satisfactorily addressed the technical issues I had 
raised in my original review. However, still the manuscript would be markedly improved by 
specifying the analytical platforms where each metabolite was identified. The authors might 
consider to create one more column clarifying the type of platform applied along with each 
metabolite in the supplementary data, which is necessary for other investigators to choose 
technical approach when performing similar profilings. 
 
Answer: We are glad the Reviewer was satisfied with our previous revisions. We agree that to 
specify the analytical platform used for each metabolite would help reproducing the present findings. 
Therefore, we included two supplementary data files (Supplementary Data D19 and D20; for the 
faecal and blood metabolites, respectively), which specify, for each metabolite, the type of platform 
used.  
 
We have now added the following sentence to the Methods Section: 
“Details regarding the platform used for each individual metabolite are provided as Supplementary 
Data D19 and D20.” 
 
 
  



Reviewer #2  
 
The revised manuscript by Visconti et al. is much improved and I am satisfied by the 
responses to my earlier questions. I thank the authors for their careful revisions. 
However, I am concerned about the sampling design. It is now stated that the faecal and 
blood samples were taken on average 0.9 +/- 1.3 years apart. Given the variation of at least 
some proportion of blood metabolites (e.g. doi 10.1016/j.molmet.2018.06.008), and also the 
microbiome (e.g. 10.1128/mSystems.00144-16), I would expect that many of the reported 
associations are false positives. 
Do the authors have any estimates on the variability of the microbial taxa and the metabolites 
which they find associated from which they could estimate effect sizes that are robust to 
temporal variability? 
 
Answer: We are glad the Reviewer was satisfied with our previous revisions. We agree with the 
Reviewer’s concern regarding the temporal stability of the metagenomic and metabolomic data. We 
did not collect longitudinal faecal metagenomics data, therefore making it impossible to assess 
metagenomic stability in our study. However, this has already been shown to remain relatively stable 
during adulthood [DOI: 10.1073/pnas.1423854112, DOI: 10.1126/science.1237439] in the absence 
of external perturbations. 
 
Regarding the blood metabolomic data, while these and the metagenomic data were taken on 
average 0.9 years apart, the median difference was 0.43 years, with 38% of our samples were taken 
within 3 days, 41% within one week, and, in general, 68% of our measurements were taken at no 
more than one year apart and 91% of them at no more than two years apart, as now shown on 
Supplementary Figure 4 (also reported below). 
 
We assessed metabolomic stability over time using longitudinal measurements (up to three time 
points) of the blood metabolomics used in this study, which were available for a larger set of 2,070 
individuals. As already reported in our manuscript (and in [DOI: 10.1038/ng.3809]), measurements 
were carried out by Metabolon.  
Since over 90% of metabolomics and metagenomics data were measured no more than 2 years 
apart, we extracted all the individuals having two measurements within a 2-year time frame (N=149), 
ensuring that their metabolomic profiles were assessed in the same batch, in order to limit potential 
variability due to batch effects. We then removed, for each tested metabolite’s profile, outliers 
(values further away than 3 standard deviations from the dataset mean), scaled the data to have 
mean zero and standard deviation one, and assessed the intra-individual correlations. We observed 
an average intra-individual correlation of 0.53 (median: 0.55, SD: 0.12, 1st-3rd interquartile range: 
0.47-0.60). When limiting the analysis to the blood metabolites which were significantly associated 
either to microbiome species or functions (instead of using the whole set of metabolites that has 
been tested in our study), we obtained very similar results (average intra-individual correlation: 0.53, 
median: 0.54, SD: 0.13, 1st-3rd interquartile range: 0.47-0.62). 
 
To further verify the stability of the intra-individual correlation over larger time frames, we repeated 
the same experiment using increasing number of years between the first and the second 
metabolomics measurement, that is at 3, 4, 5, …, and up to 10 years apart. The number of pairs 
used within each time frame (N), and the average intra-individual correlations, along with their 



standard error, SD, and 1st-3rd interquartile (IQ) range, are now reported in Supplementary Table 2 
(also below). We observed stability of the metabolomic profiles over larger time frames, in line with 
the results from another study which showed that the human metabolic profile is conserved for up to 
seven years [DOI: 10.1007/s11306-014-0629-y]. 
 
Finally, to verify that the observed correlation were not due to chance, we compared the average 
intra-individual correlation observed in the 149 individuals with measurements taken 2 years apart 
with that observed in 149 randomly paired measurements from unrelated subjects extracted from the 
whole metabolomics dataset (and measured in the same batch). Then, we used the Wilcoxon’s test 
to assess the probability of observing a greater correlation between the metabolic profiles of the 
same individual at different time points compared to the random pairs. We obtained an empirical 
P=1x10-4, with all the random datasets showing negligible correlation (mean ρ=0.03; max ρ=0.09).  
 
We now write in the Results Section 
“Faecal and blood samples were collected, on average, 0.9 years apart, with 41% of our samples 
collected within one week, and 91% within two years (Supplementary Figure 4). Intra-individual 
correlation analysis of tested metabolites showed a good correlation between samples collected up 
to 2 years apart (N=149, mean Pearson’s ρ=0.53, SD: 0.12, 1st-3rd interquartile range: 0.47-0.60), 
as confirmed by a permutation analysis (Pempirical=1x10-4, Methods). We further observed that 
metabolomics stability persists over longer periods of time (Supplementary Table 2), in line with 
previous literature suggesting that human metabolic profiles are conserved for up to seven years13.” 
 
and in Methods Section: 
“Temporal stability of the metabolic profiles 
The blood metabolomic data used in this study belonged to a larger set of 2,070 individuals, with 
longitudinal measurements up to three time points33, which we used to assess the blood 
metabolomic stability over time.  
In line with the difference observed between the metagenomic and blood metabolomic data used in 
this study, where about 90% of our samples were collected no more than 2 years apart 
(Supplementary Figure 4), we extracted all the individuals having two measurements within a 2-year 
time frame (N=149), and ensuring that their metabolomic profiles were assessed in the same batch 
in order to limit potential variability due to batch effects. We then removed, for each tested 
metabolite’s profile, outliers (values further away than 3 standard deviations from the dataset mean), 
scaled the data to have mean zero and standard deviation one, and assessed the intra-individual 
correlations using the Pearson’s ρ. To confirm that the observed correlations were not due to 
chance, we then built 10,000 datasets including 149 randomly paired metabolomic profiles from 
unrelated subjects extracted from the whole metabolomics dataset, ensuring that each pair was 
measured in the same batch. We then used the Wilcoxon’s test to assess the probability of 
observing a greater average intra-individual correlation in the 149 individuals with measurements 
taken 2 years apart compared to that observed the random sets. To further verify the stability of the 
intra-individual correlation over larger time frames, we evaluated the intra-individual correlation for 
measurements taken up to 10 years apart (and within the same batch).” 
 
 



 
 
Caption: Distribution of time point difference between metagenomic and blood metabolomic data. 
Mean difference was 0.9 years (median: 0.43, SD: 1.3). 
 
 
 
 
Caption: Intra-individuals correlation of blood metabolomics profiles over time. The table reports, for 
measurements taken up to 10 years apart, the number of individuals used within each time frame 
(N), and the mean intra-individual correlations, along with their standard error (SD), and 1st-3rd 
interquartile (IQ) range. 
 

Years apart N Mean SD 1st-3rd IQ range

2 149 0.53 0.12 0.47-0.60

3 180 0.52 0.13 0.43-0.62

4 282 0.52 0.13 0.43-0.61

5 352 0.50 0.13 0.42-0.60

6 446 0.48 0.13 0.40-0.57

7 552 0.49 0.12 0.41-0.58

8 506 0.49 0.13 0.41-0.59

9 331 0.48 0.13 0.40-0.58

10 139 0.48 0.12 0.39-0.58

 



REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

I think the problem of gut and blood samples not having been taken at the same time is now 

transparently discussed. The measures taken by the authors to validate their results in light of this 

problem are appropriate. 
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Reviewers' comments: 
 
Reviewer #2  
 
I think the problem of gut and blood samples not having been taken at the same time is 
now transparently discussed. The measures taken by the authors to validate their results 
in light of this problem are appropriate. 
 
Answer: We are glad the Reviewer was satisfied with our revisions. 
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