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1. Model training

The deep neural network (DNN) model was trained on NVIDIA GTX 1070 GPUs with Tensorflow.keras 
module [1, 2]. An early-stopping strategy was adopted to avoid over-fitting with a patience as 20 epochs 
and a min_delta = 0.01 root mean square error (RMSE). Therefore, a best model is harnessed if the 
learning enters an overfitting stage. The best model containing weights was saved into an HDF5 file. 
After around 75 epochs, the loss is about to stay unchanged, and according the early stopping strategy, the 
model was terminated at epoch=171, and we adopted the model at epoch=151 and used it as the best 
model. The Pearson correlation coefficient (PCC, or R) is also monitored. 

Figure S1 Performance of our model as a function of epoch number.

2. Customized loss function

During the training of our DNN models, instead of using the default mean squared error (MSE) as the loss 
function, we designed a customized loss function to optimize:

,𝐿𝑜𝑠𝑠 =  𝛼(1 ― 𝑃𝐶𝐶) +(1 ― 𝛼)𝑅𝑀𝑆𝐸

where PCC and RMSE are the correlation coefficient and root mean squared error respectively, while α is 
a positive and less than 1 weighting factor. In this study, α=0.7 is used. The customized loss function was 
designed to balance the correlation and error term. 

3. Model training with missing features

To test the stability and robustness of the OnionNet model, we artificially created different datasets with 
missing features. For the multiple-layer inter-molecular features, we generated a M×N matrix, containing 
samples (by rows) horizontally and features (by columns) vertically. In detail, for each of the 3840 
features, if we need to remove one feature, we replaced the original values (in the specific column) to 
zeroes to maintain the dimensions of the dataset. This way the artificially generated dataset could be 
reshaped and trained with the same DNN architecture. 
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Firstly, we examined the stability of the model by removing the features (n-1) * 64 to n*64 in shell n (𝑛 𝜖 
). For example, if n=1, we then remove features 1 to 64, and if n=6, we thus remove features 320 to [1, 64]

384. For all the 60 shells, we generated 60 datasets with values being replaced by zero in specific 
features. Then for each one of the datasets, a DNN model with the same structure as described in the 
method part of the main text was trained with the optimal batch size (64) and dropout rate (0.0) based on 
the same early stopping strategy. The ΔLoss of the last 20 steps was calculated based on the customized 
loss difference between the model and the best model without missing features.

 𝛥𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ― 𝐿𝑜𝑠𝑠𝑏𝑒𝑠𝑡

where the Lossmissing and Lossbest=0.549 are the loss of the model with missing features and the best model 
we trained without missing features. 

Similar, for models with missing specific element-type combination features, the values in the relevant 
features thus were replaced by zeroes. Since there are 64 different combinations, we generated 64 datasets 
and for each of them a model was trained using the same setting. The model performance was evaluated 
in the same strategy.

In crystal structures, the coordinates of hydrogen atoms are missing. However, in PDBbind database, the 
positions of the hydrogen atoms were modelled. Therefore, we generated another dataset without any 
features based on element-type combinations containing hydrogen element. The dataset was fed to a DNN 
model (called OnionNet_HFree hereafter) and the performance was evaluated. It seems like that without 
including hydrogen elements, the model shows equally well for the validating dataset (Figure S2). 
Although the inclusion of hydrogen atom coordinates may introduce bias to the model, from the training 
results, however the model is robust enough to tolerate the bias. 

Figure S2. The decay curves of RMSE and PCC for the model training with a hydrogen-free dataset. 

4. Predicting pKa of the “native-like” docking poses 

The ability to predict the pKa of a docking pose would enable the model a more powerful and practical 
tool as an alternative scoring function to enable large-scale virtual screening. Here, using AutoDock Vina 



S4

[3], we docked a ligand into its native target binding pocket. And we selected the “good” protein-ligand 
docked complexes for pKa prediction. If the root-mean-square-deviation (RMSD) between the docking 
pose and the native ligand conformation (in a crystal or NMR structure) is less than a cutoff = 3 Å, the 
complex of the target (protein) and the docking pose of the ligand thus is a “good” complex. For one 
protein-ligand complex, Vina was required to output 20 docking poses, out of which the best docking 
pose is selected based on minimum RMSD, and if the minimum RMSD is less than the cutoff, then the 
“good” complex is passed to generate multiple-layer element-type based inter-molecular features. This 
way a dataset was generated based on the docking poses and RMSD. 

We randomly selected 318 “good” complexes from the training set after docking. The full list was 
provided in the supplementary table. For the 181 complexes in the testing set, only 149 “good” complexes 
were generated by docking with Vina, and then were submitted for inter-molecular featurization. An 
exhaustiveness= 32 and the box sizes=40 Å were adopted for docking, using the centroid of the native 
conformation of the ligand as pocket center. 

The OnionNet_HFree model thus was used to predict the pKa for the “good” complexes generated from 
docking simulations.

5. HIV protease docking and rescoring

The receptor conformation of HIV protease (PDB ID: 1A30) [4] was downloaded from RCSB Protein 
Data Bank. The crystal water molecules and its native ligand were removed. The SMILES codes of the 
active and decoys molecules were downloaded from the Deepchem project (https://deepchem.io/), which 
provides well defined and cleaned datasets for machine learning model constructions in computer-aided 
drug discovery (CADD). The full list of the SMILES codes of the molecules were downloaded from 
Deepchem github repository (https://github.com/deepchem/deepchem/tree/master/examples/hiv). With 
Rdkit package [5], we generated the 3D conformations of the molecules, added polar hydrogen atoms and 
optimized the conformations with MMFF force-field. The file format conversion was completed with 
Open Babel package [6]. The molecules were docked into HIV protease ligand binding pocket using 
AutoDock Vina [3], with an exhaustiveness as 32 and box sizes as 40, using the centroid of the original 
ligand (in PDB ID: 1A30) in the pocket as the pocket center. The best docking pose per molecule 
according to the lowest docking score of Vina thus was selected and was adopted for inter-molecular 
contacts feature generation and pKa prediction with the OnionNet_HFree model. 

6. Table S1: Training sets of the SFs in main text Table 2 

Scoring functions Training sets
OnionNet PDBBind v2016 removing the refine sets and core set
KDeep PDBBind v2016 refine set removing the core set
RF-score-v3 PDBBind v2013 and/or 2016 refine set removing the core set
Pafnucy PDBBind v2016 removing the refine sets and core set
AGL Refine sets of CASF2007, CASF2013, CASF2016 after removing core 

sets
kNN-score PDBBind v2013 removing the core set and low-quality complexes
X-score PDBBind v2013 removing the core set and low-quality complexes
ChemScore PDBBind v2013 removing the core set and low-quality complexes
ChemPLP PDBBind v2013 removing the core set and low-quality complexes

https://deepchem.io/
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AutoDock Vina CASF2013 complexes
AutoDock CASF2013 complexes

References

1. Chollet, F., Keras. 2015.
2. Abadi, M., et al. Tensorflow: A system for large-scale machine learning. in 12th {USENIX} 

Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016.
3. Trott, O. and A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new 

scoring function, efficient optimization, and multithreading. J Comput Chem, 2010. 31(2): p. 455-
61.

4. Louis, J.M., et al., Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the 
HIV-1 protease. Biochemistry, 1998. 37(8): p. 2105-2110.

5. Landrum, G., RDKit: Open-source cheminformatics. 2006.
6. O'Boyle, N.M., et al., Open Babel: An open chemical toolbox. Journal of cheminformatics, 2011. 

3(1): p. 33.


