Supporting Information

TiO₂ nanotubes for solar water splitting: Vacuum annealing and Zr doping enhance water oxidation kinetics

Maged N. Shaddad^{§, †} Drialys Cardenas-Morcoso, ^{§, ‡} Miguel García-Tecedor, [‡] Francisco Fabregat- Santiago, [‡] Juan Bisquert, [‡] Abdullah M. Al Mayouf, ^{*, †} Sixto Gimenez^{*, ‡}

[†]Electrochemical Sciences Research Chair (ESRC), Department of Chemistry, Science College, King Saud University, Riyadh, Saudi Arabia

[‡]Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain

*Email: amayouf@ksu.edu.sa, sjulia@uji.es

Figure S1. Tauc plots for direct optical transitions (a) TiO_2 and (b) $Zr:TiO_2$ NTs heat treated in different atmospheres. The derived bandgaps are showed in the corresponding plots.

Figure S2.- (a) Photocurrents for water oxidation and (b) Absorbance spectra for undoped and Zr doped TiO_2 nanotubes with different dopant additions under air atmosphere.

Atmosphere	TiO ₂ NTs	Zr:TiO ₂ NTs		
Air	0.30 mA/cm ²	0.53 mA/cm ²		
Vacuum	0.44 mA/cm ²	0.73 mA/cm ²		

Table S1. Photocurrent obtained through integration of the IPCE spectra with the SolarSpectrum for the calculation of the integrated current.

Figure S3.- EDS analyses of the (a) TiO_2 and (b) $Zr:TiO_2$ NTs.

Supplementary Data Table S2.- EDS analysis of the TiO₂ and Zr:TiO₂ NTs.

	TiO ₂	Zr:TiO ₂
Ti (at. %)	33.33	33.33
O (at. %)	66.67	66.67

Figure S4.- X-rays diffractograms of TiO_2 nanotubes heat treated at both air and vacuum atmospheres (a) bare TiO_2 (b) $Zr:TiO_2$ NTs

Table S3. h	ıkl parameters	for TiO_2	samples	with an	d with	Zr a	addition	under	different
thermal trea	tments. In all	cases, the	hkl paran	neters co	rrespoi	nd to	o pure an	atase.	

hkl	TiO ₂ air (Å)	TiO ₂ vacuum (Å)	TiO ₂ Zr(2 mC) vacuum (Å)	TiO ₂ Zr(15 mC) air (Å)
101	3.5281	3.5405	3.5137	3.4673
400	2.3907	2.3621	2.3850	2.3753
200	1.9188	1.9212	1.8950	1.9395
105	1.6821	1.6851	1.6775	1.6907

Figure S5.- (a) Representative TEM image of TiO_2 nanotubes and (b) SAED pattern of a TiO_2 15 mC Zr sample.

Figure S6. EDS analyses carried out by TEM on the samples (a) TiO_2 as prepared, (b) TiO_2 vacuum annealed, (c) TiO_2 2 mC Zr vacuum annealed and (d) TiO_2 15 mC Zr vacuum annealed.

Table S4. - XPS quantification carried out in the $Zr:TiO_2$ NTs samples under air and vacuum atmospheres.

Element	Air (% at.)	Vacuum (% at.)		
O 1s	43.1	41.7		
Ti 2p	12.0	13.1		
Zr 3d	0.3	0.3		

Figure S7.- (a) Equivalent circuit employed to fit the experimental impedance spectroscopy data. (b) Characteristic Nyquist plot of the nanotubes, with amplification of the high frequency region to show the 45 degree line related to transport resistance.

		TiO ₂ NTs air	TiO ₂ NTs vacuum	Zr:TiO ₂ NTs air	Zr:TiO ₂ NTs vacuum
Dark	V _{FB} (V vs RHE)	0.11	0.2	0.12	0.16
Dark	$N_{\rm D}(x10^{21}{\rm cm}^{-3})$	1.9	1.9	2.1	1.3
Light	V _{FB} (V vs RHE)	0.14	0.18	0.12	0.16
Light	$N_{\rm D}(x10^{21}{\rm cm}^{-3})$	2.1	1.3	2.5	2.2

Table S5: Parameters extracted from the Mott-Schottky analysis showed in Figure 5 of the main text.

Figure S8.- Carrier diffusion length calculated for (a) undoped and (b) Zr doped TiO_2 nanotubes for samples thermally treated in air and vacuum.

Figure S9.- Series resistance (R_s) for TiO₂ nanotubes thermally treated in air and vacuum (a) bare (b) Zr-doped.

Figure S10.- Calculation of the space charge zone (w) for TiO₂ nanotubes (a) bare and (b) Zr-doped, thermally treated in air and in vacuum.