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Methods 
 
TWAS with Fusion 
 
TWAS were performed with the Fusion software using default settings and also including 
polygenic risk score as a possible model during cross-validation in addition to BLUP, LASSO, 
and ElasticNet.  TWAS p values from Fusion were Bonferroni-corrected according to the 
number of genes tested in the TWAS when assessing statistical significance.  Variants in the 
STARNET reference panel were filtered for quality control using PLINK1 with the options “--maf 
1e-10 --hwe 1e-6 midp --geno”.  STARNET expression was processed as described in the 
STARNET paper2, including probabilistic estimation of expression residuals3 (PEER) covariate 
correction.  Because Fusion only supports training on PLINK version 1 hard-call genotype files 
and not genotype dosages, we trained expression models on only the variants both genotyped 
in STARNET and either genotyped or imputed in the GWAS, filtering out variants without 
matching strands between the GWAS and STARNET.  Expression models were trained on all 
remaining variants within 500 kb of a gene’s TSS, using Ensembl v87 TSS annotations for 
hg194.  LD and total and predicted expression correlations were calculated across individuals in 
STARNET.  
 
TWAS with S-PrediXcan 
 
To run S-PrediXcan, ElasticNet prediction models and LD reference were generated using the 
same PEER-corrected STARNET data from the previous section, filtered to match each GWAS. 
Variants within 1MB of the TSS or TES were used to predict the expression of genes annotated 
as either protein-coding, lincRNA or pseudogene in Ensembl v87. 
 
Statistics 
 
The two-tailed Wilcoxon signed-rank p-values in the discussion to Supplementary Table 4 were 
computed with the scipy.stats.wilcoxon method in Python from the data shown in 
Supplementary Table 4.  For details of how variant- and gene-level TWAS p-values were 
calculated, please refer to the Fusion and PrediXcan/S-PrediXcan manuscripts. 
 
Simulations 
 
For the simulations, we sampled independent genomic regions as defined by LDetect5.  We 
then annotated each region with overlapping gene transcription start sites using all available 
genes in RefSeq v65.  To simulate GWAS (N = 300,000) and expression panel (N = 500) 
genotypes, we sampled standardized genotypes using the multivariate normal approximation 
with mean 0 and covariance defined by LD among the 489 individuals from 1000 Genomes with 
European ancestry.  
 

https://paperpile.com/c/X3Ilen/TIMt8
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Next, we simulated heritable gene expression for all genes at a region with 80% of genes 
having a single causal eQTL and the remaining 20% having 2 causal eQTLs. Causal eQTLs 
were preferentially sampled within 50 kb of transcription start sites to exhibit a 50x enrichment 
on average compared with non-overlapping SNPs.  Effect sizes for causal eQTLs were drawn 
from a normal distribution such that genetic variation explained 20% of variance in total 
expression.  
 
Finally, given expression at genes causal for the complex trait, we sampled gene-level effect 
sizes from a normal distribution so that 20% of the variance in trait is explained by gene 
expression.  To simulate dichotomous case/control disease traits, we assumed an underlying 
liability model, where liability for cases exceeds a given threshold. We set the liability threshold 
such that population-level prevalence of cases is 1%. We randomly assigned one gene at the 
locus to be causal and looked at what percent of the time other genes at the locus had a larger 
TWAS z-score than this causal gene, as a function of the predicted expression correlation 
magnitude with the causal gene.  
 
To compute risk scores for quantitative and dichotomous traits using predicted expression in 
simulations, we fit a penalized linear model across all predicted expression levels and measured 
goodness of fit. We used both L1 (i.e. LASSO) and L2 (i.e. Ridge) models for estimation. To set 
the penalty parameters we adopted heuristics from SNP-based methods. Specifically, for 
LASSO we set the penalty term to the heritability explained by predicted expression6. For Ridge 
we set the penalty term to the ratio between the residual variance and effect-size variance, 
which is equivalent to the ridge-regression BLUP7. We measured goodness-of-fit in-sample, 
which provides an upper bound on risk prediction performance. For simulated continuous traits, 
goodness-of-fit is measured by the adjusted  estimate. For simulated dichotomous traits weR2  
measured area under the precision-recall curve (AUPRC). We generated predicted expression 
for N=50,000 individuals across 10 genomic regions. 
 
We also investigated performance of penalized linear models for association between predicted 
expression and simulated trait. We fit a LASSO (and Ridge) model using predicted expression 
of all genes to estimate jointly gene-level effects. To obtain confidence intervals, we computed 
100 bootstrap estimates of gene-level effects and computed the empirical lower 2.5%- and 
upper 97.5%-quantiles. In this setting, we determined a gene to be associated if its empirical 
95%-confidence interval did not overlap 0. Here, we generated predicted expression at a single 
risk region using N=300,000 and N=500 for the reference expression panel. 
 
Code availability 
 
Code to replicate the post-TWAS analysis is available at 
https://github.com/Wainberg/TWAS_challenges_and_opportunities.  The version of Fusion used 
for this analysis is available at 
https://github.com/gusevlab/fusion_twas/tree/9142723485b38610695cea4e7ebb508945ec006c. 
 

https://paperpile.com/c/X3Ilen/IqXcv
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Data availability 
 
GWAS summary statistics are publicly available from the CARDIoGRAMplusC4D consortium 
and Global Lipids Genetics Consortium.  STARNET genotypes are available from Johan LM 
Björkegren on reasonable request.  STARNET expression data is available from dbGAP 
(accession phs001203.v1.p1).  
 
Life Sciences Reporting Summary 
 
For more details on the study design and methods, please refer to the Life Sciences Reporting 
Summary, published alongside this paper. 
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Supplementary Figures 
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Supplementary Figure 1: Distributions of co-regulation across putative non-causal genes in multi-hit Fusion 
TWAS loci.  Since many multi-hit loci do not have a clear causal gene or have multiple plausible candidates, we 
make the approximation that only the most significant gene at each locus is causal.  We then plot the cumulative 
distribution functions (CDFs) of (a, d) expression correlations, (b, e) predicted expression correlations and (c, f) 
number of shared variants between these most significant genes and all the other genes at their loci, separately for 
LDL/liver (a-c) and Crohn’s/whole blood (d-f).  To collapse these CDFs into a single estimate of the percent of 
affected non-causal genes (Fig. 2c), we combine genes across the two studies and threshold to correlation r2 ≥ 0.2, a 
threshold commonly used for weak LD in GWAS, or ≥ 1 shared variant.  Note that counting only exact sharing of 
variants does not account for LD, for simplicity.  
 



 
Supplementary Figure 2: Manhattan plots of the 4 Fusion TWAS conducted in this study.  As in Fig. 2, clusters 
of multiple adjacent TWAS hit genes are highlighted in red. 
  

 
Supplementary Figure 3: Number of Fusion TWAS hit genes per locus after 2.5-MB clumping. 
 



 
 
Supplementary Figure 4: Total versus predicted expression correlation versus the top hit, for all genes in 
Fusion TWAS multi-hit blocks that are not the top hits.  a) Liver, LDL.  b) Crohn’s, whole blood.  Note that 
predicted expression correlation is generally higher than total expression correlation, as discussed in the Results 
section. 
 
  



A         B 

 
 
C 

 
 
Supplementary Figure 5: The SORT1 locus with S-Predixcan.  a) S-PrediXcan Manhattan plot of the SORT1 
locus.  b) Expression correlation with SORT1 versus TWAS p-value, for each gene in the SORT1 locus.  c) For 
nearby genes, S-PrediXcan predicted expression correlations tend to be higher than total expression correlations, 
e.g. at the SORT1 locus.  
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Supplementary Figure 6: The IRF2BP2 locus with S-PrediXcan. a) S-PrediXcan Manhattan plot of the IRF2BP2 
locus, where RP4-781K5.7 is a likely non-causal hit due to predicted expression correlation with IRF2BP2. b) Details 
of the two genes’ S-PrediXcan expression models: a line between a variant’s rs number and a gene indicates the 
variant is included in the gene’s expression model with either a positive weight (blue) or negative weight (orange), 
with the thickness of the line increasing with the magnitude of the weight; red arcs indicate LD. 
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Supplementary Figure 7: The NOD2 locus with S-Predixcan.  a) S-PrediXcan Manhattan plot of the NOD2 locus. 
b) Details of the expression models of NOD2 and BRD7.  For clarity, 5 variants for BRD7 (rs12925755, p = 6e-34, 
weight = 0.002; rs2066852, p = 3e-10, weight = -0.02; rs17227589, p = 2e-7, weight = -0.02; rs11642187, p = 0.04, 
weight = +0.007; rs2241258, p = 0.3, weight = -0.05) are not shown.  A line between a variant’s rs number and a 
gene indicates the variant is included in the gene’s expression model with either a positive weight (blue) or negative 
weight (orange), with the thickness of the line increasing with the magnitude of the weight; red arcs indicate LD. 
 
  



 

 
 
Supplementary Figure 8: Performance of combined whole-blood and liver reference panel on the loci in 
Figure 6. 
 
 



Gene Lowest TWAS p-value in any 
brain tissue 

Lowest TWAS p-value in any 
tissue 

C4A 4e-18 (Hypothalamus) 2e-20 (Pancreas) 

ATF6B 3e-9 (Anterior cingulate cortex) 3e-9 (Anterior cingulate cortex) 

CYP21A2 5e-7 (Cortex) 9e-19 (Aorta) 

NELFE 7e-7 (Cerebellum) 7e-7 (Cerebellum) 

STK19 1e-5 (Frontal Cortex, BA9) 4e-12 (Adrenal gland) 

SKIV2L 5e-5 (Cerebellum) 5e-5 (Cerebellum) 

C4B 6e-5 (Nucleus accumbens, basal 
ganglia) 

1e-21 (Testis) 

C2 0.008 (Cortex) 1e-18 (Whole blood) 

DXO 0.03 (Putamen, basal ganglia) 0.02 (Thyroid) 

CFB Not significant 2e-13 (Whole blood) 

EHMT2 Not significant 3e-10 (Skin, sun-exposed lower leg) 

TNXB Not significant 3e-6 (Adrenal gland) 

ZBTB12 Not significant 7e-5 (Ovary) 

 
Supplementary Table 1: The C4A locus, a success story where TWAS p-values accurately prioritize the 
causal gene.  Lowest schizophrenia p-value in any GTEx brain tissue, and in any GTEx tissue, for each gene within 
100 kb of C4A with available S-PrediXcan TWAS results (http://metabeta.gene2pheno.org).  The TWAS used 
schizophrenia summary GWAS data from the Psychiatric Genomics Consortium8 and expression data from GTEx9.  
 
 

 Predicted expression correlation magnitude with causal gene 

0-0.05 0.05-0.1 0.1-0.15 0.15-0.2 

Number of genes 3143 502 284 70 

% genes with 
|z| > |zcausal| 

9.4%  12.0%  31.7%  45.7%  

Power (% of causal 
genes with p < 0.05) 

76% 

False positive rate 
(% of non-causal 
genes with p < 0.05) 

14.9% 50.8% 77.1% 71.4% 

 
Supplementary Table 2: Simulation of percent of genes with larger TWAS z-score than the causal gene, 
binned by predicted expression correlation.  The number of genes in each bin (among all genes at the 1000 
random loci being simulated) is shown in brackets for each bin.  Predicted expression correlations were computed as 

http://metabeta.gene2pheno.org/
https://paperpile.com/c/X3Ilen/8ZwXX
https://paperpile.com/c/X3Ilen/VfPyU


the vector-matrix-vector product of the causal gene’s model weights, the LD matrix among the variants included in the 
models, and the other gene’s model weights. 
 
 

Gene Trait Evidence  Details 

SORT1 LDL Strong In mouse models, overexpression of SORT1 in liver reduced plasma LDL 
levels and siRNA knockdown increased plasma LDL levels10,11, though in 
other studies deletion of SORT1 counter-intuitively reduced, rather than 
increased, atherosclerosis in mice without affecting plasma LDL levels12,13,14. 

IRF2BP2 LDL Moderate A loss-of-function variant in IRF2BP2 has been associated with increased 
susceptibility to CAD15 IRF2BP2 knockout has been shown in mouse models 
to increase atherosclerosis, albeit via an inflammatory mechanism15. 

PPARG LDL Strong PPARG activation increases LDL metabolism via induction of LDLR and 
CYP7A116; PPAR agonists decrease glycated LDL uptake into macrophages 
via regulation of lipoprotein lipase17. 

LPA LDL Strong LPA encodes is a primary constituent of lipoprotein(a), a class of lipoproteins 
related to LDL.  The LDL GWAS used in this study is a meta-analysis of 60 
studies, most of which do not measure LDL levels directly but instead 
calculate them indirectly using the Friedewald formula, which does not 
distinguish between LDL and lipoprotein(a) and instead reports the sum of 
LDL and lipoprotein(a) levels18.  Thus, although LPA abundance may not 
causally influence true LDL levels, it does causally determine LDL levels as 
calculated by the Friedewald formula. 

TNKS LDL Moderate Inhibition of TNKS inhibits Wnt signalling19 and upregulates genes involved in 
cholesterol biosynthesis20.  Wnt signalling has independently been implicated 
in lipid homeostasis21,22. 

FADS1-3 LDL Strong FADS1-knockout mice had lower triglyceride and total cholesterol levels23.  
FADS2-knockout mice had roughly doubled cholesterol synthesis rate in 
macrophages24 and altered levels of multiple cholesterol esters in liver25. 
FADS3 is least well-characterized but has 52% and 62% sequence 
homology with FADS1 and FADS2, respectively26. 

ALDH2 LDL Moderate ALDH2 is required for alcohol metabolism, and alcohol consumption has long 
been known to have wide-ranging influences on lipid levels27.  Both ALDH2 
and another alcohol metabolic enzyme, ADH1B, have been associated with 
alcohol consumption28, variants at both loci have been associated with LDL 
among alcoholic men29, and Mendelian randomization using variants near 
ADH1B and other alcohol metabolic enzymes recapitulated the causal role of 
alcohol consumption on LDL levels30, suggesting that ALDH2 causally 
influences LDL levels via its effect on alcohol consumption. 

KPNB1 LDL Strong KPNB1 knockdown reduced cellular internalization of fluorescence-labeled 
LDL31. 

LPIN3 LDL Moderate LPIN3 is one of three lipin genes; lipins genes catalyze the synthesis of 
diacylglycerols32, constituents of LDL and other lipoproteins33 and 
intermediates in the synthesis of multiple classes of lipids34. 

SLC22A4/5 Crohn’s Weak Also known as OCTN1/2, these genes encode proteins that transport 
substrates such as ergothioneine and acetylcholine, and a 
Crohn’s-associated variant, L503F, increases SLC22A4’s transport 
efficiency35,36.  However, the link between altered transport efficiency and 
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disease is unclear, and IRF1 is a stronger candidate at the locus (see 
below). 

IRF1 Crohn’s Strong Genome-wide, variants that increase binding of IRF1 (a transcriptional 
activator of the innate immune response) tend to increase Crohn’s risk, and 
vice versa37.  High-density genotyping of the IRF1/SLC22A4/5 locus 
indicates that IRF1, but not SLC22A4/5, associates with Crohn’s disease 
risk, and IRF1 expression, but not SLC22A4 expression, in GI biopsies was 
increased among Crohn’s cases38.  

CARD9 Crohn’s Strong CARD9 plays critical roles in the innate immune response and has been 
implicated in a variety of autoimmune conditions39; a loss-of-function splice 
variant in CARD9 is strongly protective against Crohn’s disease40.  

NOD2 Crohn’s Strong Multiple coding variants in NOD2 are independently associated with Crohn’s 
disease40,41,42. 

STAT3 Crohn’s Strong STAT3-knockout mice develop Crohn’s-like symptoms43.  

 
Supplementary Table 3: Candidate causal genes curated from the literature, with supporting evidence for 
causality.  The strength of evidence for each gene is also stated: strong indicates clear experimental evidence 
(SORT1, PPARG, FADS1-3, KPNB1, STAT3), coding loss-of-function or fine-mapped GWAS association (IRF1, 
CARD9, NOD2) or functional inference (LPA) linking the gene to the trait; moderate indicates less direct experimental 
(TNKS) or functional (ALDH2, LPIN3) evidence, or clear experimental evidence linking the gene to a related trait 
(IRF2BP2); weak indicates disputed evidence of causality, where another gene at the locus is a stronger candidate 
(SLC22A4/5). 
 

Candidate causal 
gene 

Number of TWAS 
hit genes at locus 

Rank - TWAS Rank - proximity Rank - expression 

SORT1 9 1 4 4 

IRF2BP2 2 2 2 2 

PPARG 2 1 1 1 

LPA 3 2 3 1 

TNKS 3 3 3 3 

FADS1 4 1 1 2 

FADS2 4 3 2 4 

FADS3 4 4 4 3 

ALDH2 3 2 1 3 

KPNB1 3 1 2 3 

LPIN3 3 1 3 3 

SLC22A4 4 2 3 3 

SLC22A5 4 1 2 2 

https://paperpile.com/c/X3Ilen/kmVvN
https://paperpile.com/c/X3Ilen/78j54
https://paperpile.com/c/X3Ilen/UKEmT
https://paperpile.com/c/X3Ilen/SRMVu
https://paperpile.com/c/X3Ilen/SRMVu
https://paperpile.com/c/X3Ilen/KFhve
https://paperpile.com/c/X3Ilen/6nUSg
https://paperpile.com/c/X3Ilen/SSkeq


IRF1 4 3 1 4 

CARD9 5 1 1 3 

NOD2 5 2 1 4 

STAT3 5 4 4 5 

Mean 3.9 2.0 2.2 2.9 

 
Supplementary Table 4: Performance comparison of Fusion TWAS, expression and proximity to lead variant 
at ranking candidate causal genes. 

    

  Continuous Trait Dichotomous Trait 

Inference 
Method 

N 
Sims 

Mean 
PPV SD 

Mean 
Sensitivity SD 

Mean 
PPV SD 

Mean 
Sensitivity SD 

LASSO 10 0.20 0.08 1.00 0.00 1.00 0.00 1.00 0.00 

Ridge 10 0.17 0.09 1.00 0.00 0.20 0.09 1.00 0.00 

 
Supplementary Table 5: Joint association testing with penalized linear models. Using our simulation pipeline, we 
compared the performance of Ridge and LASSO to identify causal genes genome-wide (N=300,000). We fit a model 
of all predicted expression levels jointly using either LASSO or Ridge and computed empirical 95%-confidence 
intervals with bootstrap (see Methods). PPV measures the positive predictive value, or the proportion of associated 
genes that are causal. Sensitivity measures the proportion of causal genes that are associated. 
 
 

  Continuous Trait Dichotomous Trait 

Inference 
Method 

N Sims Mean Adjusted 
R2 

SD P-value 
for diff 
(t-test) 

Mean 
AUPRC 

SD P-value 
for diff 
(t-test) 

LASSO 10 0.128 9.88E-03 1.80E-04 0.010 3.86E-04 1.27E-09 

Ridge 10 0.107 1.07E-02 0.047 4.71E-03 

 
Supplementary Table 6: Risk prediction in simulations using predicted expression. Using our simulation 
pipeline, we generated a complex quantitative trait (or dichotomous)  for N=50,000 GWAS individuals. We then 
predicted expression into the simulated group using fitted models in separate reference panels with varying sample 
size (Expr Ref Panel Size). We then measured how well a joint model (Inference Method) predicts downstream risk 
for GWAS individuals (see Methods). 
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