1 Supplementary Information

2 Fibulin-1c regulates transforming growth factor-β

3 activation in pulmonary tissue fibrosis

4

Gang Liu,^{1,2,3} Marion A. Cooley,⁴ Andrew G. Jarnicki,^{1,5} Theo Borghuis,⁶ Prema M.
Nair,¹ Gavin Tjin,⁷ Alan C. Hsu,¹ Tatt Jhong Haw,¹ Michael Fricker,¹ Celeste L.
Harrison,¹ Bernadette Jones,¹ Nicole G. Hansbro,^{1,2,3} Peter A. Wark,¹ Jay C. Horvat,¹
W. Scott Argraves,⁴ Brian G. Oliver,^{5,6} Darryl A. Knight,¹ Janette K. Burgess,^{6,7} and
Philip M. Hansbro^{1,2,3}

10

11 Affiliations

- ¹Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and
- 13 The University of Newcastle, Newcastle, New South Wales, Australia
- 14 ²School of Life Sciences, University of Technology Sydney, Sydney, New South
- 15 Wales, Australia
- ¹⁶ ³Centenary Institute, Sydney, New South Wales, Australia
- ⁴Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta,
- 18 Georgia, USA;
- ¹⁹ ⁵Department of Pharmacology and Therapeutics, University of Melbourne, Parkville,
- 20 Victoria, Australia
- ⁶University of Groningen, University Medical Center Groningen, Groningen Research
- 22 Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical
- 23 Biology, Groningen, The Netherlands

- ⁷Woolcock Institute of Medical Research, Discipline of Pharmacology, The University
- of Sydney, Sydney, New South Wales, Australia
- 26

27 Corresponding authors

28 Correspondence to Philip M. Hansbro: Philip.Hansbro@newcastle.edu.au

29 Supplementary Figures and Figure legends

- 40 differences were determined with two-tailed student t-test. **P<0.01, ****P<0.0001
- 41 compared to PBS-challenged mouse controls.

42

Supplementary Figure 2. Fbln1c is increased around the airways in bleomycininduced experimental pulmonary fibrosis. A single bleomycin challenge was used to induce pulmonary fibrosis in WT mice. Controls received PBS. A time-course of lung sections were assessed for Fbln1 protein levels around small airways using immunohistochemistry. Scale bar=500 µm; inserts show expanded images of indicated regions, scale bar=50 µm. Images are representative of n=24-40 airways from n=4-8 mice per group.

50

Supplementary Figure 3. Bleomycin challenge of *Fbln1c^{-/-}* mice does not increase collagen fibers around the airways. A single bleomycin challenge was used to induce pulmonary fibrosis in WT and *Fbln1c^{-/-}* mice. Controls received PBS. Collagen fibers were imaged by second harmonic generation (SHG) microscopy. Collagen backward signal (B_{SHG}) is violet, and collagen forward signal (F_{SHG}) is cyan, scale bar=100 µm. Images are representative of n=40 airways from n=4 mice per group.

59 Supplementary Figure 4. Bleomycin challenge of $Fbln1c^{-/-}$ mice does not increase the mRNA levels of Mmps or Timp1 in whole lung tissues. A single 60 bleomycin challenge was used to induce pulmonary fibrosis in WT and $Fbln1c^{-/-}$ mice. 61 Controls received PBS. (A) Mmp1, (B) Mmp3, (C), Mmp8, (D) Mmp12, (E) Mmp13 and 62 (F) Timp1 mRNA levels in lungs determined using qRT-PCR (n=6-8). Statistical 63 differences were determined with one-way ANOVA followed by Bonferroni post-test. 64 *P<0.05, **P<0.01, ***P<0.001 compared to PBS-challenged WT mice. [†]P<0.05, 65 ⁺⁺⁺P<0.001, ⁺⁺⁺⁺P<0.0001 compared to bleomycin-challenged WT mice. 66

67

Supplementary Figure 5. TGF- β challenge of *Fbln1c^{-/-}* fibroblasts does not affect 68 Smad3 mRNA levels, and bronchoalveolar lavage fluid (BALF) from Fbln1c^{-/-} 69 mice reduces Smad gene levels in fibroblast from WT mice. Primary fibroblasts 70 71 were isolated from the lungs of WT and *Fbln1c^{-/-}* mice and stimulated with TGF- β or media control for 24 h. (A) Smad3, (B) Smad2 and (C) Smad4 mRNA levels in 72 73 fibroblast lysates determined by qRT-PCR (n=6 of each genotype). Primary mouse lung fibroblasts from WT mice were incubated with bronchoalveolar lavage fluid (BALF, 74 20μ l each mouse from WT and *Fbln1c^{-/-}* mice after 28 days bleomycin challenge and 75 controls for 6 hours. (D) Smad3, (E) Smad2, (F) and Smad4 mRNA levels in fibroblast 76

- 77 Iysates determined by qRT-PCR. Statistical differences were determined with one-way
- ANOVA followed by Bonferroni post-test. *P<0.05 compared to media control.