Science Advances

advances.sciencemag.org/cgi/content/full/5/10/eaaw8586/DC1

Supplementary Materials for

High-efficiency single-photon generation via large-scale active time multiplexing

F. Kaneda* and P. G. Kwiat*

*Corresponding author. Email: kaneda@riec.tohoku.ac.jp (F.K.); kwiat@illinois.edu (P.G.K.)

Published 4 October 2019, *Sci. Adv.* **5**, eaaw8586 (2019) DOI: 10.1126/sciadv.aaw8586

This PDF file includes:

Table S1. Experimental parameters. Reference (*37*)

Supplementary Materials

Theory of a time-multiplexed HSPS

Here we outline the theory for modeling our time-multiplexed HSPS. First we define the following three probabilities

$$G(k) = \frac{\mu^k}{(1+\mu)^{k+1}}$$
(S1)

$$D(1|k) = \sum_{l=1}^{k} \eta_{l}^{l} (1 - \eta_{l})^{k-l} {\binom{k}{l}} {\left(\frac{1}{d}\right)}^{l-1}$$
(S2)

$$T(M|j,k) = (t_i t_{DL}^{N-j+1})^M (1 - t_i t_{DL}^{N-j+1})^{k-M} \left(\frac{k}{M}\right)$$
(S3)

G(k) is the probability that an SPDC source generates *k*-photon pairs in a time bin with a mean photon number μ . Our SPDC source with 90% indistinguishability can be well approximated by a thermal distribution (38), because ~ $0.9^{0.5} = 95\%$ of our SPDC photon pairs are generated into a single Schmidt mode. D(1|k) is the trigger-photon detection probability conditioned by *k* photon pairs created. η_t is the total transmission of the signal photons from the SPDC crystal to SPDs, and *d* is the number of SPDs used for a detector cascade. The SPDs are assumed to work as "bucket" detectors discriminating between zero and one-or-more photons. With Eq. S2, a photon-number-resolving (PNR) detector can be simulated with $d \rightarrow \infty$, in which case $D(1|k) \rightarrow k\eta_t(1 - \eta_t)^{k-1}$. T(M|j, k) is the *M*-photon emission probability conditioned by *k* photon-pair generation in the *j*-th time bin, where t_{DL} denotes the transmission of an adjustable delay line for a delay time τ , and t_i is the net transmission of the other optics (including an initial delay line, fiber coupling efficiency, etc.). With Eqs. S1-S3, the multiplexed heralding probability is given by

$$P_{H} = 1 - \left\{ 1 - \sum_{k_{1}=1}^{\infty} G(k_{1})D(1|k_{1}) \right\}^{N}$$
(S4)

where *N* is the number of multiplexed time bins. The probability of producing an *M*-photon state after time multiplexing is given by

$$P_{M} = \sum_{j=1}^{N} \left[1 - \sum_{k_{1}=1}^{\infty} \{1 - G(k_{1})D(1|k_{1})\} \right]^{N-j} \sum_{k_{2}=1}^{\infty} G(k_{2})D(1|k_{2})T(M|j,k_{2})$$
(S5)

The first part in Eq. S5 is the probability that no trigger photon detection has occurred from the (j + 1)-th to *N*-th time bins. The second part is the probability that one of the trigger SPDs clicks in the *j*-th time slot, and *M* heralded photons are released at the output time window. Thus, the product of the first and second parts for each *j* describes the probability that the latest heralding signal is generated in the *j*-th time bin and an *M*photon state is emitted from an adjustable delay line after $(N - j)\tau$ delay. While previous time-multiplexing schemes (3, 5) heralded photons in the earliest time bins, multiplexing the latest-born heralded photons reduces the effective loss in the adjustable delay line. Table S1 shows a list of our experimental parameters to simulate the theoretical curves shown in Fig. 2A-2C and the possible improved source characteristics in the main text.

			Value			
Parameter	Symbol	This work			Possible	
					improvement	
Number of multiplexed time	N		40		100	
bins						
Trigger-photon system	η_t		0.53		0.85	
detection efficiency	•					
Number of trigger SPDs	d		4		16	
Adjustale delay line cycle	<i>t</i> _{DL}		0.988		0.992	
transmission						
Other optics transmission	t_i		0.83		0.85	
Multiplexing system	R		500		5000	
repetition rate (kHz)						
Mean photon number per	μ	0.004	0.05	0.18	0.1	
pulse						
Single-photon probability	P_1	0.051(2)	0.412(13)	0.667(24)	0.75	
Second-order auto-	$g^{(2)}(t=0)$	0.007(7)	0.088(7)	0.269(7)	0.05	
correlation function	0					
Spectral temporal	Ι	0.91(4)	0.90(3)	0.92(3)	0.99	
indistinguishability		. ,				
Single-photon generation	C_1	25.5(10)	206(7)	334(12)	3800	
rate (kcps)	$(= P_1 R)$	、 <i>'</i>				

Table S1. Experimental parameters.