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General Synthetic Procedures.	

All chemicals were purchased from commercial suppliers and used without further purification 

unless otherwise stated. Reactions were monitored with thin-layer chromatography using silica 

gel 60 F254 coated glass plates (EM Sciences). Compound purification was performed with an 

IntelliFlash 280 automated flash chromatography system using pre-packed RedisepRF silica gel 

columns (hexanes/EtOAc or CH2Cl2/MeOH gradient solvent systems). A Varian Dynamax 

Microsorb 100-5 C18 column (250 mm x 21.4 mm), eluting with H2O/CH3CN or H2O/ MeOH 

gradient solvent systems (+0.05% TFA) was used preparatory HPLC purification. The purity of 

all final compounds was determined by two analytical RP-HPLC methods, using an Agilent 

ZORBAX SB-C18 (2.1 mm x 150 mm) or Varian Microsorb-MV 100-5 C18 column (4.6 mm x 

150 mm), and eluting with either H2O/CH3CN (method 1) or H2O/MeOH (method 2) gradient 

solvent systems (+0.05% TFA) run over 30 min. Products were detected by UV at λ=220 and 

254 nm, with all final compounds displaying >95% purity. NMR spectra were recorded on 

Bruker 300 or 500 MHz spectrometers at ambient temperature. Chemical shifts are reported in 

parts per million (δ) and coupling constants in Hz. 1H-NMR spectra were referenced to the 

residual solvent peaks as internal standards (7.26 ppm for CDCl3, 2.50 ppm for d6-DMSO, and 

3.34 ppm for CD3OD). Mass spectra were recorded with a Bruker Esquire Liquid 

Chromatograph - Ion Trap Mass Spectrometer.  

The synthetic routes used to generate inhibitors (6-19) are shown in Schemes 1-2. Synthesis and 

purification methods for compounds 6, 7, 8, 9 in Table 1 were described in previous 

publications. 13, 21 Synthesis and purification methods for compound 13 in Table 2 was described 

in a previous publication3. Compounds 10-12 in Table 1 and compounds 14-19 in table 2 are 

described below.  
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Schemes 1 & 2. (a) epoxide, NaH2PO4:K2CO3 (1:1), DMF, 80 °C; (b) aryl boronic ester/acid, 
Na2CO3 or K3PO4, PdCl2(dppf).DCM; or Pd(pph3)4, 1, 4-Dioxane:H2O, 85 °C 
(microwave);(c)NH4OH, 1,4-Dioxane, 60 °C (microwave); (d) CH3I, NaH, DMF. 
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Syntheses and compound characterization data for all intermediates were described below. We 
reported many synthetic protocols in previous publications.13, 21 

General	R2	alkylation	procedure: 

N

N

NH2

N
H

N

X
K2CO3 or Cs2CO3 N

N

NH2

N
N

X

DMF, R.T or Heat

X = H, I

R2-X

R2 	

Pyrazolopyrimidine (1 equiv.), K2CO3 or Cs2CO3 or K2CO3:NaH2PO4 (1.5-2 equiv.), and an 

alkylhalide (1.1 equiv.) or alkylmesylate (1.1 equiv.) were stirred in dry DMF at room 

temperature or 80 °C. The reaction was monitored by thin layer chromatography. After 

completion, ethyl acetate and water were added and the organic phase was separated. The water 

phase was extracted with ethyl acetate. The combined organic phases were washed with brine, 

dried over Na2SO4 and evaporated under reduced pressure. The crude product was then purified 

via flash chromatography over silica, eluting with either a hexanes/EtOAc or CH2Cl2/MeOH 

gradient. If necessary, further purification was performed with preparatory RP-HPLC. 

General	Suzuki	coupling	procedure:	

	

	

3-Iodopyrazolopyrimidines or 3-Bromopyrazolopyrimidines (1 equiv.), Na2CO3 or K3PO4 (2-4 

equiv.), Pd(PPh3)4 or Pd(II)Cl2dppf.DCM, (0.05 equiv.), and boronic acids or boronate pinacol 

esters (1-2 equiv.) were dissolved in a mixture of dimethoxyethane (1.5 mL) and water (0.5 mL) 

and then heated in a microwave at 80 °C for one hour. After cooling, ethyl acetate and water 

were added and the organic phase was separated. The water phase was extracted with ethyl 



	5	

acetate. The combined organic phases were washed with brine, dried over Na2SO4 and 

evaporated under reduced pressure. The crude product was then purified via flash 

chromatography over silica, eluting with either a hexanes/EtOAc or CH2Cl2/MeOH gradient. If 

necessary, further purification was performed with preparatory RP-HPLC. 

Synthesis and spectral data of various intermediates 

General pinacol ester formation procedure: 

 

Alkylated naphthols or quinolones (1 equiv.), Cs2CO3 (1.5-2 equiv.), pinacolatodiborane (2.0 

equiv.), Pd(II)Cl2(dppf).DCM (0.05 equiv.), and KOAc (1 equiv.) in dry DMSO were heated at 

85 °C  for 5-8 h. After completion, ethyl acetate and water were added and the organic phase was 

separated. The water phase was extracted with ethyl acetate. The combined organic phases were 

washed with brine, dried over Na2SO4 and evaporated under reduced pressure. The crude product 

was then purified via flash chromatography over silica, eluting with a hexanes/EtOAc solvent 

gradient. 

General procedure for boronylation using triisopropylborate: 

n-Buli, 
Triisopropylborate

-78 0C, 2h
X = C/N

X O
R

Br

X O
R

B
HO

HO

 

Aryl halides (1 equiv.) and triisopropylborate (1.5 equiv.) were dissolved in 

tetrahydrofuran:toluene (2:8), cooled to -78 oC, and n-Buli (1.7 equiv.) was added dropwise over 

30-40 min. After addition, the reaction was stirred at -78 oC for 1 h. After 1 h, the reaction was 

allowed to warm to 0 oC and stirred for 15-25 min followed by addition of 2N HCl slowly. The 

organic layer was separated and concentrated in vacuo to afford the desired crude product as a 
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white crystalline product or by collecting and washing with water the white crystalline solid that 

forms upon addition of 2N HCl. 

2-(Difluoromethoxy)quinolin-6-ylboronic acid (20) 

N O
CF2H

B
HO

OH
n-Buli, 
Triisopropylborate
-78 0C, 2hN O

CF2H

Br

N
H

O

Br

O-85 0C, 3h

ClCF2HCO2Me, 
K2CO3, N,N-
dimethylformamide

6-bromoquinolin-2(1H)-one 2-(difluoromethoxy)quinolin-6-ylboronic acid6-bromo-2-(difluoromethoxy)quinoline  

6-Bromo-2-(difluoromethoxy)quinoline: Mehylchlorodifluroacetate (2.90 g, 19.8 mmol) was 

added to the solution of  6-Bromo-quinolin-2(1H)-one (1.50 g, 6.6 mmol, 1 equiv.), K2CO3 (2.73 

g, 19.8 mmol) in dry DMF (10 mL), all ingredients were heated at 100 °C for 3 h. After 

completion, ethyl acetate and water were added and the organic phase was separated. The water 

phase was further extracted with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and evaporated under reduced pressure. The crude product was then 

purified via flash chromatography over silica, eluting with a hexanes/EtOAc solvent gradient to 

afford 1.2 g (35% yield) of pure product. 1H NMR (301 MHz, CDCl3) d 8.10 (br t, J = 58.62 Hz 

1H), 7.73-7.65 (m, 2H), 7.66-7.53 (m, 2H), 6.61 (d, J = 9.47 Hz, 1H); MS (ESI) 275.5 m/z 

[MH+], C10H7BrF2NO requires 275.2.  
	

2-(Difluoromethoxy)quinolin-6-ylboronic acid: 6-Bromo-2-(difluoromethoxy)quinoline (1.01 g, 

3.60 mmol, 1 equiv.) and triisopropylborate (0.829 mg, 4.41 mmol, 1.2 equiv.) were subjected to 

General procedure for boronylation using triisopropylborate  to afford  the desired pure 

product (0.52 g, 60% yield); 1H NMR (300 MHz, DMSO) d 8.67-8.57 (m, 2H), 8.45-8.26 (m, 

2H), 7.98-7.87 (m, 1H), 7.27 (d, J = 8.70Hz, 1H); MS (ESI) 239.2 m/z [MH+], C10H9BF2NO3  
requires 239.2. 

2-(6-(Difluoromethoxy)naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21) 

Br

OH

Br

O
CF2H

B

O
CF2H

Pinacalatodiborane
Pd(II)Cl2.dppf.DCM
Cs2CO3, KOAc

DMSO, 85 oC, 
Heating

O

O

6-bromonaphthalen-2-ol

O-85 0C, 3h

ClCF2HCO2Me, 
K2CO3, N,N-
dimethylformamide

2-bromo-6-(difluoromethoxy)
naphthalene 2-(6-(difluoromethoxy)naphthalen-2-yl)

-4,4,5,5-tetramethyl-1,3,2-dioxaborolane  
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2-Bromo-6-(difluoromethoxy)naphthalene: Mehylchlorodifluroacetate (2.00 g, 13.8 mmol) was 

added to the solution of  6-Bromonaphthalen-2-ol (1.0 g, 4.48 mmol, 1 equiv.), K2CO3 (1.90 g, 

13.8 mmol) in dry DMF (10 mL), all ingredients were heated at 100 °C for 3 h. After 

completion, ethyl acetate and water were added and the organic phase was separated. The water 

phase was further extracted with ethyl acetate. The combined organic phases were washed with 

brine, dried over Na2SO4 and evaporated under reduced pressure. The crude product was then 

purified via flash chromatography over silica, eluting with a hexanes/EtOAc solvent gradient to 

afford 0.364 g (30% yield) of pure product. 1H NMR (301 MHz, CDCl3) d 7.98 (s, 1H), 7.74 (d, 

J = 8.81 Hz, 1H), 7.65 (d, J = 8.02 Hz, 1H), 7.56 (d, J = 8.80 Hz, 1H), 7.47 (s, 1H),7.28 (d, J = 

8.80 Hz, 1H), 6.62 (br t, J = 74.46 Hz, 1H); MS (ESI) 274.2 m/z [MH+], C11H8BrF2O requires 

274.2.  
	 

2-(6-(Difluoromethoxy)naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 2-Bromo-6-

(difluoromethoxy)naphthalene was subjected to the General pinacol ester formation procedure 

to afford 0.147 g, (50% yield) of a white crystalline product. 1H NMR (300 MHz, CDCl3): δ ppm 

8.35 (s, 1H), 7.89 (m, 2H) 7.88 (d, J = 8.80 Hz, 1H), 7.47 (s, 1H), 7.26 (m, 1H), 6.65 (br t, J = 

73.50 Hz, 1H); MS (ESI): 321.5 m/z [MH+], C17H20BF2O3 requires 321.2. 

Synthetic intermediats: 

5-Iodo-7-(2-methoxy-2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (5) 

 

N

N N

Cl I

O

N

N N

NH2 I

O

N

N N

Cl I

OH

CH3I, NaH NH4OH

 
 

Sodium hydride was added to the solution of 1-(4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-

yl)-2-methylpropan-2-ol, followed by methyl iodide at OoC, reaction was stirred for 3h at room 

temperature. Reaction was quenched with saturated solution of ammonium chloride, organic 

layer was extracted with ethyl acetate, dry over sodium sulfate. The crude product was taken to 

further steps without purification. 4-chloro-5-iodo-7-(2-methoxy-2-methylpropyl)-7H-
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pyrrolo[2,3-d]pyrimidine purified was subjected ammonolysis at microwave, The crude product 

was purified by silica gel using ethylacetate/hexane gradient. 1H NMR (300 MHz, CD3OD) δ 

8.10 (s, 1H), 7.30 (s, 1H), 4.20 (s, 2H), 3.27 (s, 3H), 1.24 (s, 6H); MS (ESI) 347.4 m/z [MH+], 

C11H16IN4O requires 347.2. 

 

1-(4-Amino-3-(2-(difluoromethoxy)quinolin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-2-

methylpropan-2-ol: (10); 

N

B

O

Suzuki conditions
N

N N

N

NH2

N

O

N

N N

N

NH2 I

OH

OH

CF2H

HO

HO

HF2C

 
2-(difluoromethoxy)quinolin-6-ylboronic acid (20) and 1-(4-amino-3-iodo-1H-pyrazolo[3,4-

d]pyrimidin-1-yl)-2-methylpropan-2-ol13 were subjected to the General Suzuki coupling 

procedure. The crude product was purified by silica gel using dichloromethane/methanol 

gradient. 1H NMR (300 MHz, CD3OD) δ 8.45 (d, J = 8.91 Hz, 1H), 8.28-8.21 (m, 2H), 8.08-8.04 

(m, 2H), 7.83 (br t, J = 57.84 Hz, 1H), 7.17 (d, J = 8.70 Hz, 1H), 4.42 (s, 2H), 1.28 (s, 6H); 13C 

NMR (125 MHz, CDCl3) δ 158.29, 158.20, 156.41, 155.42, 145.94, 143.88, 140.87, 130.38, 

129.42, 127.72, 126.52, 116.02, 113.99, 113.41, 98.70, 71.48, 58.51, 27.33; HRMS Calc. for  

C19H19F2N6O2  m/z 401.1532 [MH+] found 401.1521. 
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3-(6-Cyclopropoxynaphthalen-2-yl)-1-(2-methoxy-2-methylpropyl)-1H-pyrazolo[3,4-

d]pyrimidin-4-amine (11): 

N

N N

N

NH2

O

OH

N

N N

N

NH2

O

O

CH3I, NaH

 
 

Sodium hydride was added to the solution of1-(4-Amino-3-(6-cyclopropoxynaphthalen-2-yl)-

1H-pyrazolo[3,4-d]pyrimidin-1-yl)-2-methylpropan-2-ol (7), followed by methyl iodide at OoC, 

reaction was stirred for 3h at room temperature. Reaction was quenched with saturated solution 

of ammonium chloride, organic layer was extracted with ethyl acetate, dry over sodium sulfate.  

The crude product was purified by silica gel using dichloromethane/methanol gradient. 1H NMR 

(300 MHz, CD3OD) δ 8.37 (s, 1H), 8.12 (s, 1H), 7.99 (d, J = 8.70 Hz, 1H), 7.90 (d, J = 9.12 Hz, 

1H), 7.77 (dd, J = 8.50, 1.80 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.29-7.22 (dd, J = 8.91, 2.40 Hz, 

1H), 4.43 (s, 2H), 3.97 (m, 1H), 3.05 (s, 3H), 1.30 (s, 6H), 0.96-0.75 (m, 4H); 13C NMR (125 

MHz, CDCl3) δ 159.45, 156.94, 155.66, 146.23, 140.56, 136.36, 130.99, 130.68, 129.47, 129.25, 

129.02, 127.57, 120.82, 120.51, 109.31, 72.32, 58.47, 52.18, 28.46, 27.83, 6.87; HRMS Calc. for 

C23H26N5O2 m/z 404.2081 [MH+] found 404.2087. 
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3-(2-Cyclopropoxyquinolin-6-yl)-1-(2-methoxy-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidin-

4-amine (12): 

N

N N

N

NH2

N

O

OH

N

N N

N

NH2

N

O

O

CH3I, NaH

 
 

Sodium hydride was added to the solution of 1-(4-Amino-3-(2-cyclopropoxyquinolin-6-yl)-1H-

pyrazolo[3,4-d]pyrimidin-1-yl)-2-methylpropan-2-ol (6), followed by methyl iodide at 0oC, 

reaction was stirred for 3h at room temperature. Reaction was quenched with saturated solution 

of ammonium chloride, organic layer was extracted with ethyl acetate, dry over sodium sulfate.  

The crude product was purified by silica gel using dichloromethane/methanol gradient. The 

crude product was purified by silica gel using dichloromethane/methanol gradient. 1H NMR (300 

MHz, CD3OD) δ 8.37 (s, 1H), 8.29 (d, , J = 8.96 Hz, 1H), 8.14 (s, 1H), 8.06-7.98 (m, 2H), 7.08 

(d, J = 8.96, Hz, 1H), 4.51 (m, 1H), 4.43 (s, 2H), 3.05 (s, 3H), 1.30 (s, 6H), 0.94-0.79 (m, 4H); 

HRMS Calc. for C22H25N6O2 m/z 405.2034 [MH+] found 405.2037. 
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1-(4-amino-5-(6-cyclopropoxynaphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-

methylpropan-2-ol (14)  

B

O

Suzuki conditions
N

N N

NH2

O

N

N N

NH2 I

OH OH

O

O

 
2-(6-Cyclopropoxynaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 1-(4-amino-5-

iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol11 were subjected to the General 

Suzuki coupling procedure. The crude product was purified by silica gel using 

dichloromethane/methanol gradient. 1H NMR (300 MHz, CD3OD) δ 8.16 (s, 1H), 7.91 (m, 2H), 

7.83 (d, J = 9.12 Hz, 1H), 7.67-7.55 (m, 2H), 7.34 (s, 1H), 7.23-7.17 (dd, J = 8.91, 2.20 Hz, 1H), 

4.26 (s, 2H), 3.96 (m, 1H), 1.24 (s, 6H), 0.95-0.74 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 

158.90, 158.71, 152.26, 151.98, 135.14, 131.22, 130.87, 130.47, 128.91, 128.74, 128.31, 126.68, 

120.53, 117.77, 109.21, 101.93, 72.18, 55.88, 52.06, 27.48, 25.19, 6.86; HRMS Calc. for    
C23H25N4O2 m/z 389.1972 [MH+] found 389.1974.  

 

1-(4-Amino-5-(6-ethoxynaphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-

ol (15); 

B

O

Suzuki conditions
N

N N

NH2

O

N

N N

NH2 I

OH

OH

HO

HO
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6-Ethoxynaphthalen-2-ylboronic acid and 1-(4-amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-

2-methylpropan-2-ol11 were subjected to the General Suzuki coupling procedure. The crude 

product was purified by silica gel using dichloromethane/methanol gradient. 1H NMR (300 MHz, 

CD3OD) δ 8.19 (s, 1H), 7.93-7.88 (m, 2H), 7.83 (d, J = 8.80 Hz, 1H), 7.62 (d, J = 8.43 Hz, 1H), 

7.35 (s, 1H), 7.30 (s, 1H), 7.21 (dd, J = 8.80, 2.30 Hz, 1H), 4.27 (s, 2H), 4.24-4.18 (qt, J = 13.93, 

6.96 Hz, 2H), 1.50 (t, J = 6.96 Hz, 3H), 1.25 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 157.01, 

156.78, 150.24, 149.97, 133.34, 129.07, 128.66, 128.48, 126.82, 126.70, 126.32, 124.65, 118.90, 

115.88, 105.69, 99.96, 70.22, 62.74, 53.88, 25.47, 13.29; HRMS Calc. for C22H25N4O2 m/z 

377.1972 [MH+] found 377.1974.  

 

1-(4-Amino-5-(2-ethoxyquinolin-6-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol  

(16):  

N

B

O

Suzuki conditions
N

N N

NH2

N

O

N

N N

NH2 I

OH

OH

HO

HO

 
2-Ethoxyquinolin-6-ylboronic acid and 1-(4-amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-

methylpropan-2-ol11 were subjected to the General Suzuki coupling procedure. The crude 

product was purified by silica gel using dichloromethane/methanol gradient. 1H NMR (500 MHz, 

CD3OD) δ 8.22-8.16 (m, 2H), 7.95-7.90 (m, 2H), 7.82 (d, J = 8.80 Hz, 1H), 7.38 (s, 1H), 7.00 (d, 

J = 8.80 Hz, 1H), 4.56 (qt, J = 13.93, 6.96 Hz, 2H), 4.27 (s, 2H), 1.49 (t, J = 6.60 Hz, 3H), 1.25 

(s, 6H); 13C NMR (125 MHz, CDCl3) δ 164.10, 159.02, 152.32, 152.09, 147.23, 140.33, 131.90, 

128.76, 128.32, 127.68, 126.95, 126.85, 117.22, 115.06, 101.91, 72.20, 63.04, 55.88, 27.47, 

15.07; HRMS Calc. for C21H24N5O2 m/z 378.1925 [MH+] found 378.1927.  

 

1-(4-amino-5-(2-(difluoromethoxy)quinolin-6-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-

methylpropan-2-ol (17): 
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N

B

O

Suzuki conditions
N

N N

NH2

N

O

N

N N

NH2 I

OH

OH

CF2H

HO

HO

HF2C

 
2-(Difluoromethoxy)quinolin-6-ylboronic acid (20) and 1-(4-amino-5-iodo-7H-pyrrolo[2,3-

d]pyrimidin-7-yl)-2-methylpropan-2-ol11 were subjected to the General Suzuki coupling 

procedure. The crude product was purified by silica gel using dichloromethane/methanol 

gradient. 1H NMR (300 MHz, CD3OD) δ 8.40 (d, J = 8.96 Hz, 1H), 8.21 (s, 1H), 8.08-7.95 (m, 

2H), 7.92 (m, 1H), 7.83 (br t, J = 73.70 Hz, 1H), 7.16 (dd, J = 8.70, 1.02 Hz, 1H), 7.40 (m, 1H), 

4.26 (s, 2H), 1.24 (s, 6H); 13C NMR (125 MHz, MeOD) δ 159.05, 152.45, 152.28, 146.12, 

142.35, 133.80, 132.86, 129.50, 128.36, 128.12, 127.33, 116.83, 115.75, 113.77, 113.36, 101.86, 

101.58, 72.28, 55.89, 27.52; HRMS Calc. for C20H20F2N5O2 m/z 400.1580 [MH+] found 

400.1583.  

 

5-(6-Cyclopropoxynaphthalen-2-yl)-7-(2-methoxy-2-methylpropyl)-7H-pyrrolo[2,3-

d]pyrimidin-4-amine (18): 

 

N

N N

NH2 I

O

N

N N

NH2

O

O

O

B
O

O

Suzuki conditions

 
2-(6-Cyclopropoxynaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 5-iodo-7-(2-

methoxy-2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (5) were subjected to the 
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General Suzuki coupling procedure. The crude product was purified by silica gel using 

dichloromethane/methanol gradient. 1H NMR (300 MHz, CD3OD) δ 8.08 (s, 1H),  7.78 (m, 2H), 

7.71 (d, J = 8.90 Hz, 1H), 7.52-7.41 (m, 2H), 7.17 (m, 1H), 7.11-7.01 (dd, J = 8.70, 1.70 Hz, 

1H), 4.18 (s, 2H), 3.82 (m, 1H), 3.19 (s, 3H), 1.08 (s, 6H), 0.84-0.60 (m, 4H); 13C NMR (125 

MHz, MeOD) δ 158.69, 158.58, 152.19, 151.96, 134.99, 131.09, 130.70, 130.50, 128.98, 128.86, 

128.47, 126.39, 120.67, 117.82, 109.30, 102.04, 76.91, 53.15, 52.21, 50.43, 23.22, 7.19; HRMS 

Calc. for C24H27N4O2 m/z 403.2129 [MH+] found 403.2129.   

 

5-(2-Cyclopropoxyquinolin-6-yl)-7-(2-methoxy-2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-

amine (19): 

N

N N

NH2 I

O

N

N N

NH2

N

O

O

N O

B
HO

HO

Suzuki conditions

 
2-Cyclopropoxyquinolin-6-ylboronic acid and 5-iodo-7-(2-methoxy-2-methylpropyl)-7H-

pyrrolo[2,3-d]pyrimidin-4-amine (5) were subjected to the General Suzuki coupling procedure. 

The crude product was purified by silica gel using dichloromethane/methanol gradient. 1H NMR 

(300 MHz, CD3OD) δ 8.21 (s, 1H),  8.19 (s, 1H), 7.99 (d, J = 8.43 Hz, 1H), 7.92 (s, 2H), 7.83 (d, 

J = 8.80 Hz, 1H), 7.31 (s, 1H), 7.07 (d, J = 8.80, 1.70 Hz, 1H), 4.47 (m, 1H), 4.30 (s, 2H), 3.33 

(s, 3H), 1.21 (s, 6H), 0.96-0.80 (m, 4H); 13C NMR (125 MHz, MeOD) δ 163.23, 157.12, 151.92, 

151.76, 146.08, 138.78, 131.02, 128.44, 127.11, 125.70, 125.24, 115.58, 113.75, 101.01, 100.92, 

75.65, 52.28, 50.43, 49.77, 29.92, 22.52, 6.08; HRMS Calc. for C23H26N5O2 m/z 404.2081 

[MH+] found 404.2088.  
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Biological Procedures 

Enzymatic Inhibition Assay. A modified protocol from a previously reported study was used.19 

Inhibitors were evaluated in triplicate in eight-point dilutions (3-fold dilutions) during the 

enzymatic reactions. TgCDPK1 and CpCDPK1 enzymatic inhibition was determined with a 

coupled luciferase assay (Kinaseglo®). 2.1 nM TgCDPK1 or 2.0 nM CpCDPK1 and 20 µM 

BioSyntide-2 (Biotin-C6-PLARTLSVAGLPGKK (American Peptide Company, Inc. Sunnyvale, 

CA)) were incubated in 25 µL of buffer containing 1 mM EGTA (pH 7.2), 10 mM MgCl2, 20 

mM HEPES, pH 7.5 (KOH), 0.1% BSA, and 2 mM CaCl2. The reaction was initiated with the 

addition of ATP at a 10 µM final concentration. After incubating at 30 °C for 90 min., changes in 

ATP concentration were determined by adding Kinaseglo® luciferase reagent (Promega, 

Madison, WI) and measuring luminescence with a MicroBeta2 multi-label plate reader (Perkin 

Elmer, Waltham, MA). Results were converted to percent inhibition, and IC50 values were 

calculated using nonlinear regression analysis in GraphPad Prism.	

Src kinase enzymatic inhibition assay. A modified protocol from a previously reported study 

was used.19 Inhibitors were evaluated in triplicate in eight-point dilutions (3-fold dilutions) 

during the enzymatic reactions. Src enzymatic inhibition was determined with a coupled 

luciferase assay (Kinaseglo®). 2 nM Src and 61 µM Src substrate peptide (sequence Ac-

EIYGEFKKK, GenScript, Piscataway, NJ) were incubated in 25 µL of buffer containing 40 mM 

Tris-HCl (pH 7.5), 20 mM MgCl2, 1 mM MnCl2, 1 mM DTT, and 0.1% BSA. The reaction was 

initiated with the addition of ATP at a 10 µM final concentration. After incubating at 30 °C for 

90 min., changes in ATP concentration were determined by adding Kinaseglo® luciferase 

reagent (Promega, Madison, WI) and measuring luminescence with a MicroBeta2 multi-label 
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plate reader (Perkin Elmer, Waltham, MA). Results were converted to percent inhibition, and 

IC50 values were calculated using nonlinear regression analysis in GraphPad Prism. 

	
Human Cell Growth Inhibition Assay. A modified protocol from a previously reported study 

was used.13, 20 CRL-8155 human lymphocytic cells (ATCC, WIL2-NS) were cultured in RPMI-

1640 growth medium supplemented with 10% heat inactivated fetal bovine serum (FBS), 10 mM 

HEPES, 1 mM sodium pyruvate, and 1 mM L-glutamine. HepG2 human hepatocyte (ATCC, 

HB-8065) were cultured in DMEM/F12 growth medium supplemented with 10% heat 

inactivated FBS. The Alamar Blue® assay (Invitrogen, Grand Island, NY), which measures 

general cellular metabolism, was used to quantify cell growth.  Mid-log cells were seeded in 96-

well flat-bottom plates (Corning, Corning, NY) at a density of 3x105 cells/mL containing test 

compounds at six final concentrations (80 µL, 40 µL, 20 µL, 10 µL, 5 µL, 2.5 µL, and 1.25 µL) 

in triplicate and grown at 37°C for 48 hours in a 5% CO2 humidified incubator. A 1/10th volume 

of Alamar Blue® developing reagent was added to each well and incubated for an additional 3 

hours and fluorescence was measured at the respective excitation and emission wavelengths of 

560 nm and 590 nm in a FLx800 microplate reader (Biotek, Winooski, VT). Percent growth 

inhibition by test compounds was calculated based on DMSO vehicle and positive controls (50 

µL quinacrine), which corresponded to 0% and 100% growth inhibition, respectively.  
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1-(4-Amino-3-(2-(difluoromethoxy)quinolin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-2-methylpropan-2-ol	

Compound	10	

	

1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm	

	
	

	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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3-(6-Cyclopropoxynaphthalen-2-yl)-1-(2-methoxy-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine		

Compound	11	(1676)	

	

1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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3-(2-Cyclopropoxyquinolin-6-yl)-1-(2-methoxy-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine		

Compound	12	(1677)	

1H-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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1-(4-amino-5-(6-cyclopropoxynaphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol		

Compound	14	

	

1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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1-(4-Amino-5-(6-ethoxynaphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol	

Compound	15	(1811)	

	
1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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1-(4-Amino-5-(2-ethoxyquinolin-6-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol			

Compound	16	(1812)	

	
1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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1-(4-amino-5-(2-(difluoromethoxy)quinolin-6-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-2-methylpropan-2-ol	

Compound	17	(1815)	

1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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5-(6-Cyclopropoxynaphthalen-2-yl)-7-(2-methoxy-2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine	

Compound	18	(1813)	

	
1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	
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5-(2-Cyclopropoxyquinolin-6-yl)-7-(2-methoxy-2-methylpropyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine	

Compound	19	(1814)	

	
1H-NMR	
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13C-NMR	
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Analytical	HPLC:	H2O/CH3CN	(method	1)	Top	λ=220	nm;	bottom	λ=254	nm		

	
	

Analytical	HPLC:	H2O/CH3OH	(method	2)	Top	λ=220	nm;	bottom	λ=254	nm	

	
	


