

Figure S1. Cellular and molecular characterization of human cortical organoids. Related to Figure 1. (A)

Organoids are composed of a proliferative region surrounded by intermediate progenitor cells, cortical neurons. Scale bar, 50 μm. (B) UMAP plots highlighting time point specific cells. (C) UMAP plots for individual time point showing cell-type specific marker expression levels (D) Violin plots of marker gene expression across all clusters. (E) Subcluster analysis of GAD2 population from 10-month cortical organoids. (F) GABAergic neuronal markers expression of 10-month cortical organoids. (G) Detection of GABA neurotransmitter in the culture media using mass spectrometry. The average GABA concentration in the media was 0.028 ± 0.014 μM.



Figure S2. Long-term cortical organoid network activity. Related to Figure 2. (A) Electrophysiological

characteristics of 6-month human iPSC-derived cortical organoids. Whole-cell current-clamp recording of a representative neuron from 6-month cortical organoids showing repetitive action potential firing in response to 50 pA current injection from a resting membrane potential of -63 mV. Application of 1 µM TTX abolished the firing (lower panel). (B) Whole-cell voltage-clamp recording in the same neuron showing voltage-gated K<sup>+</sup> current and TTX-sensitive Na<sup>+</sup> current, elicited from a holding potential of -80mV to the indicated voltages. (C) Plot of the peak current sizes of K<sup>+</sup> channels and Na<sup>+</sup> channels as a function of voltage determined from neurons of 6month cortical organoids (peak INa size =  $-1466.86 \pm 575.18$  pA. Peak IK size =  $3031.79 \pm 1405.19$  pA. n = 6neurons). (D) Voltage-clamp recording at -60 mV exhibiting spontaneous excitatory postsynaptic currents (sEPSCs) in another representative neuron (frequency of sEPSCs =  $0.25 \pm 0.10$  Hz; n = 5 neurons. Amplitude of sEPSCs =  $-19.92 \pm 5.90$  pA; n = 5 neurons; we observed sEPSCs in 84% of the tested neurons). Application of NBQX and AP5 fully inhibited the sEPCS. (E) Representative traces showing that a human iPSC-derived neuron displays spontaneous AP firing (AP firing frequency =  $13.67 \pm 1.11$  Hz; n = 6 neurons). The data are shown as mean ± s.e.m. (F) Representative activity heatmap and bright-field image of cortical organoids on the MEA plate. (G) Schematic representation of the electrical activity features analyzed from the MEA recordings. Each bar represents a spike; and a spike cluster (in blue) represents a burst. Bursts occurring at the same time in different channels characterize a network burst. The synchrony index is based on the cross-correlogram and represents a measure of similarity between two spike trains. (H) Temporal evolution of network activity characterized by different parameters. (I) Raster plots illustrating the development of network activity. (J) Consistent and reproducible development of electrical activity in cortical organoids over time. The data are shown as mean  $\pm$  s.e.m (n = 8, independent experiments performed in duplicates using two clones of an iPSC line).



Figure S3. Extended characterization of cortical organoid network electrophysiology. Related to Figure

2. (A) Spikes detected on 9 channels. Black traces represent single spikes, blue and red traces represent the average of positive and negative spikes, respectively. Spike trains are not sorted for their polarity in the subsequent analyses, as total population spiking is the main feature of interest. (B) Representative oscillatory network events. Each overlapping trace represents a single occurrence of an event recorded on the same channel. LFP polarity of events differs between channels due to the spatial configuration of cells around the electrode. (C) Event onset peak (Peak 1) increases in amplitude until 30 weeks, while (D) subpeak amplitude continues to increase (for the 2nd-4th peak) throughout development. (E) Subsequent peaks occur with a consistent latency of ~400 ms after the previous peak, particularly for Peak 3 and 4. (F) Temporal similarity of network events during the 3-s window is high at early time points, but decreases with development, acquiring more variable dynamics within an event. The data showed in C and F are presented as mean ± s.e.m., linear (C, F) model regression. (G) Comparison of the protocol for neurosphere and cortical organoid generation. (H) Network-wide giant depolarizing potentials occur in neurosphere at a similar rate to those found in organoids recordings, and visible perturbations are observed in the LFP trace. However, the network recruitment in neurospheres is lower with significantly shorter events. Coherent low-frequency depolarizations are observed in filtered LFP events, but with much lower amplitude when scaled to the same range as those recorded from organoids (I, J).





Figure S4. Network activity in cortical organoids and oscillatory features in the developing human brain.

**Related to Figure 4.** (A, B) Time-frequency and spectral representation of time series data from a 6-month cortical organoid, demonstrating oscillatory phenomenon. Spectrogram (A) of organoid LFP shows bursts of activity localized at low frequencies, as well as 100Hz and beyond, while power spectral density (PSD, B) displays canonical 1/f power law decay and a narrow oscillatory peak at 3 Hz. (C) Comparison of preterm neonate EEG and cortical organoid features over time. For included EEG features, see Table S2. (D) Distributions of resampled Pearson correlation coefficients between feature and age for preterm neonate and organoid. (E) Model-predicted developmental time (y-axis, age in weeks) follows actual weeks-in-culture (x-axis) for organoids (orange and blue), as well as true age of held-out preterm neonate data points (black), excluding spectral features. Dashed line represents unity, signifying perfect prediction. Large circles on solid lines and shaded regions denote mean  $\pm$  std of prediction, respectively, while dots indicate per-sample prediction (n = 8 for organoids at all time points). The unnormalized feature weights are: Constant: 53.93093; SATs per hour: 0.05791; RMS SAT duration: 0.17439; SAT duration (50%): 0.46857; SAT duration (5%): -1.59115; SAT duration (95%): -0.17140; RMS Inter-SAT Duration: 1.01745; Inter-SAT duration (50%): -1.67926; Inter-SAT duration (5%): -0.24631; Relative Delta Power: -31.94628; Relative Theta Power: -39.72896; and Relative Alpha Power: 30.92235.

## SUPPLEMENTAL TABLES

## Supplemental Table 1. Top expressed genes of each cell cluster. Related to Figure 1.

| cluster               | gene         | avg logFC          | pct.1 | pct.2 | p val adi            |
|-----------------------|--------------|--------------------|-------|-------|----------------------|
| GABAergic Neurons     | DLX5         | 1.17944            | 0.403 | 0.362 | 0.47966              |
| GABAergic Neurons     | DLX6-AS1     | 0.97634            | 0.75  | 0.396 | 5.59E-81             |
| GABAergic Neurons     | SEZ6L2       | 0.96254            | 0.945 | 0.713 | 2.58E-22             |
| GABAergic Neurons     | SYT1         | 0.91593            | 0.947 | 0.814 | 2.55E-20             |
| GABAergic Neurons     | CHCHD2       | 0.84772            | 0.468 | 0.45  | 0.01172              |
| GABAergic Neurons     | HMP19        | 0.84097            | 0.734 | 0.755 | 0.17341              |
| GABAergic Neurons     | ARL4D        | 0.82671            | 0.413 | 0.485 | 1                    |
| GABAergic Neurons     | INSM1        | 0.82003            | 0.813 | 0.444 | 2.87E-57             |
| GABAergic Neurons     | DLX2         | 0.81130            | 0.361 | 0.336 | 2.48E-06             |
| GABAergic Neurons     | SCG3         | 0.78232            | 0.761 | 0.732 | 0.03532              |
| GABAergic Neurons     | RTN3         | 0.78167            | 0.958 | 0.907 | 1.17E-12             |
| GABAergic Neurons     | NSG1         | 0.76102            | 0.876 | 0.742 | 3.63E-08             |
| GABAergic Neurons     | DCX          | 0.75629            | 0.782 | 0.736 | 1.97E-27             |
|                       |              | 0.74991            | 0.95  | 0.851 | 4.66E-28             |
| GABAergic Neurons     | PAFAH1B3     | 0.74128            | 0.937 | 0.853 | 9.39E-21             |
| GABAergic Neurons     |              | 0.74110            | 0.971 | 0.921 | 2.00E-00             |
| GABAergic Neurons     |              | 0.73920            | 0.913 | 0.705 | 5.32E-10<br>6.59E.05 |
| GABAergic Neurons     | TTC3         | 0.72072            | 0.905 | 0.774 | 0.00E-00<br>8 55E-16 |
| GABAergic Neurons     | STMN2        | 0.69866            | 0.970 | 0.909 | 8 26E-52             |
| GABAergic Neurons     | TAC3         | 0.69627            | 0.342 | 0.032 | 1 99F-12             |
| GABAergic Neurons     | CD24         | 0.67659            | 0.95  | 0.808 | 6.11E-12             |
| GABAergic Neurons     | TXNIP        | 0.67286            | 0.939 | 0.832 | 1.04E-05             |
| GABAergic Neurons     | STMN4        | 0.66186            | 0.934 | 0.885 | 0.04858              |
| GABAergic Neurons     | NREP         | 0.64996            | 0.918 | 0.802 | 0.00264              |
| GABAergic Neurons     | RAB3A        | 0.63717            | 0.937 | 0.771 | 1.01E-12             |
| GABAergic Neurons     | SCGN         | 0.63426            | 0.216 | 0.15  | 1.62E-28             |
| GABAergic Neurons     | SVBP         | 0.63364            | 0.932 | 0.717 | 1.74E-06             |
| GABAergic Neurons     | BEX1         | 0.62955            | 0.821 | 0.835 | 1.69E-37             |
| GABAergic Neurons     | DSTN         | 0.62593            | 0.955 | 0.894 | 2.21E-24             |
| GABAergic Neurons     | GAD1         | 0.61455            | 0.679 | 0.33  | 1.30E-41             |
| GABAergic Neurons     | PROX1        | 0.61165            | 0.121 | 0.332 | 4.76E-93             |
| GABAergic Neurons     | HN1          | 0.60568            | 0.963 | 0.936 | 6.77E-94             |
| GABAergic Neurons     | DCLK1        | 0.60078            | 0.368 | 0.657 | 2.00E-22             |
| Glutamatergic Neurons | NEUROD6      | 1.49931            | 0.9   | 0.771 | 0                    |
| Glutamatergic Neurons |              | 1.40308            | 0.905 | 0.793 | 0                    |
| Glutamatergic Neurons | CPIA2        | 1.43049            | 0.99  | 0.034 | 0                    |
| Glutamatergic Neurons |              | 1.39439            | 0.829 | 0.762 | 0                    |
| Glutamatergic Neurons | SNAP25       | 1 24934            | 0.803 | 0.764 | 0                    |
| Glutamatergic Neurons | TTC9B        | 1.20497            | 0.811 | 0.771 | 0                    |
| Glutamatergic Neurons | SYT4         | 1.11807            | 0.762 | 0.803 | 0                    |
| Glutamatergic Neurons | SNCA         | 1.10911            | 0.829 | 0.643 | 0                    |
| Glutamatergic Neurons | HMP19        | 1.10021            | 0.757 | 0.753 | 0                    |
| Glutamatergic Neurons | LY6H         | 1.09133            | 0.778 | 0.548 | 0                    |
| Glutamatergic Neurons | RAB3A        | 1.08320            | 0.857 | 0.726 | 0                    |
| Glutamatergic Neurons | INA          | 1.08214            | 0.777 | 0.777 | 0                    |
| Glutamatergic Neurons | GAP43        | 1.06736            | 0.943 | 0.731 | 0                    |
| Glutamatergic Neurons | HPCA         | 1.03546            | 0.73  | 0.624 | 0                    |
| Glutamatergic Neurons | CXADR        | 1.03219            | 0.862 | 0.651 | 0                    |
| Glutamatergic Neurons | ISPAN13      | 1.02606            | 0.809 | 0.57  | 0                    |
| Glutamatergic Neurons | CD24         | 1.01863            | 0.91  | 0.752 | 0                    |
| Glutamatergic Neurons | SY11<br>MADT | 1.00629            | 0.891 | 0.773 | 0                    |
| Glutamatergic Neurona |              | 1.00001            | 0.131 | 0.000 | 0                    |
| Glutamatergic Neurops |              | 1.00320<br>N QRQRQ | 0.000 | 0.001 | 0                    |
| Glutamatergic Neurons | NSG1         | 0.30303            | 0.935 | 0.716 | 0                    |
| Glutamatergic Neurons | SCG3         | 0.95190            | 0.790 | 0.736 | 0                    |
| Glutamatergic Neurons | CELF4        | 0,94679            | 0.671 | 0.721 | 1.75E-274            |
| Glutamatergic Neurons | CRMP1        | 0.91715            | 0.878 | 0.727 | 0                    |
| Glutamatergic Neurons | LMO3         | 0.90245            | 0.712 | 0.805 | 1.51E-267            |
| Glutamatergic Neurons | NELL2        | 0.90035            | 0.749 | 0.643 | 0                    |
| Glia                  | KIAA0101     | 1.09206            | 0.638 | 0.486 | 2.16E-187            |

| Glia                     | TTYH1   | 1.07238    | 0.948 | 0.689 | 0.00E+00               |
|--------------------------|---------|------------|-------|-------|------------------------|
| Glia                     | SLC1A3  | 1.04241    | 0.855 | 0.621 | 0.00E+00               |
| Glia                     | MI2A    | 1.00780    | 0.89  | 0.624 | 0.00E+00               |
| Glia                     | SFRP1   | 1.00450    | 0.938 | 0.684 | 0.00E+00               |
| Glia                     | HES1    | 0.99522    | 0.940 | 0.043 | 0.00E+00               |
| Glia                     | ID4     | 0.92316    | 0.912 | 0.687 | 0.00E+00               |
| Glia                     | CLU     | 0.91605    | 0.978 | 0.732 | 0.00E+00               |
| Glia                     | PEA15   | 0.89375    | 0.917 | 0.62  | 0.00E+00               |
| Glia                     | HOPX    | 0.86840    | 0.818 | 0.622 | 0.00E+00               |
| Glia                     | PMP2    | 0.78593    | 0.775 | 0.572 | 5.97E-304              |
| Glia                     | METRN   | 0.76712    | 0.798 | 0.583 | 0.00E+00               |
| Glia                     | ZFP36L1 | 0.74666    | 0.73  | 0.539 | 3.48E-258              |
| Glia                     |         | 0.74622    | 0.996 | 0.694 | 0.00E+00               |
| Glia                     |         | 0.74388    | 0.75  | 0.631 | 0.00E+00               |
| Glia                     | VIM     | 0.73690    | 0.993 | 0.858 | 0.00E+00               |
| Glia                     | CENPH   | 0.71893    | 0.588 | 0.58  | 8.18E-45               |
| Glia                     | HSPB1   | 0.71396    | 0.904 | 0.624 | 0.00E+00               |
| Glia                     | PDLIM3  | 0.71318    | 0.807 | 0.62  | 0.00E+00               |
| Glia                     | FGFBP3  | 0.68433    | 0.797 | 0.632 | 0.00E+00               |
| Glia                     | FAM107A | 0.68371    | 0.748 | 0.593 | 1.17E-226              |
| Glia                     | B2M     | 0.00110    | 0.000 | 0.564 | 2.34E-135              |
| Glia                     | PON2    | 0.67504    | 0.671 | 0.426 | 2 30E-204              |
| Glia                     | STXBP6  | 0.66039    | 0.732 | 0.638 | 1.59E-177              |
| Glia                     | SOX3    | 0.65821    | 0.76  | 0.435 | 0.00E+00               |
| Glia                     | HMGB2   | 0.65603    | 0.824 | 0.572 | 0.00E+00               |
| Glia                     | QKI     | 0.64190    | 0.775 | 0.611 | 1.01E-217              |
| Glia                     | SRI     | 0.64014    | 0.899 | 0.654 | 0.00E+00               |
| Glia                     | PHGDH   | 0.63803    | 0.766 | 0.615 | 1.70E-216              |
| Glia                     | FOS     | 0.01400    | 0.78  | 0.575 | 0.00E-190<br>7.03E-168 |
| Glia                     | PSAT1   | 0.60446    | 0.788 | 0.598 | 1.05E-253              |
| Glia                     | C1orf61 | 0.60285    | 0.976 | 0.863 | 0.00E+00               |
| Glia                     | DBI     | 0.60169    | 0.932 | 0.781 | 0.00E+00               |
| Intermediate Progenitors | EOMES   | 1.14946    | 0.697 | 0.545 | 1.50E-123              |
| Intermediate Progenitors | TAC3    | 1.12454    | 0.535 | 0.392 | 3.21E-41               |
| Intermediate Progenitors | NHLH1   | 1.08712    | 0.766 | 0.53  | 4.67E-254              |
| Intermediate Progenitors | GADD45G | 1.00439    | 0.794 | 0.619 | 5.82E-155              |
| Intermediate Progenitors |         | 0.88553    | 0.020 | 0.724 | 8.74E-130              |
| Intermediate Progenitors | RND3    | 0.64990    | 0.54  | 0.47  | 3.81E-21               |
| Intermediate Progenitors | NEUROG1 | 0.62298    | 0.59  | 0.585 | 1.87E-10               |
| Intermediate Progenitors | GDAP1L1 | 0.62253    | 0.757 | 0.671 | 1.08E-57               |
| Intermediate Progenitors | TAGLN3  | 0.60150    | 0.856 | 0.77  | 1.68E-98               |
| Early Progenitors        | IGFBP7  | 0.89242    | 0.559 | 0.394 | 1.49E-30               |
| Early Progenitors        |         | 0.84753    | 0.844 | 0.49  | 0                      |
| Early Progenitors        |         | 0.74307    | 0.033 | 0.461 | 0                      |
| Early Progenitors        | TPPP3   | 0.60842    | 0.539 | 0.293 | 5.00E-23               |
| Early Progenitors        | CA2     | 0.58266289 | 0.614 | 0.403 | 4.70E-69               |
| Early Progenitors        | RBP1    | 0.56764771 | 0.879 | 0.438 | 0                      |
| Early Progenitors        | TRPM3   | 0.56440266 | 0.768 | 0.324 | 0                      |
| Early Progenitors        | CD9     | 0.54907859 | 0.743 | 0.263 | 0                      |
| Early Progenitors        | ID3     | 0.54768285 | 0.889 | 0.558 | 0                      |
| Early Progenitors        | CXCL14  | 0.53064106 | 0.567 | 0.402 | 1.01E-10               |
| Mitotic Cells            | LIBE2C  | 2 08768    | 0.809 | 0.495 | 0                      |
| Mitotic Cells            | TOP2A   | 1.92072    | 0.988 | 0.456 | 0                      |
| Mitotic Cells            | CDC20   | 1.88666    | 0.969 | 0.294 | Õ                      |
| Mitotic Cells            | CENPF   | 1.83910    | 0.993 | 0.513 | 0                      |
| Mitotic Cells            | NUSAP1  | 1.79161    | 0.985 | 0.531 | 0                      |
| Mitotic Cells            | PTTG1   | 1.77245    | 1     | 0.532 | 0                      |
| IVIITOTIC CEIIS          | CCNB2   | 1./3661    | 0.956 | 0.298 | 0                      |
| Mitotic Cells            |         | 1.71891    | 0.939 | 0.302 | 0                      |
| Mitotic Cells            | ASPM    | 1.59134    | 0.939 | 0.436 | 0                      |
| Mitotic Cells            | BIRC5   | 1.58211    | 0.963 | 0.37  | õ                      |

| Mitotic Cells | TPX2   | 1.55923 | 0.94  | 0.524 | 0         |
|---------------|--------|---------|-------|-------|-----------|
| Mitotic Cells | PLK1   | 1.51556 | 0.88  | 0.386 | 2.04E-293 |
| Mitotic Cells | MAD2L1 | 1.51083 | 0.967 | 0.555 | 0         |
| Mitotic Cells | FAM64A | 1.51073 | 0.91  | 0.313 | 0         |
| Mitotic Cells | CKS2   | 1.50084 | 0.997 | 0.645 | 0         |
| Mitotic Cells | PBK    | 1.47827 | 0.917 | 0.414 | 0         |
| Mitotic Cells | CCNA2  | 1.46832 | 0.92  | 0.536 | 0         |
| Mitotic Cells | GTSE1  | 1.44523 | 0.899 | 0.306 | 0         |
| Mitotic Cells | AURKA  | 1.43015 | 0.876 | 0.399 | 1.86E-293 |
| Mitotic Cells | CDKN3  | 1.40121 | 0.859 | 0.321 | 1.75E-264 |
| Mitotic Cells | AURKB  | 1.39178 | 0.901 | 0.299 | 0         |
| Mitotic Cells | NUF2   | 1.38631 | 0.898 | 0.478 | 0         |
| Mitotic Cells | KPNA2  | 1.38186 | 0.982 | 0.578 | 0         |
| Mitotic Cells | SMC4   | 1.37867 | 0.955 | 0.493 | 0         |
| Mitotic Cells | HMGB2  | 1.36699 | 1     | 0.612 | 0         |
| Mitotic Cells | CDCA3  | 1.36522 | 0.854 | 0.425 | 5.74E-253 |
| Mitotic Cells | PSRC1  | 1.34100 | 0.914 | 0.501 | 2.10E-296 |
| Mitotic Cells | CENPA  | 1.32905 | 0.869 | 0.291 | 0         |
| Mitotic Cells | CKS1B  | 1.32614 | 0.971 | 0.525 | 0         |
| Other         | LGALS1 | 1.34401 | 0.97  | 0.479 | 1.62E-80  |
| Other         | IGF2   | 1.26378 | 0.955 | 0.402 | 7.22E-142 |
| Other         | COL3A1 | 1.25618 | 0.973 | 0.439 | 1.48E-136 |
| Other         | RBP1   | 1.14081 | 0.967 | 0.531 | 1.32E-123 |
| Other         | MGP    | 1.00395 | 0.602 | 0.45  | 5.94E-05  |
| Other         | DCN    | 0.95928 | 0.554 | 0.484 | 0.56345   |
| Other         | IFITM3 | 0.91015 | 0.708 | 0.362 | 5.14E-36  |
| Other         | COL1A1 | 0.89389 | 0.545 | 0.363 | 1         |
| Other         | SPARC  | 0.83734 | 0.916 | 0.663 | 2.93E-66  |
| Other         | APOE   | 0.81812 | 0.88  | 0.617 | 7.53E-38  |
| Other         | ANXA1  | 0.80045 | 0.867 | 0.335 | 6.95E-109 |
|               |        |         |       |       |           |

## Supplemental Table 2. Electrophysiological features in preterm neonatal EEG dataset and analogous

| Neonatal EEG features        | Computed organoid LFP features |
|------------------------------|--------------------------------|
| Envelope (50%)               | None                           |
| Envelope (5%)                | None                           |
| Envelope (95%)               | None                           |
| rEEG (50%)                   | None                           |
| rEEG (5%)                    | None                           |
| rEEG (95%)                   | None                           |
| SATs per hour                | Network Events per hour        |
| RMS SAT duration             | RMS network event duration     |
| SAT duration (50%)           | Network event duration (50%)   |
| SAT duration (5%)            | Network event duration (5%)    |
| SAT duration (95%)           | Network event duration (95%)   |
| RMS Inter-SAT Duration       | RMS Inter-event Duration       |
| Inter-SAT duration (50%)     | Inter-event duration (50%)     |
| Inter-SAT duration (5%)      | Inter-event duration (5%)      |
| Inter-SAT duration (95%)     | Inter-event duration (95%)     |
| Temporal Theta Power         | None                           |
| Activation Synchrony Index   | None                           |
| Interhemispheric Correlation | None                           |
| Total Spectral Power         | None                           |
| Relative Delta Power         | Relative Delta Power           |
| Relative Theta Power         | Relative Theta Power           |
| Relative Alpha Power         | Relative Alpha Power           |
| Relative Beta Power          | Relative Beta Power            |

## features computed in organoid LFP. Related to Figure 4.

Shaded cells indicate features used in the development time prediction model.