Supplementary Information

Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance

Spohn and Daruka *et al.*

Supplementary Tables

Supplementary Table 1 –AMPs used in the laboratory evolution experiments and the genomic overexpression screen. The AMPs also used in the metagenomic screen are indicated by asterisk (*).

Supplementary Table 2 – Antibiotics used in the laboratory evolution experiments and the genomic overexpression screen. The antibiotics also used in the metagenomic screen are indicated by asterisk (*).

Supplementary Table 3– Fold change in minimum inhibitory concentration (MIC) as a result of artificial gene amplification. Fold changes were calculated by dividing the MIC provided by the pooled plasmids of the ASKA library (that comprises every *E. coli* ORF cloned into an expression vector) with the MIC of *E. coli* K-12 BW25113 carrying the empty plasmid of the ASKA library. Chloramphenicol (CHL) was excluded from the experiment as it is the selection marker for the ASKA plasmids. Three biological replicates were used. For AMP and antibiotic abbreviations, see Supplementary Table 1 and Supplementary Table 2, respectively.

Acinetobacter baumannii **ATCC 17978** 0.6-1.2 1.8

Pseudomonas aeruginosa | ATCC 27853 | 2.4 | 1.8

Enterococcus faecium
ATCC 700221 >9.6 3.5

Streptococcus pyogenes ATCC 19653 >9.6 0.9

ATCC 43300 >9.6 3.5

Staphylococcus aureus subsp. aureus | ATCC 25923 | >9.6 | 3.5

Staphylococcus aureus subsp. aureus | ATCC 29213 | >9.6 | 3.5

Methicillin-resistant Staphylococcus aureus subsp*. aureus*

Gram-positives

Gram-positives

Supplementary Table 4 – Antimicrobial activity of TPII and CP1 against a set of 20 pathogenic strains.

Supplementary Table 5 –Haemolysis percentage at different AMP concentrations. Optical density (OD) was measured at 565 nm. Melittin (50 µg.mL-1) and TBS buffer were used as positive (100 % haemolysis) and negative (no haemolysis) controls, respectively. Haemolytic effect of each peptide at each concentration was calculated as follows: Haemolysis percentage = (Compound OD $_{565nm}$ -TBS OD $_{565nm}$) X 100 / (Melittin OD_{565nm} - TBS OD_{565nm}).

Supplementary Table 6 -Activity/toxicity index (ATI) of TPII and CP1. ATI is calculated as the ratio between the concentration causing 10% haemolysis (minimum haemolytic concentration, MHC) and the median of MICs (MM) in *E. coli* K12.

Supplementary Table 7- Effect of incubation time on the minimum inhibitory concentration (MIC) of AMPs. We tested whether the prolonged incubation time can affect the MIC of AMPs. To test this, two sets of **AMP containing** MIC plates were prepared in parallel. The first set was immediately inoculated with *E.coli* K-12 BW25113, while the second set was pre-incubated 72 hours before inoculation with the same strain. We measured the change in the MIC after 24, 48 and 72 hours and no differences were observed in the MIC between freshly prepared and pre-incubated plates.

Supplementary Figures

Supplementary Figure 1- Correlation between relative fitness and minimal inhibitory concentration (MIC) fold change. The figure shows a weak correlation between MIC fold change and relative fitness (spearman's rho = -0.24, $P = 0.016$, (N=98)). The weak correlation disappears when we control for the antimicrobial agents (P = 0.6 and P = 0.39 for antibiotics (N=60) and AMPs (N=38), respectively). Source data are provided as a Source Data file.

Supplementary Figure 2A- Dose-response curves of *E. coli* **K-12 BW25113 strain against AMPs.** For abbreviations, see Supplementary Table 1. Each data point shows the mean ± s.e.m. of three biological replicate. Source data are provided as a Source Data file.

Supplementary Figure 2B- Dose-response curves of *E. coli* **K-12 BW25113 strain against antibiotics.** For abbreviations see Supplementary Table 2. Each data point shows the mean ± s.e.m. of three biological replicate. Source data are provided as a Source Data file.

Supplementary References

- 1. Gennaro, R., Skerlavaj, B. & Romeo, D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. *Infect. Immun.* **57**, 3142–3146 (1989).
- 2. Chen, C. *et al.* The solution structure of the active domain of CAP18 a lipopolysaccharide binding protein from rabbit leukocytes. *FEBS Lett.* **370**, 46–52 (1995).
- 3. SIPOS, D., ANDERSSON, M. & EHRENBERG, A. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. *Eur. J. Biochem.* **209**, 163–169 (1992).
- 4. Schibli, D. J. *et al.* The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. *J. Biol. Chem.* **277**, 8279–8289 (2002).
- 5. Rozek, A., Friedrich, C. L. & Hancock, R. E. W. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. *Biochemistry* **39**, 15765–15774 (2000).
- 6. Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. *J. Biol. Chem.* **283**, 32637–32643 (2008).
- 7. Gottler, L. M. & Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan - A highly potent antimicrobial peptide designed from magainin. *Biochim. Biophys. Acta - Biomembr.* **1788**, 1680–1686 (2009).
- 8. Bechinger, B., Zasloff, M. & Opella, S. J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. *Biophys. J.* **74**, 981–987 (1998).
- 9. Syvitski, R. T., Burton, I., Mattatall, N. R., Douglas, S. E. & Jakeman, D. L. Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. *Biochemistry* **44**, 7282–7293 (2005).
- 10. Agerberth, B. *et al.* Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. *Eur. J. Biochem.* **202**, 849–54 (1991).
- 11. Gatewood, J. M., Schroth, G. P., Schmid, C. W. & Bradbury, E. M. Zinc-induced secondary structure transitions in human sperm protamines. *J. Biol. Chem.* **265**, 20667–72 (1990).
- 12. Pristovšek, P. & Kidrič, J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: An NMR and molecular modeling study. *J. Med. Chem.* **42**, 4604–4613 (1999).
- 13. Loose, C., Jensen, K., Rigoutsos, I. & Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. *Nature* **443**, 867–9 (2006).
- 14. Miyata, T. *et al.* Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. *J. Biochem.* **106**, 663–8 (1989).