
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
In this paper He et al. present ProTiler, a computational method to analyze tiling data from 
CRISPR/Cas9 knockout screen aimed at uncovering protein domains.  
 
The manuscript is well written and the software well documented. Interestingly the method 
identified unannotated domains of SMARCB1 that were subsequently validated by the authors.  
 
I think this manuscript needs only minor revisions and it could benefit addressing the following 
points before publication:  
 
1) Line 43: “This is likely because CRISPR/Cas9 introduces small indels that create frameshift or 
in-frame mutations in a stochastic manner.” This contradicts the recent prediction models that can 
predict alleles after DSBs, one of which is used in this paper (inDelphi , lines 77-79).  
 
2) Despite a competing method called CRISPRO is mentioned in the introduction no comparison 
with ProTiler is presented. I think it is important to directly and quantitatively compare the two 
methods with the Munoz dataset and highlight unique and common features.  
 
3) “To ensure robustness against prediction error, we selected the sgRNAs that were predicted to 
be very likely (top 5%, in-frame probability > 0.60, “high in-frame”) or very unlikely (bottom 5%, 
in-frame probability < 0.129, “low in-frame”) to create in-frame mutations (Fig. 1b).”  
 
I think it would be really helpful to know how this affects the tiling resolution. Could you please 
create a plot showing the distribution of the distances of consecutive sgRNAs before and after this 
filtering?  
 
4) “The data points with weaker dropout effects compared to their neighbors are likely to be 
associated with inactive sgRNAs (Supplementary Fig. 2), thus are removed.” Briefly explain how 
this filter is implemented/what is the threshold.  
 
5) “We adjusted their values based on the mean and variation of the surrounding signals.” See the 
previous point. Is this a smoothing?  
 
6) “Finally, an iterative algorithm classifies the regions into CKHS and non-CKHS categories.” See 
4) and 5). Add a very short sentence to explain what is the key idea of this algorithm.  
 
7) “Among 108 essential proteins in the Munoz data, ProTiler identified 175 CKHS regions in 83 
proteins. 82.3% of these regions overlapped with Pfam annotated protein domains” and “At the 
amino acid (AA) level, 64.2% of the AAs in the CKHS regions are within Pfam domains, compared 
to 30.0% for non-CKHS regions” . Please report also the opposite i.e. how many annotated Pfam 
protein domains in the analyzed genes were missed by ProTiler.  
 
8) “The borders CKHS regions were enriched within 20 AAs from domain boundaries and slightly 
outside the domains”. Please provide a quantitative measure for the enrichment. Also, a simple 
measure to assess performance would be the F1-score. In fact, this problem can be thought as a 
binary classification problem: each aminoacid in the protein is a domain (1) or not (0).  
 
 
 
Reviewer #2:  
Remarks to the Author:  
In this study He et al. describe how a tiling sgRNA library can be applied to identify essential 



protein domains. They developed an algorithm named ProTiler to map hyper-sensitive CRISPR 
knockout regions based on the severity of sgRNA dropout from a tiling screen. They applied 
ProTiler on a published tiling screen dataset from Munoz et al. and identified hypersensitive 
regions that largely overlap with annotated Pfam domains as well as known drug target domains in 
proteins from this dataset. They also identified a new domain in SMARCB1 and predicted 
hypersensitive regions in a proteome-wide scale based on protein features.  
Previously Schoonenberg et al. developed a similar algorithm named CRISPRO for which the focus 
appears more on the visualisation of essential domains in the protein structure and on prediction 
for the efficiency of guides. However, Schoonenberg et al. also describe the capacity of CRISPRO 
to highlight important protein regions and help prioritize protein regions of interest for chemical 
biology. Although CRISPRO also enables to detect essential protein domains, ProTiler seems 
specifically designed to do so. In general, ProTiler appears an interesting tool to identify essential 
protein domains, however it’s utility should be more convincingly demonstrated with novel 
findings. The proteome-wide prediction seems interesting but its utility is not demonstrated and 
should be better validated.  
 
Major points:  
The authors should clearly demonstrate the different utility of ProTiler as compared to CRISPRO 
and discuss this in the manuscript.  
 
The utility of ProTiler to identify novel essential domains is shown and validated with only one gene 
(SMARCB1). More experimental data demonstrating that ProTiler can effectively predict and 
identify essential protein domains in other genes would strengthen the manuscript. To convincingly 
demonstrate a broad utility of ProTiler authors should identify additional novel protein domains and 
experimentally validate these.  
 
The proteome-wide CKHS prediction should be truly validated. The proteome-wide CKHS prediction 
model was trained with the Munoz tiling data set, but it was not demonstrated it can predict the 
outcome of other tiling screen data. Although it was shown the model has some predictive power 
(Fig. 4h) authors should demonstrate the correctness of the predicted regions by comparison of 
the predictions with a ProTiler analysis of a published tilling screen data set. In addition, to 
demonstrate the utility of the prediction authors should validate a few of the identified novel 
essential domains from Supplementary Table 5. Ideally, authors could experimentally validate 
their prediction model by performing a small tiling library screen containing a few genes that were 
not yet studied with a tiling screen.  
 
Because the domain analysis relies on in-frame indels, one suggestion to improve ProTiler could be 
to include the prediction of the in-frame frequency by inDelphi to correct the z-scores of the 
guides.  
 
Specific comments:  
• Line 43: It has been demonstrated that indels are non-random but occur in a sequence specific 
manner and not in a stochastic manner. As the authors mention in line 77 repair outcome 
probabilities can be predicted from the sequence.  
• Line 78: “the model”, please specify for easy reading which model.  
• Line 104: please explain to the reader how it is determined that these sgRNAs are associated 
with inactive sgRNAs. Did the authors only use the Doench score for this calculation or also other 
scores?  
• Line 111: What is the cut-off z-score for classifying a region as CKHS or non-CKHS?  
• Line 118: Why did the authors use 108 genes from the Munoz data and not all 139 genes? 175 
CKHS regions were found in 83 genes, do the remaining genes not contain any functional 
domains?  
• Line 124 typo: ‘The borders CKHS’  
• CKHS region in N-terminus of SMARCB1 (Fig. 2). ProTiler identified a CKHS region in the N-
terminus of SMARCB1. To demonstrate the essentiality of this domain authors expressed a 



truncated form a SMARCB1 that could not rescue the endogeneous SMARCB1 knockout. Using N-
terminal deletion mutants is somewhat drastic to show functionality of a protein domain, there 
could be many other reasons (e.g. structural defects) why a truncated protein is not functional 
than just because the deleted domain is essential for function. The authors could demonstrate that 
subtle in-frame mutations in this domain abolish protein function while the same subtle in-frame 
mutations in the protein but not in the identified CKHS domain are better tolerated. Why did the 
authors introduce so many synonomous mutations in the exogeneous SMARCB1 constructs while 
they could simply mutate the PAM (e.g. CGG to CGA)?  
• Line 167 typo “Mounz”  
• Line 181: type 2 times "inhibition"  
• Line 257: To demonstrate the utility of ProTiler the authors could show an example of where 
ProTiler identified a novel domain in a protein lacking domain information and validate these.  
• At several steps throughout the manuscript the results should be better explained in the text, for 
example lines 258-262 it could be better explained that the two large data sets are from knock-out 
libraries with only few guides per gene.  
• Why does Supplementary Table 2 counts 159 genes while the Munoz paper states 139 genes 
(p906, line 9)?  
 
 



Point to point responses to the reviewers’ comments 

Reviewer #1: 

In this paper He et al. present ProTiler, a computational method to analyze tiling data 
from CRISPR/Cas9 knockout screen aimed at uncovering protein domains.  
The manuscript is well written and the software well documented. Interestingly the method 
identified unannotated domains of SMARCB1 that were subsequently validated by the 
authors. I think this manuscript needs only minor revisions and it could benefit addressing 
the following points before publication:  

1. Line 43: “This is likely because CRISPR/Cas9 introduces small indels that create 
frameshift or in-frame mutations in a stochastic manner.” This contradicts the recent 
prediction models that can predict alleles after DSBs, one of which is used in this 
paper. (inDelphi, lines77-79).  
 
In this sentence, the word “stochastic” is misleading. We have modified the sentence 
into: “This is likely because CRISPR/Cas9 introduces small indels that generally lead 
to either frameshift or in-frame mutations.”  
 
 

2. Despite a competing method called CRISPRO is mentioned in the introduction no 
comparison with ProTiler is presented.  I think it is important to directly and 
quantitatively compare the two methods with the Munoz dataset and highlight unique 
and common features.   

We performed a comprehensive analysis to compare ProTiler and CRISPRO, and 
added the comparative methods and results to the manuscript as follows: 
 
a) In Supplementary Fig. 10a, we used the example of SMC2 to show that ProTiler 

identified broad regions that match Pfam domains well, whereas the CRISPRO 
prediction includes discontinued segments and false positives. This difference is 
largely due to the fact that ProTiler includes a robust algorithm to reduce the 
impacts of inactive sgRNAs and outlier data points.  
 

b) In Supplementary Fig. 10b, we summarized the quantitative measures of 
sensitivity, specificity, and resolution of the two methods. These results clearly 
showed higher performance of ProTiler for detecting protein domains.  

 
c) In the discussion section, we added a paragraph to compare the pros and cons of 

the two methods: “CRISPRO is the first computational tool for mapping the sgRNA 
functional scores to proteins(Schoonenberg, et al., 2018).  Compared to CRISPRO, 
ProTiler includes an algorithm to reduce the impacts of inactive sgRNAs and outlier 
data points, which often result in discontinued segments and false positives 
(Supplementary Fig. 10a). In addition, ProTiler has a robust region calling 
algorithm to facilitate a de novo analysis. A quantitative comparison of these two 
methods on the Munoz data showed that ProTiler outperforms CRISPRO in 



sensitivity, specificity, and resolution (Supplementary Fig. 10b). On the other hand, 
CRISPRO is advantageous in providing an integrative view of genomic, 
transcriptomic, proteomic, and structural information, and it is suitable for the 
analysis of well-characterized proteins.” 

 
d) We added the detailed method of comparison in the Methods section. 
 
 

3. “To ensure robustness against prediction error, we selected the sgRNAs that were 
predicted to be very likely (top 5%, in-frame probability > 0.60, “high in-frame”) or very 
unlikely (bottom 5%, in-frame probability < 0.129, “low in-frame”) to create in-frame 
mutations (Fig. 1b).” I think it would be really helpful to know how this affects the tiling 
resolution. Could you please create a plot showing the distribution of the distances of 
consecutive sgRNAs before and after this filtering?  
 
We didn’t use inDelphi prediction results to filter the tiling CRISPR signals, because 
majority of the sgRNAs create a mixture of frameshift and in-frame indels, and only 
11.2% of sgRNAs have a predicted in-frame probability greater than 0.5 (Fig. 1b and 
discussion section). Indeed, we filter out the sgRNAs of weak signals, corresponding 
to inactive sgRNAs (step1 of the workflow in Fig. 1d).  7,564 out of 28,951 (26.1%) 
sgRNAs were filtered out in this step. To assess the effect of sgRNA filtering on the 
tiling resolution, we followed the reviewer’s advice to plot the distribution of the 
distances of consecutive sgRNAs before and after filtering, as shown below: 
 

 
 

The distribution shows only slight change and the median distance of consecutive 
sgRNAs remains the same before and after filtering, so we don’t think the filtering will 
significantly compromise the tiling resolution.  
 
 

4. “The data points with weaker dropout effects compared to their neighbors are likely to 
be associated with inactive sgRNAs (Supplementary Fig. 2), thus are removed.” 
Briefly explain how this filter is implemented/what is the threshold.     
 



Approximately 1/3 of the sgRNAs with a PAM-appended target are inactive, 
corresponding to weak dropout effects (Rosenbluh, et al., 2017; Xu, et al., 2015). To 
remove weak dropout signals, each sgRNA data point is compared to its k neighbors 
to the left and k neighbors to the right. The data point is removed if the signal is weaker 
than 2/3 of left neighbors and 2/3 of right neighbors. We set k=5, corresponding to an 
average window span of ~30 AAs, the size of the smallest protein domain module.  
We have added this detailed description to the Methods section in the manuscript.  
 
 

5. “We adjusted their values based on the mean and variation of the surrounding signals.” 
See the previous point. Is this a smoothing?  
 
The purpose of this step is to reduce the impact of “outliers” on CKHS region calling. 
This is not exactly a smoothing procedure, since majority of the data points are 
unchanged. To adjust the outliers, we estimated the variation of noise for each protein, 
by applying Median Absolute Deviation (MAD) on the differences between 
consecutive sgRNA signal. For each data point x, we compare it to the median value 
of its neighbors within a sliding window of size 11 (approximately the size of the 
smallest known protein domain module, see reply to review #1, point 4). If 𝑥 is larger 
than the median value by more than twice of MAD, 𝑥 is marked to be an outlier and is 
adjusted to be median+2*MAD. The outliers below the median values are detected in 
a similar way and are adjusted to median-2*MAD.  
We have added this detailed description to the Methods section in the manuscript. In 
the Result section, we added the sentence “To reduce the impacts of the “outliers” …” 
to clarify the rationale of this step. 
 
 

6. “Finally, an iterative algorithm classifies the regions into CKHS and non-CKHS 
categories.” See 4) and 5). Add a very short sentence to explain what is the key idea 
of this algorithm. 
 
This is a “k-means-like” algorithm (k=2) for CKHS region calling. Initially, the region 
with the most significant drop-out score is assigned to the CKHS group, and the rest 
of the regions are assigned to the non-CKHS group. In each iteration, the regions are 
assigned to one of the groups based on the distance to the weighted average score 
of each group computed in the previous iteration. The pseudo-code of the algorithm 
is added in the Methods section of the manuscript. We also added a short sentence 
in the Results section to briefly describe the algorithm. 
 
 

7. “Among 108 essential proteins in the Munoz data, ProTiler identified 175 CKHS 
regions in 83 proteins. 82.3% of these regions overlapped with Pfam annotated protein 
domains” and “At the amino acid (AA) level, 64.2% of the AAs in the CKHS regions 
are within Pfam domains, compared to 30.0% for non-CKHS regions”. Please report 
also the opposite i.e. how many annotated Pfam protein domains in the analyzed 
genes were missed by ProTiler. 



 
We have added the summary statistics: “In sensitivity, 207 out of 277 (74.7%) Pfam 
domains in the 83 proteins were identified.”. Of note, the annotated Pfam domains are 
not necessarily essential in the experiments. The percentage of missed domains is 
not a true estimation of false negatives. 
 
 

8. “The borders CKHS regions were enriched within 20 AAs from domain boundaries 
and slightly outside the domains”. Please provide a quantitative measure for the 
enrichment. Also, a simple measure to assess performance would be the F1-score. In 
fact, this problem can be thought as a binary classification problem: each amino acid 
in the protein is a domain (1) or not (0).  

We have added p-values to measure the statistical enrichment of the boundary 
overlap: " The left and right borders of CKHS regions were enriched within 20 AAs 
from domain boundaries (left: p = 5.87e-08; right: p = 9.36e-06, Fisher exact test)”. 

We have computed F1-score as a measurement of performance, and used random 
permutation to compute the distribution of F1-scores by random expectation. We 
added the results to the Result section and Supplementary Fig. 4. The F1-score has 
also been used for the comparison with CRISPRO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer #2: 

In this study He et al. describe how a tiling sgRNA library can be applied to identify 
essential protein domains. They developed an algorithm named ProTiler to map hyper-
sensitive CRISPR knockout regions based on the severity of sgRNA dropout from a tiling 
screen. They applied ProTiler on a published tiling screen dataset from Munoz et al. and 
identified hypersensitive regions that largely overlap with annotated Pfam domains as 
well as known drug target domains in proteins from this dataset. They also identified a 
new domain in SMARCB1 and predicted hypersensitive regions in a proteome-wide scale 
based on protein features. Previously Schoonenberg et al. developed a similar algorithm 
named CRISPRO for which the focus appears more on the visualization of essential 
domains in the protein structure and on prediction for the efficiency of guides. However, 
Schoonenberg et al. also describe the capacity of CRISPRO to highlight important protein 
regions and help prioritize protein regions of interest for chemical biology. Although 
CRISPRO also enables to detect essential protein domains, ProTiler seems specifically 
designed to do so. In general, ProTiler appears an interesting tool to identify essential 
protein domains, however it’s utility should be more convincingly demonstrated with novel 
findings. The proteome-wide prediction seems interesting but its utility is not 
demonstrated and should be better validated.  

We thank reviewer for the thoughtful review of our manuscript. To address the reviewer’s 
concerns, we have i) performed comprehensive analysis to compare CRISPRO and 
ProTiler for domain identification and discussed their pros and cons for different utilities. 
ii) performed additional experiment to validate the function of identified N-terminal domain 
of SMARCB1. iii) demonstrated the utility of proteome-wide prediction through other tiling 
screen data and two newly reported novel domains. Following are the detailed responses 
to the reviewer’s comments. 

Major points: 

1. The authors should clearly demonstrate the different utility of ProTiler as compared to 
CRISPRO and discuss this in the manuscript.  

We performed a comprehensive analysis to compare ProTiler and CRISPRO, and 
added the comparative methods and results to the manuscript. Our results clearly 
showed that ProTiler outperforms CRISPRO for detecting protein domains. For details, 
please refer to the reply to Reviewer #1, point 2.  

 
2. The utility of ProTiler to identify novel essential domains is shown and validated with 

only one gene (SMARCB1). More experimental data demonstrating that ProTiler can 
effectively predict and identify essential protein domains in other genes would 
strengthen the manuscript. To convincingly demonstrate a broad utility of ProTiler 
authors should identify additional novel protein domains and experimentally validate 
these. 



We agree to the reviewer that more examples of novel protein domains will be helpful 
to demonstrate a broad utility of ProTiler. Since this study is mainly focused on the 
data analysis, we sought to address this question from two perspectives. First, we 
have strengthened the evidence to show the essentiality of a novel protein domain in 
SMARCB1 by additional validation experiments (see reply to Reviewer #2, point 11 
for details). Second, we show that some examples of novel protein domains (AA 86-
99 in YAP1, AA 58-184 in TTK) have been reported and validated in recent 
publications but were not annotated previously. Taking these lines of evidence 
together, we show that ProTiler is not only applicable to a single validated example, 
but has broader application for novel domain discovery. We hope these explanations 
regarding the utility of ProTiler are acceptable. 
For the future work, we do plan to study additional novel domains experimentally, 
dependent on the biological and clinical significance, expert knowledge of biological 
system, availability of a potent antibody and the size of exogenous proteins.  
 
 

3. The proteome-wide CKHS prediction should be truly validated. The proteome-wide 
CKHS prediction model was trained with the Munoz tiling data set, but it was not 
demonstrated it can predict the outcome of other tiling screen data. Although it was 
shown the model has some predictive power (Fig. 4h) authors should demonstrate the 
correctness of the predicted regions by comparison of the predictions with a ProTiler 
analysis of a published tilling screen data set. In addition, to demonstrate the utility of 
the prediction authors should validate a few of the identified novel essential domains 
from Supplementary Table 5. Ideally, authors could experimentally validate their 
prediction model by performing a small tiling library screen containing a few genes 
that were not yet studied with a tiling screen.  

 
First, to check if the SVM model can predict the outcome of other tiling screen data, 
we applied ProTiler to an independent tilling screen dataset that includes two genes, 
ZBTB7A and MYB (Schoonenberg, et al., 2018), and compared the results to the SVM 
prediction. We observed high consistency among the SVM predictions, ProTiler 
identified CKHS regions, and the Pfam annotated protein domains (Supplementary 
Fig. 7), which implies the predictive power of our model beyond the scope of Munoz 
data. We have added these results to the revised manuscript. 
 
Second, we try to explore the utility of the SVM prediction for novel domain discovery. 
Since this study is mainly focused on the data analysis, we sought to answer this 
question based on recently reported novel domains. We compared the predicted 
regions to two recent reports of new functional domains: a non-catalytic “FLOS” 
domain in methyltransferase SETD1A (Hoshii, et al., 2018), and an “eMIC” domain in 
splicing factor SRRM4 (Torres-Mendez, et al., 2019). In both proteins, the SVM model 
correctly predicted the newly identified domains (Supplementary Fig. 8). We have 
added these results to the revised manuscript. 
 
Third, we agree that additional tiling screens will be useful for further exploration of 
new domain functions, especially for uncharacterized proteins. Since the studies 



presented in the paper is mainly focused on the data analysis, we consider the 
additional screens as follow-up studies of this project, which are discussed in the 
revised version of the manuscript.   
 
Finally, we’d like to point out that the SVM prediction is imperfect (AUC between 0.7-
0.8). Although it provides insights into novel domain discovery, additional proteomic 
data and functional validations are needed. On the other hand, an immediate 
application of the prediction is to improve the sgRNA design for genome-scale 
CRISPR screen, as shown in Fig 4h. We have added these discussions to the revised 
manuscript. 
 
 

4. Because the domain analysis relies on in-frame indels, one suggestion to improve 
ProTiler could be to include the prediction of the in-frame frequency by inDelphi to 
correct the z-scores of the guides.  

 
It is a good idea to include in-frame frequency predictions to improve ProTiler. We 
have tried to filter the sgRNAs based on prediction of the in-frame frequency. However, 
since i) computational predictions are subject to false positive and false negatives; ii) 
only 11.2% of sgRNAs have a predicted in-frame probability greater than 0.5 (Fig. 1b), 
a simple filtering strategy does not improve the analysis, and indeed compromises the 
resolution. We believe a more complex computational framework is needed to improve 
ProTiler using predicted in-frame frequency, which is one of our future direction. We 
have discussed this issue in the revised manuscript.  

 
 
Specific comments: 
 
5.  Line 43: It has been demonstrated that indels are non-random but occur in a 

sequence specific manner and not in a stochastic manner. As the authors mention in 
line 77 repair outcome probabilities can be predicted from the sequence.  
 
Yes, in this sentence, the word “stochastic” is misleading. We have modified the 
sentence into: “This is likely because CRISPR/Cas9 introduces small indels that 
generally lead to either frameshift or in-frame mutations.” 
  
 

6. Line 78: “the model”, please specify for easy reading which model. 

We have changed it to “the in-frame indel model” in the revised manuscript. 
References are given to Fig. 1a. 

 

7. Line 104: please explain to the reader how it is determined that these sgRNAs are 
associated with inactive sgRNAs. Did the authors only use the Doench score for this 
calculation or also other scores?  
 



We used two models to assess the sgRNA activities: i) the Doench model (Doench, 
et al., 2016); ii) the SSC model (Xu, et al., 2015). The results are shown in 
Supplemental Fig. 2. Both results show that the filtered sgRNAs are associated with 
low activity scores. 
 
 

8. Line 111: What is the cut-off z-score for classifying a region as CKHS or non-CKHS? 
 
Since different proteins have different essentiality in quantity, it is not applicable to use 
a fixed cut-off to classify CKHS and non-CKHS region. We used a “k-mean-like” 
algorithm (k=2) for CKHS region calling (see reply to Reviewer #1, point 6, for details). 
The pseudo-code of the algorithm is added in the Methods section of the manuscript. 
We also added a short sentence in the Results section to briefly describe the algorithm. 
 
 

9. Line 118: Why did the authors use 108 genes from the Munoz data and not all 139 
genes? 175 CKHS regions were found in 83 genes, do the remaining genes not 
contain any functional domains?  

The 108 genes were selected as functional essential gene in at least one of the three 
cell lines in the screen. For genes that are not essential in any of the cell lines, the 
information is inadequate for CKHS region calling. The details of essential gene 
identification are described in the method section.  

We examined the genes without an identified CKHS region. We found these proteins 
are associated with relatively smaller size, and often harbor a single domain that 
covers majority of the amino acids (Supplementary Fig. 3). In these cases, one can 
expect that a small deletion in most of the AA positions can significantly impact the 
protein function. Since ProTiler is focused on the detection of protein regions that 
show stronger knockout effect compared to other regions of the same protein, the 
CKHS regions were not called for these proteins. This observation also suggest that 
the tiling screen is more useful for the studies of larger proteins with multiple domains. 
We have added the description to the revised manuscript for clarification. 

 

10. Line 124 typo: ‘The borders CKHS’  
 
We have fixed the typo to “‘The left and right borders of CKHS” in the revised 
manuscript. 
 
 

11. CKHS region in N-terminus of SMARCB1 (Fig. 2). ProTiler identified a CKHS region 
in the N-terminus of SMARCB1. To demonstrate the essentiality of this domain 
authors expressed a truncated form a SMARCB1 that could not rescue the 
endogenous SMARCB1 knockout. Using N-terminal deletion mutants is somewhat 
drastic to show functionality of a protein domain, there could be many other reasons 



(e.g. structural defects) why a truncated protein is not functional than just because the 
deleted domain is essential for function. The authors could demonstrate that subtle in-
frame mutations in this domain abolish protein function while the same subtle in-frame 
mutations in the protein but not in the identified CKHS domain are better tolerated. 
Why did the authors introduce so many synonymous mutations in the exogeneous 
SMARCB1 constructs while they could simply mutate the PAM (e.g. CGG to CGA)?  
 
We have followed the reviewer’s advice to test the effect of small deletions of 3 AAs 
in the identified domain (D29-31), with a deletion of AAs outside the domain (D150-
152) as control. Our results clearly show that exogeneous expression of D150-152 
SMARCB1 protein can rescue the phenotype, whereas the expression of D29-31 
protein fail to rescue (Fig. 2f). These lines of evidence further support the essentiality 
of the N-terminus domain.  
 
The idea of introducing synonymous mutations is to ensure that the knockouts with 
sgRNAs targeting the mutated sites (sg1, sg2, sg3 in Fig. 2) would abolish only the 
endogenous SMARCB1 without compromising the function of the ATP-binding 
domain in the exogenous proteins. This facilitates the rescue experiments. We agree 
with the reviewer that mutating PAM could be a simpler way. However, this strategy 
largely depends on whether certain PAM belongs to one codon or not. In our case, 
two PAMs (GGG, AGG) for sg1 and sg3 cover two codons, if we mutate them, there 
is a likelihood of introducing nonsynonymous mutations to the ATP-binding domain, 
adding confounding factors to the validation of N-terminus domain. 
 
 

12.  Line 167 typo “Mounz”  
 
Typo fixed. 
 
 

13. Line 181: type 2 times "inhibition" 
 
Typo fixed. 
 
 

14. Line 257: To demonstrate the utility of ProTiler the authors could show an example of 
where ProTiler identified a novel domain in a protein lacking domain information and 
validate these.  
 
This question is related to point 3. We have added the results to show that our 
predictions are highly consistent with two recently identified novel domains in SETD1A 
and SRRM4.  
 
 



15. At several steps throughout the manuscript the results should be better explained in 
the text, for example lines 258-262 it could be better explained that the two large data 
sets are from knock-out libraries with only few guides per gene. 
 
We have added information to better explain the libraries, as follow: “…, using two 
large-scale CRISPR/Cas9 screen datasets based on the GeCKO-v2 and Avana 
libraries, respectively, in which 4-6 sgRNAs were designed for each gene.” 
 
 

16. Why does Supplementary Table 2 counts 159 genes while the Munoz paper states 
139 genes (p906, line 9)?  
 
We have carefully examined Munoz data published in the original paper. There are 
exactly 159 genes. It seems the number of 139 is a typo in the original paper. 
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Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
I think the authors did an excellent job in addressing all my concerns (and also the ones from the 
other Reviewer) and I look forward to seeing this manuscript online.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
The authors have responded sufficiently to the reviewers comment and I have no further remarks. 



Point-by-point responses to reviewers’ and editor’s comments 

Reviewer #1 (Remarks to the Author): 

I think the authors did an excellent job in addressing all my concerns (and also the ones 
from the other Reviewer) and I look forward to seeing this manuscript online. 

We thank the reviewer for reviewing our manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors have responded sufficiently to the reviewers’ comment and I have no 
further remarks. 

We thank the reviewer for reviewing our manuscript. 
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