Supplementary Information for:

The midbody interactome reveals unexpected roles for PP1 phosphatases in

cytokinesis

by

Capalbo et al.

Supplementary Figure 1. Purified midbodies are enriched for known midbody proteins. HeLa cells treated with siRNAs directed against either a random sequence (control) or *CIT-K* were synchronized in telophase to purify midbodies and aliquots from the different purification steps (see Materials and Methods) were analyzed by Western blot to detect CIT-K, MKLP1 and tubulin. The numbers on the left indicate the sizes in kDa of the molecular mass marker. Note that the slower migrating band detected with the anti-MKLP1 antibody is very likely a post-translational modified form of MKLP1. Source data for Supplementary Figure S1 are provided as a Source Data file.

Supplementary Figure 2. Analysis of cytokinesis defects after MYPT1 depletion in HeLa S3 cells. (a-b) HeLa S3 cells were treated with siRNAs directed against either a random sequence (control) or *MYPT1* and after 48 hours were fixed and stained to detect DNA (blue in the merged panels), tubulin, and either Aurora B (a) or CIT-K (b). DNA condensation and the shape and thickness of microtubule bundles at the intercellular bridge were used as criteria to stage telophase cells. Insets show a 3x magnification of the midbody. Bars, 10 μm.

Supplementary Figure 3. Analysis of cytokinesis defects after MYPT1 depletion in RPE-1 cells. (a) RPE-1 cells were treated with siRNAs directed against either a random sequence (control) or MYPT1 and after 48 h proteins were extracted and analyzed by Western blot to detect the indicated proteins. The numbers on the left indicate the sizes in kDa of the molecular mass marker. (b) RPE-1 cells were treated with siRNAs directed against either a random sequence (control) or *MYPT1* and after 48 hours were fixed and stained to detect DNA and tubulin. The arrows indicate multinucleate cells. Bars, 10 μ m. (c) Quantification of multinucleate cells obtained after control or *MYPT1* siRNA. More than 700 biologically independent cells were counted in n=4 independent experiments. Bars indicate standard errors. (d-e) RPE-1 cells were treated with control or *MYPT1* siRNAs and after 48 hours were fixed and stained to detect the indicated epitopes and DNA (blue in the merged panels). DNA condensation and the shape and thickness of microtubule bundles at the intercellular bridge were used as criteria to stage telophase cells. Insets show a 3x magnification of the midbody. The arrows mark a bent (d) and a broken (e) central spindle, phenotypes that are very similar to those observed in HeLa cells (Fig. 6). Bars, 10 μ m. Source data for Supplementary Figure 3a and 3c are provided as a Source Data file.

Supplementary Figure 4. *PP1* β siRNA phenocopies MYPT1 depletion. (a-b) HeLa Kyoto cells were treated with siRNAs directed against either a random sequence (control) or *PP1* β and after 48 hours were fixed and stained to detect DNA (blue in the merged panels), tubulin and either MKLP1 (a) or Aurora B (b). DNA condensation and the shape and thickness of microtubule bundles at the intercellular bridge were used as criteria to stage telophase cells. Insets show a 3x magnification of the midbody. Bars, 10 µm.

Supplementary Figure 5. PP1 β interacts with a conserved binding site in the MKLP1 C-terminus. (a) The amino acid sequences containing the PP1 β binding site (aa 786-788) of human MKLP1 and its orthologues in other vertebrate and invertebrate species were aligned using the Muscle algorithm¹. Amino acids are colored according to their chemical properties. (b) Coomassie-stained gel showing the purified proteins used in the GST pull down assay. (c) GST-tagged wild type and AQA mutant MKLP1 fragments (aa 620-858) were expressed and purified in bacteria and then employed in a pull down assay with MBP:: PP1 β or MBP alone purified from yeast. Proteins were then analyzed by Western blot using antibodies against MBP (top) and GST (bottom). (d) Graph showing the quantification of the levels of MBP:: PP1 β normalized against their respective GST baits and the ratio of these values relative to WT GST:: MKLP1₆₂₀₋₈₅₈; n= 2 independent experiments. Bars indicate standard errors. Source data for Supplementary Figure 5c and 5d are provided as a Source Data file.

Supplementary	Table	1. List	of the	proteins	showing	differential	abundance	at the	midbody
after CIT-K depl	etion.								

Gene	Protein	log₂ ratio exp. 1	log₂ ratio exp. 2	<i>p</i> -value exp. 1	<i>p</i> -value exp. 2
СІТ-К	Citron kinase	-2.69	-2.47	2x10 ⁻⁴⁵	1.4x10 ⁻²⁵
PC	Pyruvate carboxylase, mitochondrial	-0.80	-0.86	3x10 ⁻⁹	3.9x10 ⁻⁴
ASS1	Argininosuccinate synthase	-0.52	-0.63	7.6x10 ⁻⁵	5.5x10 ⁻⁴
FLNB	Filamin B	-0.50	-0.56	1.2x10 ⁻⁴	2.1x10 ⁻³
TIMM44	Mitochondrial import inner membrane translocase subunit TIM44	-0.40	-1.04	1.4x10 ⁻³	1.82x10 ⁻⁵
PPIB	Peptidyl-prolyl cis-trans isomerase B	-0.37	-0.57	3.1x10 ⁻³	1.8x10 ⁻³
AURKA	Aurora kinase A	0.45	0.69	5x10 ⁻³	2.6x10 ⁻⁴
CKAP2	Cytoskeleton-associated protein 2	0.45	0.67	5x10 ⁻³	3.7x10 ⁻⁴
PTPRF	Receptor-type tyrosine-protein phosphatase F	0.62	1.19	2.3x10 ⁻³	9.71x10 ⁻¹⁰
TPX2	Targeting protein for Xklp2	0.71	0.75	4.3x10 ⁻⁶	6.65x10 ⁻⁵
HNRNPH3	Heterogeneous nuclear ribonucleoprotein H3	0.83	0.97	3.2x10 ⁻⁵	5.47x10 ⁻⁷
KIFC1	Kinesin-like protein KIFC1	0.87	0.55	1.5x10 ⁻⁵	3.3x10 ⁻³

Proteins that were significantly less or more abundant (*p* value<0.01; significance B test corrected by Benjamini-Hochberg method) in CIT-K siRNA midbodies are listed. The corresponding normalized logarithmic ratios and corrected p-values from experiment 1 and experiment 2 are shown. Proteins shaded in blue were underrepresented (negative logarithmic ratios) after CIT-K depletion. Proteins shaded in red were overrepresented (positive logarithmic ratios).

Baits	Anillin	Aurora B	CHMP4B	CHMP4C	СІТ-К	ECT2	KIF14	KIF20A	KIF23/	PRC1	Proteom
									MKLP1		e
PPP1CA	Score			Score	Score	Score	Score	Score	Score 75	Score	Yes
	183 Dent F			244 Dont C	1392 Domt 21	400 Dent 0	658 Dont 10	303	Pept 3	1004 Dent 16	
DDD1CP	Pept 5			Рерго	Score	Scoro	Score SE	Scoro		Score	No
PPPICB					1312	3/2	Dont 1	253		963	NO
					Pept 19	Pept 8	reper	Pept 6		Pept 14	
PPP1CC	Score	Score	Score		Score	Score	Score	Score	Score 68	Score	Yes
	267	117	302		1355	338	690	407	Pept 2	1067	
	Pept 9	Pept 1	Pept 6		Pept 20	Pept 8	Pept 12	Pept 6		Pept 19	
PPP1R9A	Score		Score	Score 83		Score	Score 67	Score 48		Score 78	No
	235		120	Pept 3		254	Pept 1	Pept 1		Pept 1	
	Pept 3		Pept 2			Pept 4					
PPP1R9B	Score		Score			Score	Score	Score 94	Score 98		No
	237		285			340	273	Pept 1	Pept 2		
	Pept 5		Pept 6			Pept 7	Pept 5				
PPP1R12A	Score		Score	Score 60	Score	Score		Score		Score	Yes
(MYPT1)	185		197	Pept 5	572	363	Score	152		564	
	Pept 2		Pept 3		Pept 6	Pept 11	855	Pept 5		Pept 13	
	6						Pept 15				
PPP1R12B	Score						Score 83				NO
	07 Pent 1						Pepti				
PPP1R12C	Тергі						Score	Score 87		Score 56	No
							346	Pept 1		Pept 1	
							Pept 4				
PPP1R18	Score		Score		Score 85	Score	Score	Score			No
	96		128		Pept 1	232	400	201			
	Pept 1		Pept 1			Pept 4	Pept 8	Pept 7			
PPP1R13L							Score	Score			Yes
							101	222			
DDDDCA				C			Pept 2	Pept 2			NI-
PPPZCA				Score 38							NO
0002054					C		C			C	N
PPPZR5A				Score 24	Score		Score 34			Score 98	res
				гергэ	Pent 2		repti			reptz	
PPP2R1B					10012					Score 46	Yes
										Pept 1	105
РРРЗСА			Score 61			Score 63					No
			Pept 1			Pept 1					
MPRIP	Score		Score	Score 43	Score 66	Score	Score	Score	Score 85		No
	1358		390	Pept 3	Pept 1	179	528	432	Pept 2		
	Pept 23		Pept 6			Pept 6	Pept 10	Pept 5			
CDC25A		Score 48			Score 39					Score 35	No
		Pept 9			Pept 3					Pept 1	
PGAM5	Score		Score 75	Score	Score 61	Score 74	Score	Score	Score	Score	Yes
	359		Pept 2	108	Pept 4	Pept 3	430	372	171	101	
	Pept 11			Pept 4			Pept 13	Pept 13	Pept 6	Pept 2	

Supplementary Table 2. List of the serine/threonine phosphatases present in the midbody interactome.

The baits are listed in the top row and the phosphatases in the far left column. Protein names are according to the UniProt database. Member of the PP1 family are shaded in green, while members of the PP2 family are shaded in red. The Mascot score (Score) and number of peptides (Pept) identified in each AP-MS experiment are indicated. The far-right column indicates whether the phosphatase was identified in the midbody proteome.

Supplementary Table 3. List of the oligonucleotides used in the experiments.

Name	Sequence 5'-3'	Purpose
PP1beta GST-pre yst	TCCAAAATCGGATCTGGAAGTTCTGTTCCAGGGGC	Plasmid to express
for	CCCTGATGGCGGACGGGGGGGCTGAACGTGG	GST-PP1 eta in yeast
PP1beta yst rev	CGGTTAGAGCGGATCTTAGCTAGCCGCGGTACCA	
	AGCTTATCACCTTTTCTTCGGCGGATTAGCT	
MBPMKLP1 yst for	GAAAGACGCGCAGACTACGACCGAAAACCTGTAT	Plasmid to express
	TTTCAGTCCATGAAGTCAGCGAGAGCTAAGACAC	MBP-MKLP1 in yeast
MKLP1 yst rev	CGGTTAGAGCGGATCTTAGCTAGCCGCGGTACCA	
	AGCTTATCATGGCTTTTTGCGCTTGGGTTGT	
MBPPP1beta yst for	GAAAGACGCGCAGACTACGACCGAAAACCTGTAT	Plasmid to express
	TTTCAGTCCATGGCGGACGGGGAGCTGAACGTGG	MBP-PP1 eta in yeast
MKLP1 AQA mutant	ATTAAGGGTGATATTTATAAAACAAGGGGTGGTG	To mutate the VQF
primer	GACAATCTGCTCAGGCTACTGATATT	residues to AQA in
		MKLP1
PP1beta D94N for	CTATCTTTTCTTAGGAAATTATGTGGACAGAG	To generate the
		PP1 β -dead mutant
PP1beta D94N rev	CTCTGTCCACATAATTTCCTAAGAAAAGATAG	
PP1beta H124N for	CTCTTAAGAGGAAACAATGAGTGTGCTAGCATC	
PP1beta H124N rev	GAIGCTAGCACACTCATTGTTTCCTCTTAAGAG	

References

1 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* **32**, 1792-1797, doi:10.1093/nar/gkh340 (2004).