Supporting Information

Global invasion history of the agricultural pest butterfly *Pieris rapae* revealed with genomics and citizen science

Authors:

Sean F. Ryan^{1,2}, Eric Lombaert³, Anne Espeset⁴, Roger Vila⁵, Gerard Talavera^{5,6}, Vlad Dincă⁷, Meredith M. Doellman⁸, Mark A. Renshaw⁹, Matthew W. Eng⁸, Emily A. Hornett¹⁰, Yiyuan Li⁸, Michael E. Pfrender^{8,11}, DeWayne Shoemaker¹

Affiliations:

¹Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996 USA

²Ecological and Biological Sciences Practice, Exponent, Inc., Menlo Park, CA 94025

³Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre de Recherches de Sophia-Antipolis, Institut Sophia Agrobiotech, 400 Route des Chappes, BP 167, 06 903 Sophia Antipolis, France

⁴Department of Biology, University of Nevada, Reno, NV 89557 USA

⁵Department of Animal Biodiversity and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Barcelona, 08003 Spain

⁶Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA

⁷Department of Ecology and Genetics, PO Box 3000, 90014 University of Oulu, Finland ⁸Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556

⁹Shrimp Department, Oceanic Institute of Hawai'i Pacific University, Waimanalo, HI 96795

¹⁰Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69

3BX, United Kingdom

¹¹ Environmental Change Initiative, University of Notre Dame, South Bend, IN 46556

Corresponding author:

Sean F. Ryan, Email: citscisean@gmail.com

Supplementary Tables

	Inclusive defini	tion of citizen science	Restrictive definition	Total specimens	
Country	Specimens collect	cted by citizen scientists	Specimens collected		
,	#	%	#	%	collected
Algeria	12	100%	0	0%	12
Australia	76	100%	62	82%	76
Austria	3	100%	0	0%	3
Bulgaria	2	22%	2	22%	9
Canada	24	100%	11	46%	24
China	0	0%	0	0%	22
Czech Republic	43	100%	43	100%	43
England	3	12%	0	0%	26
Estonia	0	0%	0	0%	4
Finland	0	0%	0	0%	7
France	0	0%	0	0%	12
Georgia	23	100%	0	0%	23
Gibraltar	4	100%	4	100%	4
Greece	2	17%	0	0%	12
Italy	12	86%	0	0%	14
Japan	8	73%	0	0%	11
Malta	10	100%	0	0%	10
Mexico	0	0%	0	0%	6
Morocco	2	17%	0	0%	12
New Zealand	25	100%	17	68%	25
Poland	12	100%	0	0%	12
Portugal	2	100%	2	100%	2
Romania	3	25%	4	33%	12
Russia	18	100%	16	89%	18
South Korea	11	100%	11	100%	11
Spain	21	78%	13	48%	27
Sweden	0	0%	0	0%	2
Taiwan	24	100%	0	0%	24
Tunisia	9	75%	0	0%	12
Turkey	10	100%	10	100%	10
Ukraine	2	100%	0	0%	2
USA	194	62%	150	48%	313

Table S1. Contribution of specimens made by citizen scientists.

Table S2. Description of the competing scenarios and results of the six successive ABC analyses to infer the invasion history of *Pieris rapae*.

Step Scenario		Prior error rate			Random forest votes			Posterior probability		
-	Data 1	Data 2	Data 3	Data 1	Data 2	Data 3	Data 1	Data 2	Data 3	
Analysis 1 – Europe and Asia (west/east) - 18 summary statistics; 13,974 SNPs	13.82%	14.49%	14.29%							
S1: Asia is the source of Europe				57	188	207	-	-	-	
S2: Europe is the source of Asia				132	132	43	-	-	-	
S3: Asia and Europe derived from an ancestral population				811	680	750	0.8479	0.8173	0.8353	
Analysis 2 - Siberia and North Africa - 115 summary statistics; 15,533 SNPs	16.26%	17.22%	17.07%							
S1: Asia and Europe are respectively the sources of Siberia and				602	676	521	0.7020	0.7549	0.6352	
Africa										
S2: Asia and Africa are respectively the sources of Siberia and Europe				162	180	146	-	-	-	
S3: Africa and Siberia are respectively the sources of Europe and Asia				56	30	76	-	-	-	
S4: Europe and Siberia are respectively the sources of Africa and Asia				180	114	257	-	-	-	
Analysis 3 - North America east (NAE) - 51 summary statistics; 16,753 SNPs	32.82%	31.83%	31.82%							
S1: Asia is the source of NAE, 1 introduction				0	9	2	-	-	-	
S2: Europe is the source of NAE, 1 introduction				576	553	559	0.5010	0.6136	0.5064	
S3: Asia is the source of NAE, 2 introductions				6	4	2	-	-	-	
S4: Europe is the source of NAE, 2 introductions				418	434	437	-	-	-	
Analysis 4 - North America west (NAW) - 116 summary statistics; 17,049 SNPs	11.44%	11.54%	10.95%							
S1: Asia is the source of NAW				19	35	13	-	-	-	
S2: Europe is the source of NAW				144	121	41	-	-	-	
S3: NAE is the source of NAW				721	720	933	0.8518	0.9288	0.9524	
S4: Europe is the source of NAW ~ 1600 CE				85	73	7	-	-	-	
S5: Europe is the source of NAW ~ 1600 CE; NAW is the source of				31	51	6	-	-	-	
NAE										
Analysis 5 – New Zealand - 223 summary statistics; 17,100 SNPs	2.18%	2.30%	2.18%							
S1: Asia is the source of New Zealand				2	6	5	-	-	-	
S2: Europe is the source of New Zealand				14	14	28	-	-	-	
S3: NAE is the source of New Zealand				16	52	130	-	-	-	
S4: NAW is the source of New Zealand				968	928	837	0.9739	0.9760	0.9802	
Analysis 6 - Australia - 388 summary statistics; 17,116 SNPs	14.94%	15.00%	14.81%							
S1: New Zealand is the source of Australia				631	733	613	0.7797	0.8420	0.8124	
S2: NAW is the source of Australia				63	33	62	-	-	-	
S3: New Zealand and Europe are the source of Australia (admixture)				15	10	18	-	-	-	
S4: New Zealand and Asia are the source of Australia (admixture)				15	7	10	-	-	-	
S5: New Zealand and NAW are the source of Australia (admixture)				276	217	297	-	-	-	

Results are provided for all three datasets. For each ABC analysis a forest of 1,000 trees was grown. The lines in bold characters corresponds to the selected (most likely) scenarios.

	Prior distributions				Posterior di	stributions		
Parameters	Q 5%	median	mean	Q 95%	Q 5%	median	mean	Q 95%
Raw parameters N_i	159	10.110	107.800	629.178	2.630	13.662	80.180	592.324
N ₂	158	9,872	108,500	636,286	8,217	52,803	177,076	710,940
N3	156	9,942	107,600	626,685	10,994	184,625	300,675	881,015
N_4	159	10,010	108,200	630,976	2,305	88,066	245,186	914,933
N_5	158	10,050	108,900	632,660	3,477	226,668	303,680	860,610
N_6	160	10,350	108,100	628,855	1,863	119,285	294,245	884,571
N7	158	10,140	108,900	630,040	2,033	98,892	239,822	872,549
N_8	160	9,863	108,100	629,561	1,038	39,466	187,263	794,756
NA	799	68,110	193,500	792,653	26,142	167,928	247,860	829,410
ND	126	1,469	23,160	123,273	269	14,173	22,626	75,263
NF3	3	20	43	159	13	90	98	191
NF_4	3	20	43	159	11	52	63	152
NF5	3	20	43	159	10	68	77	164
NF_6	3	20	43	158	11	88	91	179
NF7	3	20	43	159	13	87	89	179
NF_8	3	20	43	159	6	64	71	172
DB_3	2	15	16	29	1	5	6	15
DB_4	2	15	15	29	5	15	16	28
DB_5	2	16	16	29	2	15	15	29
DB_6	2	15	15	29	1	7	9	21
DB_7	2	16	16	29	2	9	11	26
DB_8	2	16	16	29	3	15	15	29
t_1	974	4,162	4,566	9,260	908	3,576	4,159	8,849
t2	973	4,165	4,562	9,265	850	3,011	3,656	8,510
t3	467	480	480	494	467	481	480	494
<i>t</i> 4	398	411	411	425	397	408	409	424
t5	260	273	273	287	261	274	274	287
t_6	235	249	249	262	235	248	248	262
<i>t</i> 7	540	1,205	1,788	5,121	511	674	880	1,814
t_8	539	1,200	1,783	5,119	529	859	1,057	2,312
t_a	14,547	55,320	55,170	95,499	14,751	60,482	58,546	96,484
Composite parameter	ers							
BNsev3	42	6,208	180,900	900,381	203	1,062	11,425	51,050
BNsev ₄	41	6,155	181,600	907,241	2,513	57,450	153,718	635,627
BNsev5	41	6,186	181,700	913,085	618	23,343	99,199	459,562
BNsev6	42	6,290	182,500	924,448	151	12,860	40,460	134,639
BNsev7	41	6,053	183,900	930,965	539	6,793	34,863	167,428
BNsev8	41	6,162	179,500	886,500	309	5,580	13,628	46,122

Table S3. Prior and posterior distributions of all parameters and several composite parameters of the full final complete scenario (Fig 2d) performed with dataset 1.

Note: $BNsev_i$ = bottleneck severity of population *i* computed as $[BD_i \times N_{parental population of population i}) / NF_i]$, with parental populations being populations 2, 3, 4, 5, 2 and 1 for populations 3, 4, 5, 6, 7 and 8 respectively.

Parameters	Distribution	Quantile 5%	Median	Mean	Quantile 95%
N_D	Log-Uniform [100 – 1,000,000]	126	1,482	23,610	128,053
N_A	Log-Uniform [100 – 1,000,000]	774	67,560	192,800	790,045
N_{j} , N_{i} , N_{ia} , N_{ib}	Log-Uniform [100 – 1,000,000]	159	10,280	108,600	629,089
NF_{j} , NF_{i} , NF_{ia} , NF_{ib}	Log-Uniform [2 – 200]	3	20	43	159
$BD_{j}, BD_{i}, BD_{ia}, BD_{ib}$	Uniform [1 – 30]	2	16	15	29
ta	Uniform [10.000 – 100.000]	14,547	54,930	54,990	95,453
t_j	Log-Uniform [500 – 10.000]	585	2,265	3,197	8,617
t_i, t_{ia}	Uniform $[x_i - x_i + 30]$	DV	DV	DV	DV
t_{mix}, t_{ib}	Uniform $[165 - x_i + 30]$	DV	DV	DV	DV
t _{4old}	Uniform $[1245 - 1275]$	1,246	1,260	1,260	1,274
ar _i	Uniform $[0, 1 - 0.9]$	0.14	0.50	0.50	0.86

Table S4. Prior distributions of demographic and historical parameters used in ABC analyses processed to retrace the worldwide invasion routes of *Pieris rapae*.

Notes: Index *i* stands for the number of the invasive population, i.e. 3, 4, 5 or 6 for North America (east), North America (west), New Zealand or Australia respectively. Index *j* stands for the number of the ancient putative native population, i.e. 1, 2, 7 or 8 for Asia (west/east), Europe, Africa or Siberia respectively. N_D and N_A = stable effective population size (number of diploid individuals) of the ancestral native population respectively before and after a demographic expansion event ($N_G < N_A$); N_i , N_i = stable effective population size (number of diploid individuals) of the putative native and invasive populations; NF_i = effective number of founders during a bottleneck lasting BD_i generation(s) for population i; ta = time of the demographic expansion in the ancestral native population; t_i = merging time of the putative native populations into the ancestral one; t_i = introduction time of invasive populations *i* with bounds x_i fixed from dates of first observation of established population; t_{4old} corresponds to the particular case of an old introduction hypothesis of the North American (west) population in ABC analysis 4; N_{ia} , N_{ib} , NF_{ia} , NF_{ib} , BD_{ia} and BD_{ib} , t_{ia} , t_{ib} and t_{mix} are the parameters associated to an admixture event leading to the formation of invasive population i; ar_i = admixture rate. Depending on the scenarios considered, various conditions were applied to times so that coalescent times fit with each scenario's topology. All times are expressed in number of generations assuming 3 generations per year, and running back in time from time 0 which corresponds to year 2015. All prior quantities presented were computed from 10⁵ values. DV = different values were possible. See Figure S3 for a graphical representation of the evolutionary scenarios with associated historical and demographic parameters considered in the ABC analyses.

DIVABC abbreviation	Description			
Sincle cample statistics for	Description			
Single sample statistics je	or each samplea population			
HP0	Proportion of loci with zero gene diversity			
HM1	Mean gene diversity across polymorphic loci (Nei, 1987)			
HV1	Variance of gene diversity across polymorphic loci			
НМО	Mean gene diversity across all loci			
Two sample statistics for	each pairwise sample combination			
FP0	Proportion of loci with zero F ST distance (Weir & Cockerham, 1984)			
FM1	Mean across loci of non-zero F ST distances			
FV1	Variance across loci of non-zero F ST distances			
FMO	Mean across loci of F ST distances			
NP0	Proportion of loci with zero Nei's distance (Nei, 1972)			
NM1	Mean across loci of non-zero Nei's distances			
NV1	Variance across loci of non-zero Nei's distances			
NMO	Mean across loci of Nei's distances			
Admixture statistics (Cho	isy et al., 2004) for each combination of parental and admixed populations			
AP0	Proportion of loci with zero admixture estimates			
AM1	Mean across loci of non-zero admixture estimate			
AV1	Variance across loci of non-zero admixture estimated			
AMO	Mean across all locus admixture estimates			

Table S5. Summary statistics used in all DIYABC simulations (1).

Supplementary Figures

Fig S1. Sample sizes of *Pieris rapae* specimens by year collected.

Fig S2. Population ancestry assignment plots for K:2-30, using **a**, ADMIXTURE, **b**, fastSTRUCTURE, and **c**, Discriminant Analysis of Principal Components (DAPC). For each analysis the evaluation for optimal K is included.

Fig S3. Schematic representation of each set of scenarios used in the ABC analyses to decipher the worldwide invasion routes of *Pieris rapae* (see also Table 1). Population numbers are as follows: 1 for Asia (west/east); 2 for Europe; 3 for North America (east); 4 for North America (west); 5 for New Zealand; 6 for Australia; 7 for North Africa; 8 for Siberia. For each analysis, the name of the most likely scenario is underlined. Thin lines indicate bottlenecks. For parameters descriptions and priors see Table S3. Time is not to scale.

Fig S4. Median-joining haplotype networks for each population. Hash marks between haplotypes represent base changes (mutations).

Fig S5. Global patterns of genetic diversity. a, Estimate of pairwise nucleotide diversity for each subpopulation based on autosomal ddRADseq data. **b**, mtDNA haplotype diversity estimated from rarefaction curves (note, colors are based on a log scale).

Video included as a supplementary file

Video S1. Development of railroad lines in the United States from 1830-1972. Railroad line data were obtained from (2) and plotted by their date of operation. Note the completion of railroad lines connecting eastern and western US in 1872, a few years prior (1879) to when a small population originating from North America (east) was believed to be introduced to that exact region—North America (west) (i.e., central California).

References

- 1. Cornuet J-M, et al. (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. *Bioinformatics* 30(8):1187–1189.
- 2. Atack J (2016) Historical Geographic Information Systems (GIS) database of U.S. Railroads for 1830-1972. Available at: https://my.vanderbilt.edu/jeremyatack/data-downloads/.