
Digitizable therapeutics for decentralized mitigation
of global pandemics

Supplementary Material

Adar Hacohen, Reuven Cohen, Sol Efroni, Baruch Barzel & Ido Bachelet

February 3, 2019

User
Rectangle



Contents

1 Modeling epidemic spread 1
1.1 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SIR model with treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Normalized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The human flux matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Implementation 9
2.1 Human mobility network and epidemic parameters . . . . . . . . . . . . 9
2.2 Drug distribution networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Heterogeneity in network-based distribution 14
3.1 The rate matrix ξsn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Supply patterns in random networks . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Network pathways . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Rate distribution P (ξ) . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Critical capacity Cη . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Mean supply time 〈T 〉 . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Extended testing 21
4.1 The effect of the therapeutic distribution source . . . . . . . . . . . . . . 21
4.2 The effect of disease parameters . . . . . . . . . . . . . . . . . . . . . . . 22

5 Optimized physical distribution 22
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Maximum flow optimization . . . . . . . . . . . . . . . . . . . . . . . . . 25



1 Modeling epidemic spread

1.1 SIR model

To model epidemic spreading via air travel [1] we used a local susceptible-infected-
recovered (SIR) model with diffusive coupling, following Ref. [2]. In this framework
each node n (n = 1, . . . , N) represents a local population of Mn individuals, of which
Sn(t) are in the susceptible state S, In(t) are infected (I) and Rn(t) are recovered (R),
hence Sn(t) + In(t) + Rn(t) = Mn for all t. Within each node, we assume a well-mixed
population that locally follows SIR dynamics [3–6], namely

I + S α−→ 2I
I β−→ R, (1.1)

where α and β are the infection and recovery rates, respectively. The coupling between
two populations n and m is mediated by the flux of incoming/outgoing travelers via
air-traffic Fnm, quantifying the number of individuals flying from m to n per day.

This form of epidemic spreading gives rise to the following dynamic equations [2, 7]

dSn
dt

= −αSn(t)In(t)

Mn

+
N∑
m=1

(
wnmSm(t)− wmnSn(t)

)
(1.2)

dIn
dt

= α
Sn(t)In(t)

Mn

− βIn(t) +
N∑
m=1

(
wnmIm(t)− wmnIn(t)

)
(1.3)

dRn

dt
= βIn(t) +

N∑
m=1

(
wnmRm(t)− wmnRn(t)

)
. (1.4)

The first term/s on the r.h.s. capture the processes of infection, proportional to the
product of susceptible and infected individuals, and recovery, proportional to In(t). The
summation terms describe the diffusion of S, I or R individuals between local popula-
tions, where

wnm =
Fnm
Mm

(1.5)

is the per-capita flux from m to n, hence, e.g., wnmSm(t) is the volume of susceptible
passengers leaving m and entering n per day.

Finally, we introduce an invasion threshold ε, which activates the local SIR dynamics
only if the infected population rises above an ε fraction of the local population. We apply
this by adding a sigmoidal function [2]

σ(x) =
(x/ε)h

1 + (x/ε)h
(1.6)

to the relevant equation terms, providing

1



dSn
dt

= −αSn(t)In(t)

Mn

σ

(
In(t)

Mn

)
+

N∑
m=1

(
wnmSm(t)− wmnSn(t)

)
(1.7)

dIn
dt

= α
Sn(t)In(t)

Mn

σ

(
In(t)

Mn

)
− βIn(t) +

N∑
m=1

(
wnmIm(t)− wmnIn(t)

)
(1.8)

dRn

dt
= βIn(t) +

N∑
m=1

(
wnmRm(t)− wmnRn(t)

)
, (1.9)

hence infection is locally initiated only when In(t)/Mn exceeds ε, an invasion of n.

1.2 SIR model with treatment

We now consider drug distribution, which divides the population into two separate groups,
the treated population, who received the drug Q, and the untreated population who have
not yet acquired it. This leads to six distinct states, characterizing each node’s population:

SU, IU,RU, (1.10)

the untreated individuals who are susceptible, infected or recovered, vs.

ST, IT,RT (1.11)

the treated individuals in each state. The possible transitions in each node are now driven
by

SU +Q γρ−→ ST

IU +Q γρ−→ IT

SU +Q (1−γ)ρ−−−−→ SU

IU +Q (1−γ)ρ−−−−→ IU

IU + SU α−→ 2IU

IT + SU α−→ IT + IU

IU + ST α−→ IU + IT

IT + ST α−→ 2IT

IU β−→ RU

IT ζ−→ RT, (1.12)

where ρ is the drug consumption rate, β is the recovery rate from the untreated disease,
as appears in (1.1), and ζ > β is the recovery rate under treatment. The drug efficacy is
0 ≤ γ ≤ 1, capturing the probability of recovery (at rate ζ) following drug consumption,
hence for each consumed dose, at a rate ρ, a fraction γ of the consumers transitions to
the treated state, while a 1− γ fraction remains untreated. In other words, the first four
reactions represent the process of treatment, in which a single dose Q is consumed and
an untreated individual transitions with probability γ to the treated state. For a fatal
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disease, the untreated population perishes, hence RU
n (t), the number of individuals at

the RU state in n represents n’s deceased population, while RT
n (t), counting individuals

in the RT state, represents the number of saved individuals, who would, in the absence
of the therapeutic, also perish. In (1.12) we assume preemptive drug dissemination, in
which once the therapeutics become available, they are provided to the entire population -
susceptible or infected - such that a susceptible individual can undergo treatment directly
upon infection, without the additional lag for acquiring the therapeutic.

We arrive at the following six equations

dSU
n

dt
= −αS

U
n In
Mn

σ

(
In
Mn

)
− ργSU

n +
N∑
m=1

(
wnmS

U
m − wmnSU

n

)
(1.13)

dST
n

dt
= −αS

T
n In
Mn

σ

(
In
Mn

)
+ ργSU

n +
N∑
m=1

(
wnmS

T
m − wmnST

n

)
(1.14)

dIU
n

dt
= α

SU
n In
Mn

σ

(
In
Mn

)
− βIU

n − ργIU
n +

N∑
m=1

(
wnmI

U
m − wmnIU

n

)
(1.15)

dIT
n

dt
= α

ST
n In
Mn

σ

(
In
Mn

)
− ζIT

n + ργIU
n +

N∑
m=1

(
wnmI

T
m − wmnIT

n

)
(1.16)

dRU
n

dt
= βIU

n (1.17)

dRT
n

dt
= ζIT

n +
N∑
m=1

(
wnmR

T
m − wmnRT

n

)
, (1.18)

where

In = IU
n (t) + IT

n (t) (1.19)

is the total infected population - treated and untreated - in n. Note that we have now
eliminated the diffusion of the RU population in (1.17), as this state represents the
individuals who have died from the disease, and are thus redacted from the traveling
population.

The consumption rate ρ depends on the drug availability in n, being zero in the limit
of extreme shortage and approaching unity if there is sufficient availability to meet the
demand. Hence we denote the total number of available drug doses in n by Qn(t), and
its per-capita availability by

ϕn(t) =
Qn(t)

SU
n (t) + IU

n (t)
, (1.20)

in which the denominator represents the time-dependent demand in n. We then define
the rate ρ as

ρ(ϕn) =

 ϕn for ϕn < 1

1 for ϕn ≥ 1
= min{ϕn, 1}, (1.21)
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which in Eqs. (1.13) - (1.16) ensures that drug doses are consumed as long as there is
local demand, while avoiding excess consumption when Qn(t) > SU

n (t) + IU
n (t), in which

case n has more available doses than required for its current untreated population.
To close the set of equations (1.13) - (1.18) we track the drug availability Qn(t) in

each location n. Under centralized mitigation drug doses are manufactured and shipped
from a single source node s at a rate Cs (doses/day), providing

dQn

dt
= −ρ(SU

n + IU
n ) + θ(t− tR)δnsCs +

N∑
m=1

(
BnmQm −BmnQn

)
, (1.22)

where δns = 1 if n = s and δns = 0 otherwise. The delay function θ is the Heavyside
step-function

θ(x) =

 0 for x < 0

1 for x ≥ 0
, (1.23)

initiating drug production only at t ≥ tR, incorporating the response time required before
beginning drug distribution. The diffusion rates Bnm represent the fraction of drug-doses
in m that ship daily to n; see Sec. 2.2.

Under decentralized mitigation drugs are synthesized locally, with each node charac-
terized by its individual production rate Cn, providing

dQn

dt
= −ρ(SU

n + IU
n ) + θ(t− tR)Cn. (1.24)

Hence, Eqs. (1.13) - (1.18) with ρ taken from (1.21) capture the spread of the epidemic
and its competition with the distributed therapy. The distinction between centralized
and decentralized mitigation is provided by the Qn(t) equations, taken from (1.22) or
(1.24), respectively.

1.3 Normalized equations

Next we rewrite Eqs. (1.13) - (1.18) for the normalized populations sU
n (t) = SU

n (t)/Mn, s
T
n (t) =

ST
n (t)/Mn, j

U
n (t) = IU

n (t)/Mn, j
T
n (t) = IT

n (t)/Mn, r
U
n (t) = RU

n (t)/Mn and rT
n (t) = RT

n (t)/Mn,
obtaining

dsU
n

dt
= −αsU

n jnσ(jn)− γρsU
n +

N∑
m=1

(
Mm

Mn

wnms
U
m − wmnsU

n

)
(1.25)

dsT
n

dt
= −αsT

n jnσ(jn) + γρsU
n +

N∑
m=1

(
Mm

Mn

wnms
T
m − wmnsT

n

)
(1.26)

djU
n

dt
= αsU

n jnσ(jn)− βjU
n − γρjU

n +
N∑
m=1

(
Mm

Mn

wnmj
U
m − wmnjU

n

)
(1.27)
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djT
n

dt
= αsT

n jnσ(jn)− ζjT
n + γρjU

n +
N∑
m=1

(
Mm

Mn

wnmj
T
m − wmnjT

n

)
(1.28)

drU
n

dt
= βjU

n (1.29)

drT
n

dt
= ζjT

n +
N∑
m=1

(
Mm

Mn

wnmr
T
m − wmnrT

n

)
, (1.30)

where jn = jU
n (t) + jT

n (t).
Assuming a negligible fraction of one-directional trips, i.e. that immigration accounts

for a marginal part of the overall international mobility, we can write Fnm = Fmn, stating
that, on average, the number of passengers flying daily from m to n is the same as those
flying from n to m (see Supplementary Section 2). This enables us, using (1.5) to write

Fnm = Fmn ⇒ wnmMm = wmnMn, (1.31)

which allows us to further simplify Eqs. (1.25) - (1.30), bringing them to their final
normalized form

dsU
n

dt
= −αsU

n jnσ(jn)− ρsU
n +

N∑
m=1

Anm

(
sU
m − sU

n

)
(1.32)

dsT
n

dt
= −αsT

n jnσ(jn) + ρsU
n +

N∑
m=1

Anm

(
sT
m − sT

n

)
(1.33)

djU
n

dt
= αsU

n jnσ(jn)− βjU
n − ρjU

n +
N∑
m=1

Anm

(
jU
m − jU

n

)
(1.34)

djT
n

dt
= αsT

n jnσ(jn)− ζjT
n + ρjU

n +
N∑
m=1

Anm

(
jT
m − jT

n

)
(1.35)

drU
n

dt
= βjU

n (1.36)

drT
n

dt
= ζjT

n +
N∑
m=1

Anm

(
rT
m − rT

n

)
, (1.37)

where

Anm =
Mm

Mn

wnm = wmn (1.38)

is the normalized human flux matrix.
Next we normalize Eqs. (1.22) and (1.24) by tracking the per-capita drug availability

qn(t) = Qn(t)/Mn, which approaches unity when in n there is sufficient dosage for the
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entire local population. For centralized mitigation we obtain (1.22)

dqn
dt

= −ρ(sU
n + jU

n ) + θ(t− tR)δns

(
Cs
Mn

)
+

N∑
m=1

(
Znmqm −Bmnqn

)
, (1.39)

where ρ is taken from (1.21) and

ϕn(t) =
Qn(t)

SU
n (t) + IU

n (t)
=

qn(t)

sU
n (t) + jU

n (t)
(1.40)

in (1.20) remains unchanged under the normalization. The matrix

Znm =
Mm

Mn

Bnm (1.41)

represents the incoming flux of therapeutics from m to n.
We define the normalized central production rate as

Cs =
Cs∑N

m=1Mm

(1.42)

which approaches Cs = 1 when s has the capacity to produce and ship enough doses
for the entire global population each day. Under common conditions we expect Cs < 1.
Using this normalization Eq. (1.39) becomes

dqn
dt

= −ρ(sU
n + jU

n ) + θ(t− tR)δns

(
Ω

Ms

)
Cs +

N∑
m=1

(
Znmqm −Bmnqn

)
, (1.43)

where

Ω =
N∑
m=1

Mm (1.44)

is the global population. Note that we used the δ-function in the second term to substitute
Mn in the denominator of (1.39) by Ms in (1.43). Our normalization introduces the pre-
factor Ω/Ms, which quantifies the global population in units of s’s local population. This
factor arises because under centralized mitigation, to meet the global demand, the source
s must export doses in quantities that are of order Ω/Ms greater than its local population.
Therefore, a normalized capacity of Cs = 1 translates to a per-capita in s production of
Ω/Ms doses per day. Such level of production, which does not scale with Ms, but rather
with Ω is, in the majority of cases, significantly higher than practically attainable, hence
we expect, in real scenarios, that Cs < 1.

Under decentralized mitigation, Eq. (1.24) provides

dqn
dt

= −ρ(sU
n + jU

n ) + θ(t− tR)cn, (1.45)

where cn = Cn/Mn is the per-capita local synthesis rate. Here cn = 1 translates to a
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production and local distribution capacity of Mn doses per day, namely n can provide
therapy to its entire local population. As opposed to Cs, this normalization scales with
the local, rather than global, population, hence Cs = 1 in the single source node s and
〈cn〉 = 1 over all n = 1, . . . , N , both capture the case where the global demand can be
met within one day - in the former in a centralized fashion and in the latter, decentralized
across all N nodes.

1.4 The human flux matrix

To construct Anm from data we denote the mobility rate by [2]

µ =

∑N
m,n=1 Fnm∑N
n=1Mn

, (1.46)

in which the numerator quantifies the number of individuals flying per day and the
denominator equals to the total population, therefore providing the daily fraction of
individuals who seek air travel. This allows us to estimate a local population Mn by

Mn =
1

µ

N∑
k=1

Fkn, (1.47)

assuming that all people departing from n, i.e.
∑N

k=1 Fkn, represent a µ fraction of n’s
total population, Mn. We can now write

wnm =
Fnm
Mm

= µ
Fnm∑N
k=1 Fkm

(1.48)

and

Mm

Mn

=

∑N
k=1 Fkm∑N
k=1 Fkn

, (1.49)

providing

Anm = µ
Fnm∑N
k=1 Fkn

, (1.50)

which allows us to extract Anm directly from mobility data (Fnm, µ).
A similar derivation, using Eq. (1.47), helps us express the ratio Ω/Ms in (1.43) as

Ω

Ms

=

∑N
m,n=1 Fnm∑N
n=1 Fns

≡ κs. (1.51)

The parameter κs captures s’s fraction of the global population. For a typical source
node s, it scales as

〈κs〉 ∼ N, (1.52)

the number of nodes in the air-traffic network.
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Summary

Normalized equations for epidemic spreading with treatment:

dsU
n

dt
= −αsU

n jnσ(jn)− γρ(ϕn)sU
n +

N∑
m=1

Anm

(
sU
m − sU

n

)
(1.53)

dsT
n

dt
= −αsT

n jnσ(jn) + γρ(ϕn)sU
n +

N∑
m=1

Anm

(
sT
m − sT

n

)
(1.54)

djU
n

dt
= αsU

n jnσ(jn)− βjU
n − γρ(ϕn)jU

n +
N∑
m=1

Anm

(
jU
m − jU

n

)
(1.55)

djT
n

dt
= αsT

n jnσ(jn)− ζjT
n + γρ(ϕn)jU

n +
N∑
m=1

Anm

(
jT
m − jT

n

)
(1.56)

drU
n

dt
= βjU

n (1.57)

drT
n

dt
= ζjT

n +
N∑
m=1

Anm

(
rT
m − rT

n

)
(1.58)

Extracting Anm from (1.50).

Centralized mitigation:

dqn
dt

= −ρ(ϕn)(sU
n + jU

n ) + θ(t− tR)δnsκsCs +
N∑
m=1

(
Znmqm −Bmnqn

)
(1.59)

Decentralized mitigation:

dqn
dt

= −ρ(ϕn)(sU
n + jU

n ) + θ(t− tR)cn (1.60)

Taking ρ(ϕn) from (1.21) and κs from (1.51).

8



2 Implementation

2.1 Human mobility network and epidemic parameters

We used the Global Mobility Network dataset [8] to extract the empirical fluxes Fnm. The
dataset lists the daily travel of ∼ 8.91 × 106 passengers per day over the course of 365
days, i.e. i = 1, . . . , 365, between N = 1, 292 airports, linked through 38, 377 directional
air-routes. The mean flux from m to n is thus captured by

Fn←m =
1

365

365∑
i=1

F {i}n←m (2.1)

where F
{i}
n←m is the number of passengers flying from m to n in day i. In our analysis we

assume an almost symmetric flux matrix, as expressed in Eq. (1.31). Indeed we find that
practically all links are bi-directional, and that in the vast majority of existing links we
have Fn←m ≈ Fn→m, a similar passenger flux in both directions. Therefore, to construct
Fnm we used the symmetrized

Fnm =
Fn←m + Fn→m

2
, (2.2)

a network comprising 19, 614 bi-directional links, that represents a symmetric approxima-
tion of the empirical fluxes. Evaluating the local populations Mn as in (1.47) we obtained
Anm via (1.50). Following Ref. [2], we used µ = 1.7× 10−3 day−1 for the mobility rate.

The disease parameters in (1.53) - (1.58) were set to α = 2 day−1 and β = 0.2 day−1,
providing a reproduction rate of R0 = α/β = 10, and hence ensuring a highly contagious
pandemic, which, untreated, will be guaranteed to spread globally [3]. Other, less extreme
scenarios, are examined in Sec. 4. The treated population recovery rate is set to ζ = 1
day−1, and the efficacy is set to γ = 1. For the penetration threshold in σ(jn) we used
ε = 10−6 and h = 8 in (1.6). The term Ω/Ms = κs in (1.59) was evaluated using (1.51).
Finally, the response time tR was set to be at the onset of the pandemic spread, evaluated
as the time t when the infection levels have reached 10% of the projected peak infection
(Fig. S1). For the parameters listed above, this provides tR = 12 days. As our source
node we selected s=ITM (Itami International Airport, Osaka, Japan), testing the effect
under other sources in Section 4.

The capacities Cs and cn were set variably to test the performance of each method,
centralized vs. decentralized with varying global/local capacities. In the case of decen-
tralized mitigation the capacities are distributed, potentially taking different values in
different locations n. Therefore, if e.g., we set the mean capacities to Cs = 〈cn〉 = C,
then Cs = C, but cn ∼ N (C, σ2) is a random variable extracted from a normal distribu-
tion with mean C and standard deviation σ = 0.1C.

The above represents our default parameters, used, e.g., to produce Fig. 1 of the
main text; in Figs. 2 - 3 we consistently vary some of these parameters, such as tR or γ
as reported in the main text. Excluding the varied parameter in each panel, e.g., tR in
Fig. 2a, the remaining parameters continue to be fixed at the above default values. The
setting used to produce Fig. 4 of the main text are explicated in Sec. 3. In Sec. 4 we
examine the behavior of our system under different disease parameter sets, varying the
reproduction rate R0 = α/β.
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0

I(TPeak)

ηI(TPeak)

I(
t)

tR TPeak
t

Figure S1: Selecting the response time. To select tR we tracked the global level of
infection, I(t) =

∑N
n=1 In(t), vs. t, and set tR to be the time where I(t) has reached an η

fraction of its peak value, namely I(tR) = ηI(TPeak). Here we set η = 0.1.

In our simulations we track the epidemic spread using a 4th order Runge-Kutta stepper
to iteratively solve Eqs. (1.53) - (1.60), with the relevant parameters as described above.

2.2 Drug distribution networks

The networks Znm and Bmn in (1.59) represent the fluxes of therapeutic doses to and from
n respectively. These fluxes depend on the distribution strategy, which in turn impacts
the efficiency of the drug dissemination. We consider three different constructions of
these networks - two that build on the existing air-routes, and a third that achieves the
highest efficiency by exerting extensive control over the international aviation network.

Diffusive distribution (Network 1). The results presented in the main text were ob-
tained by setting

Znm = Bmn =
Fnm∑N
k=1 Fkm

. (2.3)

This represents diffusive distribution, in which the drug spreads along similar routes as
the human travelers. The rationale is that in each node m the qm(t) available doses are
split among each of m’s outgoing destinations. The fraction of these doses to reach n
is equal to the fraction of passengers departing from m whose destination is n, namely
we calculate the flux from m to n (numerator) as a fraction of the total flux outgoing
from m (denominator). This natural distribution scheme requires no intervention in the
aviation networks, as the busy routes, mobilizing many human travelers, also naturally
ship a larger fraction of commodities, in this case - drug doses. It also leads, on average,
to a fair distribution, as airports with large incoming fluxes, which are typically highly
exposed to the spreading pathogens, also receive increased fractions of the therapy. Under
this construction, the networks Znm = Bmn are symmetric, as they can both be expressed,
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using Eq. (1.50), as

Znm = Bmn =
1

µ
Anm, (2.4)

capturing an effective travel network in which 100% of passengers, in this case the avail-
able drug doses, travel each day (equivalent to setting µ = 1 in (1.50), i.e. a mobility
rate of 100%).

Directed distribution (Network 2). As an alternative to the above network we consider
a direct flight network, in which the therapeutic is shipped in directed routes from s to
all destinations. First we consider the binary air-route network Gnm, which satisfies

Gnm =

 1 if Fnm > 0

0 if Fnm = 0
, (2.5)

capturing all existing air-routes, regardless of their volume of traffic. As the therapeutic
is shipped from s to all destinations it relies on the existing routes Gnm, but avoids
cyclic pathways that may bring it back closer to s. This resembles pre-planned routes,
which, on the one hand, must rely on existing lines, but on the other hand seek the most
efficient routing from source to destination, avoiding cyclic pathways. To construct this
directed network, we first used the depth first search (DFS) algorithm [9] starting from
the therapeutic source node s. At the first step one traverses along all existing Gmn links
from s to its nearest neighbors, i.e. s’s first generation descendants. One then continues
to advance along the edges from each of these descendants, seeking additional new second
generation descendants, then third generation and so on. In this process the Gnm links
traversed in each step may be in one of four groups (Fig. S2a): Tree links - linking i-
generation nodes to i+ 1-generation nodes; Forward links - linking i-generation nodes to
i+k-generation nodes (k > 1); Back links - linking i-generation nodes to i−k-generation
nodes (k ≥ 1); Cross links - all remaining links, connecting separated branches of the
spanning tree. Once we have covered the entire network we eliminate all Back links
to obtain the s-dependent directed air-routes network G

{s}
nm, in which only the routes

leading away from s remain. Applying this algorithm to the air-traffic network, starting
from s=ITM we arrive at a directed G

{s}
nm with 19, 605 directed links, out of the original

Gnm, which comprised 38, 377 links, of which the vast majority were bi-directional, i.e.
Gnm = Gmn.

To obtain the relative fluxes along the directed links of G
{s}
nm we use the empirical

fluxes of Fnm to construct the acyclic

F {s}nm = G{s}nmFnm, (2.6)

capturing the volume of (human) travel along each directed route. The available thera-
peutic at each node m is split among the existing outgoing routes, with flux proportional
to F

{s}
nm . Indeed, the busiest routes, which carry the largest volume of human travelers

are also the ones shipping the largest volume of commodities, in this case drug doses.
This provides the outgoing fluxes from n to m as
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Bmn =
F
{s}
mn∑N

k=1 F
{s}
kn

, (2.7)

allowing us to construct Znm from (1.41), expressing Mn and Mm via (1.47).

Balanced distribution (Network 3). In the main text we have shown that the pri-
mary lacuna of commodity flow is that, relying on existing air-travel fluxes, it inevitably
leads to an unbalanced distribution, in which few nodes receive the therapeutic in excess
quantities, while others remain deprived. Hence we consider a balanced network, which
calculates for each node, all the downstream destinations along its descending routes, and
divides the therapeutics accordingly. This represents an improved, albeit not optimal,
physical distribution scheme. Indeed, a fully optimal distribution scheme is extremely
difficult to attain, and practically impossible to execute. In fact, even the currently
proposed balanced scheme requires a level of control over the air-traffic network that is
extremely unlikely to apply in realistic scenarios. Moreover, optimal schemes in general,
and our balanced scheme in particular, require us to intervene in the natural flow of com-
modities, by enforcing external control over the volumes of shipments that travel between
destinations, hence they potentially come at a tremendous economic price-tag. Still, we
examine this best case scenario, assuming a fully controlled balanced distribution scheme,
as a test case for centralized mitigation under a well-designed distribution network.

To construct the balanced network we repeated the process leading to Network 2,
constructing Gnm from (2.5) and using DFS from the source s. This time, however,
we only kept Tree links, leading to an optimized network, in which all target nodes
n = 1, . . . , N are linked to the source s via Gnm’s shortest paths. Hence we arrive at
G
{s}
nm, in which there is a single directed path Π(s→ n) from s to all target nodes n. This

path includes a minimal number of flight transfers, as enabled by the existing routes in
Gnm, hence representing an efficient distribution network, which adheres to the bounds
of our current overall aviation capacity.

Each node n is then assigned a branching index Kn, quantifying the total population
in all of the nodes that are downstream from n. To be specific, consider the path

Π(s→ i) =

{
s

G
{s}
ks−−→ k

G
{s}
lk−−→ l . . .m

G
{s}
im−−→ i

}
, (2.8)

providing the shortest sequence from s to the target node i. For some intermediate node
m we define the group (Fig. S2b)

Km =
{
i
∣∣m ∈ Π(s→ i)

}
, (2.9)

which consists of all nodes i whose shortest path from s traverses m, namely nodes that
are downstream from m. Note that m itself is also included in Km. Additionally, if m is
a leaf node, namely a node with no outgoing links then Km = {m}, including only the
node m itself. The corresponding branching index is defined as

Km =
∑
i∈Km

Mi, (2.10)
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Figure S2: Constructing the centralized distribution networks Bmn. We con-
structed three distribution networks. (a) Diffusive (Network 1), comprising all links of
the original air traffic network; Directed (Network 2), in which we eliminated Back links
(green) to avoid cyclic pathways. Hence shipped doses avoid returning towards the source
s (here represented by node number 1). Balanced (Network 3), in which we eliminated also
Forward links (red) and Cross links (blue), providing a perfect tree network with a single
directed route between s and all target nodes. (b) In Balanced (Network 3) each node n
is assigned a branching index Kn quantifying the total population downstream from n,
i.e. sum of Mi over all nodes i whose path from the source 1 traverses n. For example,
the nodes downstream from 6 are 9, 10 and 6 itself, hence K6 = M6 +M9 +M10 = 10. To
achieve a balanced spread of the therapeutic, each node must receive doses in quantities
proportional to its branching index, to serve all its downstream target nodes. Therefore,
in Network 3 the incoming link to n is proportional to Kn (Eq. (2.11)).

namely the total population in all nodes located downstream from m. Equation (2.10)
captures the amount of doses that must be delivered from s to m if the entire population
is to be served. The flux from n to m is then designed to be proportional to Km, namely

Bmn =
G
{s}
mnKm∑N

k=1 G
{s}
kn Kk

, (2.11)

ensuring that of the available doses qn(t) at n, the share that reaches m is balanced with
m’s projected downstream shipments, amounting to Km. As before Znm is constructed
from (1.41).

In Fig. S3a we present εRes vs. C as obtained for Networks 1 - 3 (orange, yellow,
brown). For comparison we also show the results of decentralized mitigation (green).
As expected decentralized mitigation achieves consistently better results compared to
all three centralized distribution schemes. Among the centralized schemes the balanced
Network 3 provides the best results, as expected by its egalitarian design. Interestingly
Notwork 1, incorporating un-directed diffusive distribution is superior to the directed
Network 2. The reason it that in the absence of cycles, a large volume of the available
therapeutic is accumulated at the final destination nodes (leafs), becoming effectively lost.
The diffusive Network 1 allows the drugs to continue cycling until reaching a destination
where they are needed, and hence consumed. The Gini index is presented in Fig. S3b,
showing a similar trend among the three centralized distribution strategies.
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3 Heterogeneity in network-based distribution

3.1 The rate matrix ξsn

Consider the spread of a therapeutic under centralized mitigation via Eq. (1.59), namely

dqn
dt

= −ρ(ϕn)(sU
n + jU

n ) + θ(t− tR)δnsκsCs +
N∑
m=1

(
Znmqm −Bmnqn

)
. (3.1)

To track the supply distribution across all nodes let us ignore the local consumption,
i.e. first term on r.h.s., and, for simplicity, set tR = 0, and the normalized capacity to
κsCs = 1. Using our diffusive spread of Eq. (2.3) we arrive at

dqs
dt

= 1 +
N∑
m=1

Bms(qm − qs) (3.2)

dqn
dt

=
N∑
m=1

Bmn(qm − qn) n 6= s, (3.3)

in which one unit of the therapeutic is produced at s per unit time, then diffuses through
the distribution network Bmn to reach all other nodes. To asses the rate of the incoming

therapeutic at some destination n consider a path Π(s→ n) = {s Bms−−→ m
Blm−−→ l . . . k

Bnk−−→
n}, comprising a sequence of nodes and links along the drug distribution network from s
to n. Each link Bij in this pathway represents the fraction of doses present in j that will
be routed to i, i.e. Bij = Bi←j. Hence a unit dosage exiting s that travels to n through
Π(s→ n) will be diluted to

ξ
(
Π(s→ n)

)
=

∏
i,j∈Π(s→n)

Bij. (3.4)

This represents the rate by which Π(s→ n) delivers the therapeutic to n. In case there
are multiple paths between s and n, the total rate ξsn can be approximated by the sum
over all routes as

ξsn =
∑

Π(s→n)

ξ
(
Π(s→ n)

)
. (3.5)

For routes of length l this can be expressed as a matrix product ξ
{l}
sn = [Bl]sn, i.e. the

s, n entry of Bl. Therefore, the total rate of incoming therapeutics into a target node n
is the sum over the contribution of all individual pathways, expressed by

ξsn =

LMax∑
l=0

Bl


sn

, (3.6)

as appears in Eq. (6) of the main text. Taking Bnm from the appropriate network (Net-
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works 1 - 3) we obtain the rates ξsn, providing the amount of doses qn reaching destination
n per each unit shipped from the source s. The density function P (ξ) captures the frac-
tion of nodes whose rate is ξsn ∈ (ξ, ξ + dξ). In Fig. S3c - e we present P (ξ) as obtained
from Networks 1 - 3, setting the source node to be s =ITM. We find that in our air-travel
network the longest path has five legs, therefore we set LMax = 5 in (3.6).

A node n is considered saved (Sn = 1) if, under treatment, its mortality rate is reduced
to at least half of that observed in the absence of treatment, namely

rU
n (t→∞)

rn(t→∞)
≤ 1

2
, (3.7)

where rU
n (t) is extracted from Eqs. (1.53) - (1.60) and rn(t) from the untreated (1.2) -

(1.4). The probability of node n to be saved is strongly dependent on the availability of
the therapeutic at n, and hence on its rate ξsn. To observe this we show in Fig. S3c -
e the probability P (S ∩ ξ) for a random node n to have ξsn ∈ (ξ, ξ + dξ) and also have
Sn = 1. As predicted, we find that the uneven dilution strongly impacts the inequality
in the S-probability, where nodes with large ξsn have a much higher probability of being
saved than those with small ξsn. The effect is less pronounced in Network 3, which is
specifically designed to balance the inequality in Bnm.

3.2 Supply patterns in random networks

3.2.1 Network pathways

Consider a random symmetric binary network Gnm = Gmn with an arbitrary degree-
distribution P (K), and randomly selected symmetric weights Wnm = Wmn. Combining
these two matrices we construct a model transportation network Fnm = GnmWnm, result-
ing in a weighted network that is extracted from the configuration model ensemble [10].
We can now construct the consequent distribution network Bmn, whose weights capture
the volume of commodity flow from n to m, via Eq. (2.3) as

Bmn =
GnmWnm∑N
k=1GkmWkm

. (3.8)

In (3.8) the weighted degrees Sm =
∑N

n=1Bmn are normalized to unity, as in Network
1 of Sec. 2.2, capturing the fact that all incoming commodities must also flow (or be
consumed) out to other destinations, hence the total out-flux amounts to unity.

We define the un-weighted degree of m as

Km =
N∑
n=1

Gmn, (3.9)

counting the number of routes in/out of m, allowing us to express Sm as

Sm = Km

 1

Km

N∑
n=1

Bmn

 = Km 〈B〉m , (3.10)
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Figure S3: The effect of the centralized distribution network Bmn. We examined
three constructions of Bmn: Network 1 (Diffusive), Network 2 (Directed) and Network 3
(Balanced). (a) - (b) εRes and the Gini coefficient vs. C for all networks. As expected
Network 3 exhibits the highest efficiency and equality (brown) as it is specifically designed
to generate an even spread of the therapeutic. Centralized mitigation (green), however,
remains the optimal strategy. (c) - (e) P (ξ) vs. ξ for all three networks. We find that
ξsn is a determining factor of efficiency, with the high rate nodes having the highest
probability of being saved. Shades of blue represent increasing capacities: Network 1 -
C = 0.01, 0.1, 0.3, 1.0, 3.0, 10; Network 2 - C = 0.002, 0.02, 0.2, 2.0, 20, 2000; Network 3
- C = 0.001, 0.01, 0.03, 0.06, 0.1, 0.3. The effect of heterogeneity is most pronounced in
Network 2, consistent with its lowest performance levels among the three networks. Note,
that in Network 2 the power-law P (ξ) is truncated for large ξ. As expected, heterogeneity
is least pronounced in Network 3, which is designed for balanced distribution.
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where 〈B〉m is the average weight of m’s Km outgoing links. Using the fact the Sm = 1
we can extract the average weight as

〈B〉m =
1

Km

, (3.11)

hence for a node with Km outgoing routes, we have each route carrying, on average,
1/Km of the available commodities for further shipping. Next we consider m’s residual
degree

Km,� =
1

Km

N∑
n=1

GnmKn, (3.12)

capturing the average un-weighted degree of m’s nearest neighbors. Averaging over all
nodes (m = 1, . . . , N) we obtain the network’s mean residual degree

K� =
1

N

N∑
m=1

 1

Km

N∑
n=1

GnmKn

 , (3.13)

which expresses the average degree over all nearest neighbor nodes. This average neighbor
degree is also commonly expressed as [10]

K� =

〈
K2
〉

〈K〉
, (3.14)

where 〈Kn〉 represents the n-th moment of P (K). Equation (3.11) allows us to evaluate
the average weight of a link associated with nearest neighbor nodes as

B� =
1

K�
. (3.15)

The analysis above of the residual degree K� helps us characterize the pathways in
Gnm, and hence, through (3.5), obtain the distribution of the rates ξsn. Indeed, the
average node has 〈K〉 nearest neighbors, which, in turn, have, on average K� neighbors
of their own. Therefore, a node has, on average, 〈K〉K� next neighbors and 〈K〉K2

�
neighbors at distance l = 3, and so on. For a sufficiently large network, with N → ∞,
this predicts that the number of nodes at distance l from a randomly selected node grows
as N(l) = 〈K〉K l−1

� , an exponential growth that we approximate by [10]

N(l) ≈ eλl, (3.16)

where λ = lnK�. Equation (3.16) is valid as long as l . λ−1 lnN , capturing the network’s
average path length 〈l〉, beyond which the shells N(l) cease to grow exponentially. It
follows from this equation that starting from an arbitrary source node s, the probability
of a randomly selected node n = 1, . . . , N to be at distance lsn = l is

P (l) ∼ eλl, (3.17)

a valid approximation as long as l ≤ 〈l〉.
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3.2.2 Rate distribution P (ξ)

In a large random network, due to the local tree-like structure, there is often a single
shortest path Π(s → n) between a source s and its target n, whose length is lsn. The
typical nodes along such path are, by definition, nearest neighbor nodes, and hence, on av-
erage their degree is K�, and the lsn weights linking between them are B�. Consequently,
the rate ξsn in (3.5) can be approximated by

ξsn = Blsn
� = K−lsn� . (3.18)

Therefore, on average, we have rates decaying exponentially with network distance l, as

ξ(l) = e−λl, (3.19)

where, as above (Eqs. (3.16) and (3.17)) λ = lnK�. Equation (3.19) predicts that the
average node at distance l from s receives the therapeutic at a rate proportional to e−λl,
portraying an exponential dilution as the drugs propagate downstream from s.

We can now use (3.19) to obtain the density function P (ξ), by transforming from the
random variable ξ to the variable l, whose distribution is given by P (l) in (3.17). Hence
we write

P (ξ) dξ = P (l)

∣∣∣∣ dldξ

∣∣∣∣ dξ. (3.20)

Taking l from (3.19) we have l = −λ−1 ln ξ and hence | dl/ dξ| ∼ ξ−1. Using (3.17) and
(3.19) we can also write P (l) ∼ ξ−1, hence, together we arrive at

P (ξ) ∼ ξ−ν , (3.21)

where ν = 2, precisely the prediction of Eq. (7) in the main text.
This result is obtained under the configuration model ensemble, i.e. random net-

work/weights. More generally, e.g., in the presence of degree/weight correlations, the
exponent ν can take different values. However the power-law form of (3.21) is expected
under almost any network construction. Indeed, as long as the network exhibits an expo-
nential growth of the form (3.17), and the downstream dilution exhibits an exponential
decay of the form (3.19), we expect a scale-free P (ξ). To observe this, consider, for
example that the two exponential functions exhibit different growth/decay rates, i.e.

P (l) ∼ eλ1l (3.22)

ξ(l) ∼ e−λ2l. (3.23)

Under these conditions we continue to have | dl/ dξ| ∼ ξ−1, however P (l) now follows
P (l) ∼ ξ−λ1/λ2 . Using these expressions in (3.20), we find that the scaling P (ξ) ∼ ξ−ν

remains, only that now the scaling is

ν =
λ1

λ2

+ 1, (3.24)

18



which expectedly provides ν = 2 in case λ1 = λ2. Such generalized scaling (ν = 1.4) was
indeed observed in the empirical aviation network.

3.2.3 Critical capacity Cη

Consider the probability density P (ξ). For a finite system of N nodes it has a minimal
rate, ξmin, such that ∫ ∞

ξmin

P (ξ) dξ = 1. (3.25)

Denoting the normalization constant by Z, we express P (ξ) as P (ξ) ∼ Zξ−ν , and use
(3.25) to obtain

Z

∫ ∞
ξmin

ξ−ν dξ = 1⇒ Z = (ν − 1)ξν−1
min . (3.26)

The maximal rate for a system of N nodes can be obtained from P (ξ ≥ ξmax) = 1/N ,
namely, the probability to exceed ξmax is 1/N , providing

Z

∫ ∞
ξmax

ξ−ν dξ =
1

N
, (3.27)

and in turn

ξν−1
max =

NZ

ν − 1
. (3.28)

Taking Z from (3.26) we obtain (
ξmax

ξmin

)ν−1

= N. (3.29)

At the same time, we can independently evaluate that ξmax = ξss, namely the rate at the
source itself, which is by definition equal to unity, and therefore

ξmin = N
1

1−ν . (3.30)

For example, under ν = 2, we find that ξmin, which represents the rate at the majority of
the nodes is approximately 1/N , an extremely low rate in case N →∞.

Next we seek the critical capacity Cη to save an η-fraction of nodes. Consider a node
n with rate ξsn. For each unit therapeutic produced at s, n receives a fraction ξsn, and
hence under capacity Cs, the supply rate at n is of the order of Cn = ξsnCs. The meaning
is that the therapeutic availability at n, ignoring local consumption and just focusing on
the supply from s, is, roughly, qn(t) ∼ Cnt. For n to be saved, i.e. Sn = 1, we require
Cn ∼ 1, such that n is fully supplied (qn(t) = 1) within a finite time. Therefore, the
critical ξsn for saving n is approximately

ξCrit =
1

Cs
. (3.31)
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To save an η fraction of all nodes we set Cs in (3.31) to Cs = Cη, namely a critical rate
of ξCrit = 1/Cη, and require that all nodes with ξsn ≥ ξCrit are saved. Therefore, we write

Z

∫ ∞
ξCrit

ξ−ν dξ = η, (3.32)

setting the fraction of nodes whose rate exceeds the saving threshold ξCrit to η. We obtain

1

ν − 1
Zξ1−ν

Crit = η, (3.33)

which, using (3.26), provides

ξCrit = η
1

1−ν ξmin ∼ N
1

1−ν , (3.34)

where in the last step we used (3.30) to obtain ξmin’s scaling with N . Finally, we use
(3.31) to convert ξCrit to the consequent critical capacity, yielding

Cη =
1

ξCrit

∼ Nφ, (3.35)

where φ = 1/(ν − 1), as appears in Eq. (8) of the main text.

3.2.4 Mean supply time 〈T 〉

As explained above, under a given capacity Cs, node n, whose rate is ξsn receives a
Cn = Csξsn fraction of its demand per unit time. Therefore its supply time TSupp,n to fill
up its demand (i.e. qn(t) = 1), follows

TSupp,n =
1

Csξsn
∼ 1

ξsn
. (3.36)

This allows us to transform from P (ξ) to P (T ), capturing the probability density to
observe TSupp,n ∈ (T, T + dT ). We write

P (T ) dT = P (ξ)

∣∣∣∣ dξ

dT

∣∣∣∣ dT, (3.37)

and, using P (ξ) ∼ ξ−ν , ξ ∼ 1/T , we arrive at P (T ) ∼ T ν−2. As before we seek the
normalization factor ZT via

ZT

∫ Tmax

Tmin

T ν−2 dT = 1, (3.38)

which provides

ZT =
ν − 1

T ν−1
max − T ν−1

min

≈ (ν − 1)T 1−ν
max . (3.39)

The final approximation, relying on Tmax � Tmin, is relevant as long as ν > 1, a condition
which is anyway necessary for P (ξ) to be a valid (normalizable) density function. The
mean supply time is given by
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〈T 〉 = ZT

∫ Tmax

Tmin

T ν−1 dT ≈ ZTT
ν
max, (3.40)

once again - neglecting the Tmin limit. Taking ZT from (3.39) we arrive at 〈T 〉 ∼ Tmax,
indicating that the mean supply time is governed by the latest supplied nodes. Indeed,
given the scale-free nature of P (ξ), the low ξ (and hence large T ) nodes represent the
majority of the destinations, and therefore they are the ones that determine the average
supply times of the therapeutic. To estimate Tmax we recall from (3.36) that it the inverse
of ξmin. This allows us to use the scaling relationship of (3.30) to write

〈T 〉 ∼ 1

ξmin

∼ Nφ, (3.41)

with φ = 1/(ν − 1), as before. Equation (3.41) is precisely the prediction of Eq. (10) in
the main text.

4 Extended testing

4.1 The effect of the therapeutic distribution source

In centralized mitigation each outbreak is characterized by the disease origin at node
o and by the therapeutic source from node s, where drugs are produced and shipped
globally. In the main text we arbitrarily selected o to be the Bujumbura International
Airport (BJM) in Burundi (Fig. S4a, red star), and s to be the Osaka International Air-
port (ITM) in Japan. In Fig. S4c - k we show εRes and the Gini index vs. C as obtained
from centralized vs. decentralized distribution for a selection of alternative sources. As
expected, the specific source has little impact on the therapeutic efficiency, with decen-
tralized consistently outperforming centralized. Ideally, one expects the best outcome to
be observed if s and o are close to each other. Indeed, at the early stages of the outbreak
the nodes in the vicinity of o are most severely impacted, and hence if these neighbors of
o are efficiently treated, by, e.g., setting s in close proximity, this may lead to a mean-
ingful reduction in global mortality. This goal is best served if s is directly linked to
o’s neighborhood, in which case the local spread of the therapeutic is most efficient. To
observe this we measured εRes vs. ξos, providing an effective distance measure, along the
paths from s to o. Setting C = 0.2, we find that, indeed, mortality is higher when ξos is
small (Fig. S4b), however the effect is marginal.
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4.2 The effect of disease parameters

In the main text we examine the effect of centralized vs. decentralized distribution under
the extreme conditions of a highly fatal epidemic, in which R0 = α/β = 10, conditions
that, untreated, lead to an almost complete demise of the human population, i.e. rn(t→
∞) → 1 for all n. In Fig. S5 we examine the results under varying disease parameters,
freezing the recovery rate at β = 0.2 day−1, and setting α such that R0 = 2, 3, . . . , 10.
As expected, we find that in all cases, decentralized mitigation consistently outperforms
the centralized alternative. Note, that the parameter R0 not only impacts the level of
contagion, but also affects the propagation times of the epidemic. This fact touches on
the relevant selection of our response time tR, which must be adapted as R0 is changed.
Indeed, setting e.g., tR = 12 days, as we do forR0 = 10, would represent an unrealistically
early response under R0 = 2, which, over the course of 12 days remains still in its early
embryonic stage, likely not even detected as a potential threat. Therefore, to conduct
a controlled examination of the impact of R0, we update our response time tR as we
change the disease parameters. We consistently select tR to be the time t when the global
infection level I(t) has reached an η fraction of its peak value, setting η = 0.1 (Fig. S1).

5 Optimized physical distribution

5.1 Overview

To examine the potential efficiency of the therapuetic distribution under centralized miti-
gation we used the commodity flow framework [11] to design an optimal shipping strategy.
We consider the air-traffic network as our underlying flow network, upon which the single
source node s must ship the therapeutic in sufficient quantities, as given by the initial
demands dn(0), to all target nodes n = 1, . . . , N . Each link is characterized by a non-
negative carrying capacity Cnm, capturing the maximal volume of the therapeutic that
can be transferred from m to n through that link per unit time (day). Our goal is to
meet the demand of all nodes as efficiently as possible, i.e. in minimum time, within the
shipping constraints provided by Cnm.

An important consideration that arises from our earlier discussion is that distribution
inequality can severely impact the efficiency of a therapeutic in battling the epidemic.
Therefore we wish to distribute the therapeutic to all destinations in parallel, avoiding
serial strategies that first fill up selected destinations, then continue shipping to others.
To ensure such strategies are avoided we implemented a day-by-day optimization strategy,
in which we maximize the commodity flow in each day t = 1, . . . , T . Hence, at each day t
we fill up as much of the current demand of all nodes as possible within that single day.
We then update the remaining demand dn(t) → dn(t + 1) and reiterate the process at
day t+ 1, until all demands are satisfied at t = Tmax = maxNn=1(TSupp,n).
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Figure S4: The effect of the therapeutic distribution source s. (a) Simulating
an outbreak at o =BJM (red star) we selected 9 different sources s for the therapeutic
distribution (blue dots). (b) The efficiency εRes vs. the rate ξos between the outbreak
and the therapeutic source nodes (C = 0.2). (c) - (k) For each of the 9 sources we
tested εRes and the Gini coefficient under centralized mitigation (yellow) and compared
to decentralized mitigation (green).
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Figure S5: The effect of disease parameters. We tested decentralized (green) vs.
centralized (yellow) mitigation for a range of disease parameters R0 = 2, . . . , 10, finding
that under all conditions decentralized outperforms centralized mitigation.
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5.2 Maximum flow optimization

At t = 0 we select a source node s, and set the initial demands of all other nodes to
dn(0) = Mn, i.e. each node’s demand is equal to its population size. In each day the
therapeutic is distributed from s, aiming for maximum flow [12–14], namely seeking to
maximize the number of doses exiting s and spreading to all other nodes. Denoting
the volume of doses shipped from m to n on day t by Fnm(t), this optimization scheme
translates to

Maximize Fs(t) =
N∑
m=1

(
Fms(t)−Fsm(t)

)
. (5.1)

Using this notation the net supply of doses entering a target node n throughout day t
is −Fn(t) =

∑N
m=1[Fnm(t) − Fmn(t)], and hence at the end of each day the demand is

reduced by precisely that amount (note that the minus sign in −Fn(t) represents incoming
flux to n, a counter-intuitive notation, which is motivated by the fact that Fs(t) - positive
flux - represents drugs exiting the source). Consequently, the n-demand at day t is given
by

dn(t) = Mn +
t−1∑
τ=0

Fn(τ), (5.2)

starting at dn(0) = Mn, and reducing the demand due to the cumulative therapeutic
influx as time advances. The maximization of (5.1) is subject to two constraints that
must be satisfied at all t:

0 ≤ Fnm(t) ≤ Cnm For all n,m = 1, . . . , N (5.3)

0 ≤ −Fn(t) ≤ dn(t) For all n = 1, . . . , N, n 6= s. (5.4)

The first constraint (5.3) ensures that all daily shipments from m to n do not exceed the
carrying capacity Cnm; the second constraint (5.4), with dn(t) taken from (5.2), restricts
nodes from accumulating therapeutics in excess of their remaining demand, therefore
bounding the total incoming doses at day t, i.e. −Fn(t), by the current demand dn(t).

To solve the maximum flow optimization problem of (5.1) - (5.4) we used an iterative
approach (Fig. 4a, main text): at each time step t we use linear optimization to maxi-
mize Fs(t) under the two constraints. This provides us with day t’s optimized shipping
strategy, detailing the daily fluxes Fnm(t) through all routes Cnm. With these fluxes we
calculate the net influx into each node −Fn(t), and update the demands dn(t+1) in (5.2)
accordingly. We then use these updated demands to obtain the shipping strategy for the
next day t+ 1, repeating the process until all demands reach dn(TSupp,n) = 0 at the final
step t = Tmax. Note that in this process we disregard the flight times themselves, which,
if accounted for, might incur additional delays. Instead we assume that the daily time
unit accounts also for the lag of each route [15].

Implementation. To construct the carrying capacities Cnm we used the passenger fluxes
Fnm, as obtained from the air travel data [8]. We assume that the daily volume of cargo
shipped across the m→ n route is proportional to the number of passengers Fnm for that
route. This allows us to write
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Figure S6: The effect of the cargo carrying capacity. We constructed Cnm in (5.5)
using three different values for the passenger/cargo ratio ω, and used the maximum flow
optimization of (5.1) - (5.4) to obtain the supply rate distribution P (ξ). As expected
the average rate increases as ω is increased, however the fat-tailed (power-law) nature of
P (ξ) remains unaffected, indicating that distribution inequality continues to govern the
therapeutic dissemination.

Cnm = ωFnm, (5.5)

where ω is the number of doses that can be shipped as cargo per traveling passenger. Our
results are not sensitive to the specific value of ω, as any re-scaling of Cnm (capturing
doses/day) is equivalent to an arbitrary re-scaling of the time units, having no bearing
on the essential findings of Fig. 5 (main text). To select a realistic value, we assume each
dose to have a gross weight of ∼ 0.1 kg, which, taking the average passenger mass at
∼ 100 kg, provides a ratio of ω ∼ 103. Therefore we selected ω in the range 102 − 104

(Fig. S6), with the results in the main text obtained for ω = 103. The initial demands
were set to dn(0) = Mn, extracting Mn from the data via (1.47).
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