# Supplementary Information for

# Fine Particulate Matter Damages and Value Added in the United States Economy

Peter Tschofen\*, Inês L. Azevedo, Nicholas Z. Muller

\*corresponding author

Email: <u>ptschofen@cmu.edu</u>

# This PDF file includes:

Supplementary text Figures S1 to S3 Tables S1 to S6 References for SI reference citations

#### 1. Data Sources

## **1.1. NEI Data Treatment**

Emissions data were downloaded from EPA's website (1–3) in July 2018 and reflect the most recent version of the NEI available (for 2014, this is version 2) at time of publication. See the repository for the paper (<u>https://github.com/ptschofen/PNAS\_SectoralMortality</u>) with links to obtain original data files of larger sizes. We then filtered for the pollutants of interest and aggregated all point sources and area sources into separate files. Sources from tribal lands, as well as all non-contiguous territories of the U.S. were excluded. Mobile sources, i.e. sources that do not have a FIPS county code assigned to them, were allocated to their respective state based on the relative shares of NOx emissions from area sources for each county within that state.

#### 1.2. BEA Data

All economic data were extracted directly from spreadsheets downloaded from the Bureau of Economic Analysis (BEA) website (4).

# 1.3. CDC Data

Center for Disease Control and Prevention (CDC) data on baseline mortality rates for age groups in 5-year intervals are used for marginal damage calculations in the AP3 model. They were downloaded from CDC's WONDER database (5) in August 2018. CDC does not publish mortality rates for certain counties and age groups, so a fraction of rates had to be imputed based on state, regional or national averages.

#### **1.4. Population Data**

Population data was obtained from the intercensal county population totals (6) for 2008 and population estimates on the Census Fact Finder website (7) for 2011 and 2014.

#### **1.5. Effective Heights Calculations**

It is crucial to match all emissions in the country with their respective marginal damage not just by location (i.e. county) but also to account for the release height of these emissions (marginal damage estimates within a county vary by a factor of 2 to 3, depending on whether the emissions occur at ground level or through smokestacks). Different IAMs provide marginal damage estimates for different effective heights of release: (1) AP3: ground level, low stacks (<250m), medium stacks (250m < x < 500m) and tall stacks (>500m); (2) EASIUR: ground level release, release at 150m effective height, release at 300m effective height; (3) InMAP: ground level, point sources

To achieve the best possible match for marginal damage estimate and emission, we therefore calculated the effective height of emissions for all point sources where data was available and then used the effective height estimates to match with the best available marginal damage estimate for each model. For this, we used the Smoke FLAT files available on EPA's FTP server (8) for stack parameters, wind maps from NREL for average wind speeds at 80m elevation, and weather data from NOAA.

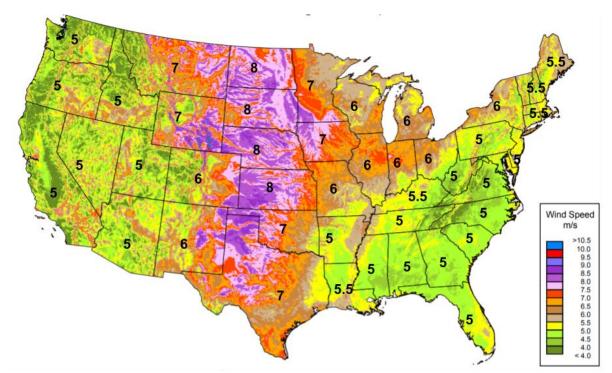



Fig. S 1: Average annual wind speed asssignment for effective height of emissions calculations

Fig. S 1 shows a wind map from NREL and the state average annual wind speed we assigned based on the map. We then used equations from Turner (9) to compute effective heights. A table with our computed effective heights and marginal damage assignments for all facilities for the three IAM's will be made available. Among the ~70,000 facilities in 2014, we were able to compute effective heights for approximately 50% of them.

#### 1.6. IAM Data

For AP3, we provide all the data inputs as well as the code in Matlab to run the model in our repository.

The marginal damages from EASIUR and the population adjustment factors for them were obtained on the model's website (10), and then adjusted according to the method suggested by the authors.

Marginal damages for InMAP were downloaded in \$2000 units from the CACES website (11).

# 2. AP3 Model Description

The AP3 model is an adaptation of the more commonly known previous version, AP2 (12, 13). The newer version, AP3, uses an updated formula to deal with the relationship of ammonium, nitrates and sulfates, but other than that remains unchanged from AP2 except for the calibration coefficients to align model predictions with monitor data. This updated relationship uses a regression to model the formation of PM<sub>2.5</sub> from nitric acid and ammonia that includes an interaction term of these two precursors. The primary model output are marginal damage estimates for all contiguous counties in the United States for the aforementioned categories (area sources, low stacks, medium stacks and tall stacks).

# 2.1. AP3 Performance Metrics from Sergi et al.

Model calibration of AP3 follows the two-step method employed by Sergi et al. (14). The first step of the process is a calibration based on EPA monitor data, performance metrics of which are provided in Table S1.

| (Pollutant)/Year | COR   | MFE   | MFB    | Obs |
|------------------|-------|-------|--------|-----|
| (Total PM2.5)    |       |       |        |     |
| 2008             | 0.560 | 0.314 | -0.118 | 584 |
| 2011             | 0.524 | 0.313 | -0.110 | 547 |
| 2014             | 0.558 | 0.318 | -0.129 | 592 |
| (Sulfate)        |       |       |        |     |
| 2008             | 0.856 | 0.495 | -0.136 | 314 |
| 2011             | 0.830 | 0.483 | -0.217 | 310 |
| 2014             | 0.850 | 0.457 | -0.216 | 302 |
| (Nitrate)        |       |       |        |     |
| 2008             | 0.643 | 0.502 | -0.048 | 307 |
| 2011             | 0.636 | 0.498 | 0.099  | 306 |
| 2014             | 0.579 | 0.535 | -0.033 | 299 |
| (VOCs)           |       |       |        |     |
| 2008             | 0.662 | 0.359 | 0.119  | 154 |
| 2011             | 0.605 | 0.447 | 0.313  | 151 |
| 2014             | 0.653 | 0.417 | 0.268  | 146 |
| (Ammonium)       |       |       |        |     |
| 2008             | 0.492 | 0.457 | -0.135 | 186 |
| 2011             | 0.477 | 0.456 | 0.222  | 182 |
| 2014             | 0.342 | 0.480 | 0.222  | 177 |

| Table S1: Performance Metrics of AP3 reported by Sergi et al. | (14) |
|---------------------------------------------------------------|------|
|---------------------------------------------------------------|------|

In the second step, the top 1% of outliers in terms of MFE in monitor vs. predicted data are corrected.

## 3. Additional Informationon Model Comparison

After adjusting marginal damages from EASIUR and InMAP to make sure they use the same value of mortality risk (VMR), we compare how they differ with the AP3 model. Because all three models report marginal damages for different heights by source location, the assignment of emissions is different for each three. As a consequence, it is perhaps illustrative to compare marginal damages weighted by emissions. We do so for all counties nationwide in Table S 2.

| Model  | Year | Pollutant |        |         |        |        |  |
|--------|------|-----------|--------|---------|--------|--------|--|
|        | Teal | NH3       | NOx    | PM2.5   | SO2    | VOC    |  |
| AP3    | 2008 | 58,000    | 19,000 | 110,000 | 36,000 | 7,900  |  |
|        | 2011 | 54,000    | 19,000 | 110,000 | 36,000 | 6,600  |  |
|        | 2014 | 63,000    | 21,000 | 130,000 | 42,000 | 6,700  |  |
| EASIUR | 2008 | 48,000    | 8,700  | 110,000 | 22,000 | 7,900* |  |
|        | 2011 | 47,000    | 8,400  | 110,000 | 22,000 | 6,600* |  |
|        | 2014 | 46,000    | 8,600  | 110,000 | 22,000 | 6,700* |  |
| InMAP  | 2008 | 41,000    | 11,000 | 86,000  | 23,000 | 7,400  |  |
|        | 2011 | 37,000    | 11,000 | 77,000  | 21,000 | 6,300  |  |
|        | 2014 | 45,000    | 11,000 | 84,000  | 22,000 | 6,100  |  |

 Table S 2: Average national marginal damages weighted by attributed emissions (\$2018 per metric ton)

\* EASIUR does not report marginal damages for VOC, which is why AP3 damages were used

Based on this table, we computed relative differences in national average marginal damages.

| Table S 3: Relative differences in national average marginal | damages weighted by emissions |
|--------------------------------------------------------------|-------------------------------|
|--------------------------------------------------------------|-------------------------------|

|              | NH3  | NOx  | PM2.5 | SO2  | VOC |
|--------------|------|------|-------|------|-----|
| AP3/EASIUR   | 20%  | 117% | -2%   | 66%  | 0%  |
|              | 14%  | 125% | 2%    | 66%  | 0%  |
|              | 37%  | 148% | 12%   | 87%  | 0%  |
| EASIUR/InMAP | 18%  | -21% | 30%   | -4%  | 8%  |
|              | 27%  | -25% | 42%   | 1%   | 5%  |
|              | 3%   | -23% | 35%   | 2%   | 10% |
| InMAP/AP3    | -30% | -41% | -21%  | -37% | -7% |
|              | -31% | -41% | -31%  | -41% | -5% |
|              | -29% | -47% | -34%  | -48% | -9% |

|              | NH3  | NOx  | PM2.5 | SO2  | VOC |
|--------------|------|------|-------|------|-----|
| AP3/InMAP    | 42%  | 70%  | 27%   | 58%  | 8%  |
|              | 44%  | 69%  | 45%   | 68%  | 5%  |
|              | 41%  | 90%  | 52%   | 91%  | 10% |
| InMAP/EASIUR | -15% | 27%  | -23%  | 5%   | -7% |
|              | -21% | 32%  | -30%  | -1%  | -5% |
|              | -3%  | 30%  | -26%  | -2%  | -9% |
| EASIUR/AP3   | -17% | -54% | 2%    | -40% | 0%  |
|              | -12% | -55% | -2%   | -40% | 0%  |
|              | -27% | -60% | -11%  | -47% | 0%  |

Based on Table S 3, we then compared marginal damages in 2018 per metric ton of emissions between AP3 and EASIUR for NO<sub>x</sub> and between AP3 and InMAP for SO2.

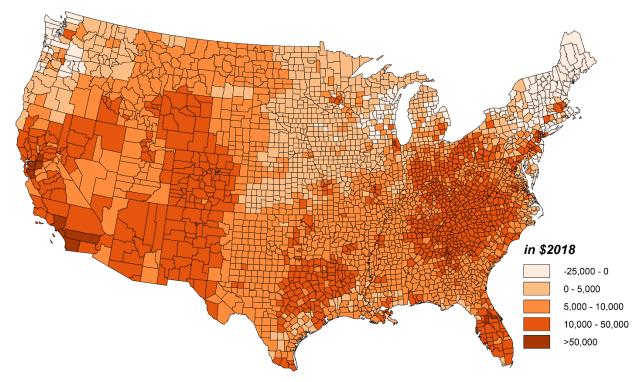



Fig. S 2: Absolute difference in \$2018 in emission-weighted marginal NOx damage (AP3 minus EASIUR)

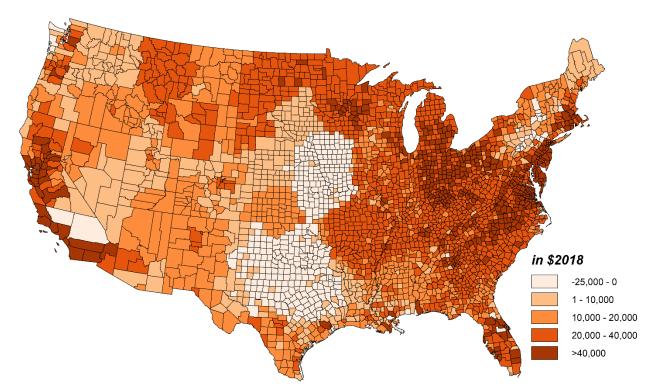



Fig. S 3: Absolute difference in \$2018 in emission-weighted marginal SO2 damage (AP3 minus InMAP)

Emission-weighted marginal damages are larger in AP3 for a majority of counties nationwide for both  $SO_2$  and  $NO_x$ , and the largest differences are visible in a select few counties in California. Because the exposure to fine particulate matter is especially large in California this can have a large impact on results. We will further analyze this in future work.

# 4. Detailed Description of Method for GED calculations

Emissions are matched with marginal damages by location and stack height and then aggregated by industry, industry group, subsector and sector. The attribution of area source emissions to economic units is a crucial part of this exercise, and we provide the a table with our mapping in the repository for this paper (<u>https://github.com/ptschofen/PNAS\_SectoralMortality</u>). The table contains our exact mapping for all available source classification codes (SCC) from EPA (15). We have mapped codes only in instances where the attribution was clear, but are exploring options to attribute more emissions at a more granular level of the economic accounts with additional data sources. For point sources, the attribution to economic units is straightforward, since they are reported along with their NAICS code by EPA.

| AP3                              | 2008    | 2011   | 2014   |
|----------------------------------|---------|--------|--------|
| Attributed to economic units     | 110,000 | 88,100 | 85,900 |
| Not attributed to economic units | 66,200  | 61,700 | 61,700 |
| EASIUR                           | 2008    | 2011   | 2014   |
| Attributed to economic units     | 76,400  | 61,300 | 54,300 |
| Not attributed to economic units | 48,800  | 47,100 | 45,200 |
|                                  |         |        |        |
| InMAP                            | 2008    | 2011   | 2014   |
| Attributed to economic units     | 84,200  | 64,400 | 59,800 |
| Not attributed to economic units | 62,300  | 57,600 | 52,800 |

Table S 4: Number of deaths (attributed and non-attributed) estimated with three IAMs used for this paper

In Table S5, we provide the results with GED estimates for all sectors of the economy, computed with the AP3 model, and adjusted for changes to per capita income in the United States.

| NAICS Sector                                 | GED 2008 | GED 2011 | GED 2014 |
|----------------------------------------------|----------|----------|----------|
| Agriculture, forestry, fishing, and hunting  | 240      | 230      | 230      |
| Mining                                       | 22       | 25       | 26       |
| Utilities                                    | 290      | 180      | 150      |
| Construction                                 | 53       | 40       | 37       |
| Manufacturing                                | 120      | 95       | 96       |
| Wholesale trade                              | 1.3      | 0.7      | 0.71     |
| Retail trade                                 | 4.8      | 3.2      | 2        |
| Transportation and warehousing               | 170      | 150      | 120      |
| Information                                  | 0.33     | 0.13     | 0.09     |
| Finance and insurance                        | 0.55     | 0.02     | 0.02     |
| Real estate and rental and leasing           | 0.27     | 0.22     | 0.17     |
| Professional and business services           | 0.29     | 0.25     | 1.6      |
| Management of companies and enterprises      | 0.001    | 0.004    | 0.008    |
| Administrative and waste management services | 29       | 17       | 42       |
| Educational services                         | 2.5      | 2        | 1.4      |
| Health care and social assistance            | 0.71     | 0.68     | 0.63     |
| Arts, entertainment, and recreation          | 0.05     | 0.05     | 0.03     |
| Accommodation and food services              | 0.06     | 0.07     | 0.06     |
| Other services, except government            | 75       | 64       | 85       |
| Government                                   | 3        | 2.2      | 2.2      |
| No attribution                               | 610      | 570      | 570      |

 Table S 5: Gross external damage in \$2018 billion for all sectors of the economy (IAM used: AP3)

Lastly, in Table S6, we provide the results for GED in 2014 when computed with different combinations of the dose-response relationship parameter and VMR.

Table S 6: Sensitivity analysis for GED calculations. Reported numbers are expressed in 2018 \$billion. Column S1 presents the results as reported in the paper, using a dose-response function from Krewski et al. 2009 (16) and the value of mortality risk (VMR) suggested by EPA. Column S2 presents GED estimates when using a dose-response function suggested by Lepeule et al. 2012 (17) and EPA's VMR. Columns S3 and S4 present versions of the first two columns but using the lower number for the VMR suggested by Taylor 2009 (18)

| NAICS Sector                                    | S1<br>Krewski +<br>EPA | S2<br>Lepeule +<br>EPA | S3<br>Krewski +<br>Taylor | S4<br>Lepeule +<br>Taylor |
|-------------------------------------------------|------------------------|------------------------|---------------------------|---------------------------|
| Agriculture, forestry, fishing, and hunting     | 230                    | 470                    | 76                        | 160                       |
| Mining                                          | 26                     | 53                     | 8.5                       | 18                        |
| Utilities                                       | 150                    | 300                    | 48                        | 100                       |
| Construction                                    | 37                     | 75                     | 12                        | 25                        |
| Manufacturing                                   | 96                     | 200                    | 32                        | 66                        |
| Wholesale trade                                 | 0.7                    | 1.4                    | 0.2                       | 0.5                       |
| Retail trade                                    | 2                      | 4.1                    | 0.7                       | 1.4                       |
| Transportation and<br>warehousing               | 120                    | 250                    | 40                        | 83                        |
| Information                                     | 0.09                   | 0.2                    | 0.03                      | 0.06                      |
| Finance and insurance                           | 0.02                   | 0.03                   | 0.005                     | 0.01                      |
| Real estate and rental and leasing              | 0.2                    | 0.3                    | 0.06                      | 0.1                       |
| Professional and business services              | 1.6                    | 3.2                    | 0.5                       | 1.1                       |
| Management of companies<br>and enterprises      | 0.008                  | 0.02                   | 0.003                     | 0.005                     |
| Administrative and waste<br>management services | 42                     | 84                     | 14                        | 28                        |
| Educational services                            | 1.4                    | 2.9                    | 0.5                       | 1.0                       |
| Health care and social assistance               | 0.63                   | 1.3                    | 0.2                       | 0.43                      |
| Arts, entertainment, and recreation             | 0.03                   | 0.06                   | 0.01                      | 0.02                      |
| Accommodation and food services                 | 0.06                   | 0.1                    | 0.02                      | 0.04                      |
| Other services, except<br>government            | 85                     | 170                    | 28                        | 58                        |
| Government                                      | 2.2                    | 4.4                    | 0.7                       | 1.5                       |
| No attribution                                  | 570                    | 1,200                  | 190                       | 390                       |
| Total attributable                              | 790                    | 1,600                  | 260                       | 540                       |

# References

- 1. Environmental Protection Agency 2014 National Emissions Inventory (NEI) Data. Available at: https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data [Accessed August 19, 2019].
- 2. Environmental Protection Agency 2008 National Emissions Inventory (NEI) Data. Available at: https://www.epa.gov/air-emissions-inventories/2008-national-emissions-inventory-nei-data [Accessed August 19, 2019].
- 3. Environmental Protection Agency 2011 National Emissions Inventory (NEI) Data. Available at: https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data [Accessed August 19, 2019].
- 4. Bureau of Economic Analysis (BEA) Real Value Added by Industry. Available at: https://apps.bea.gov/iTable/index\_industry\_gdpIndy.cfm [Accessed November 21, 2018].
- 5. CDC National Center for Health Statistics WONDER Online Database: Compressed Mortality File 1999–2016. Available at: https://wonder.cdc.gov/ [Accessed September 8, 2018].
- 6. Census: County Intercensal Tables: 2000-2010 Available at: https://www.census.gov/content/census/en/data/tables/time-series/demo/popest/intercensal-2000-2010-counties.html [Accessed August 9, 2018].
- 7. Census Fact Finder: Population Estimates Available at: https://factfinder.census.gov/ [Accessed June 25, 2018].
- 8. Environmental Protection Agency FTP: Smoke Flat File Downloade NEI 2014. Available at: ftp://newftp.epa.gov/air/nei/2014/flat\_files/ [Accessed May 17, 2018].
- 9. Turner DB (1994) Workbook of atmospheric dispersion estimates (CRC Press, Inc.). 2nd Ed.
- 10. EASIUR: Marginal Social Costs of Emissions in the United States Available at: https://barney.ce.cmu.edu/~jinhyok/easiur/ [Accessed July 9, 2018].
- 11. CACES: Data Download Available at: https://www.caces.us/data [Accessed November 27, 2018].
- 12. Muller NZ (2011) Linking policy to statistical uncertainty in air pollution damages. *BE J Econ Anal Policy*. doi:10.2202/1935-1682.2925.
- 13. Muller NZ, Mendelsohn R (2009) Efficient pollution regulation: Getting the prices right. *Am Econ Rev.* doi:10.1257/aer.99.5.1714.
- 14. Sergi B, Azevedo IL, Davis SJ, Muller NZ (2019) Transboundary health damages of air pollution in the U.S. under review. *Nature Sustainability*
- 15. Environmental Protection Agency Source Classification Codes (SCCs). Available at: https://ofmpub.epa.gov/sccwebservices/sccsearch/ [Accessed March 17, 2018].
- 16. Krewski D, et al. (2009) Appendix C: extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. *Res Rep Health Eff Inst.* doi:10.1002/(SICI)1096-8652(199905)61:1<1::AID-AJH1>3.0.CO;2-J.
- 17. Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard six cities study from 1974 to 2009. *Environ Health Perspect*. doi:10.1289/ehp.1104660.
- 18. Mrozek JR, Taylor LO (2009) What Determines the Value of Life: A Meta-Analysis. *Cost-Benefit Analysis and Public Policy* doi:10.1016/j.biocon.2017.05.005.