SUPPORTING INFORMATION

for

Poly(propylacrylic acid)-Peptide Nanoplexes as a Platform for Enhancing the Immunogenicity of Neoantigen Cancer Vaccines

Feng Qiu^{1,2,^}, Kyle W. Becker^{1,^}, Frances C. Knight³, Jessalyn J. Baljon³, Sema Sevimli¹,

Daniel Shae¹, Pavlo Gilchuk^{4,5}, Sebastian Joyce^{4,5}, and John T. Wilson^{1,3,6,*}

¹Department of Chemical and Biomolecular Engineering; Vanderbilt University

Nashville, TN 37235, USA

²Laboratory of Anaesthesia and Critical Care Medicine; Translational Neuroscience
 Center; West China Hospital, Sichuan University, Chengdu, 610041, China
 ³Department of Biomedical Engineering; Vanderbilt University

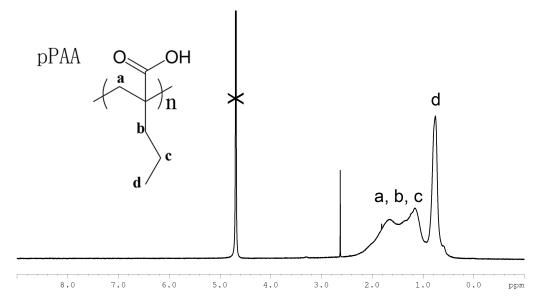
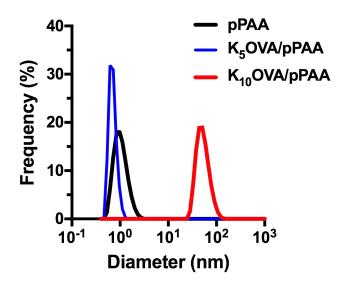
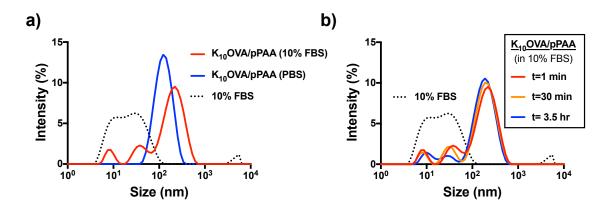
 ⁴Department of Pathology, Microbiology and Immunology; School of Medicine;
 Vanderbilt University

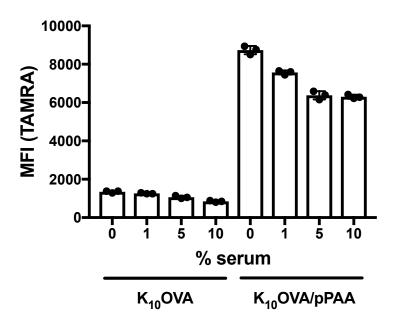
⁵Department of Veterans Administration Tennessee Valley Healthcare System
⁶Vanderbilt-Ingram Cancer Center; Vanderbilt University Medical Center

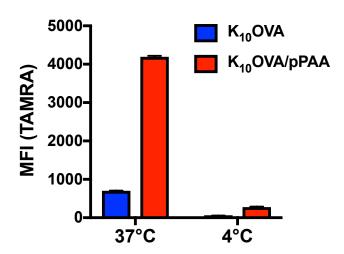
^These authors contributed equally to this work

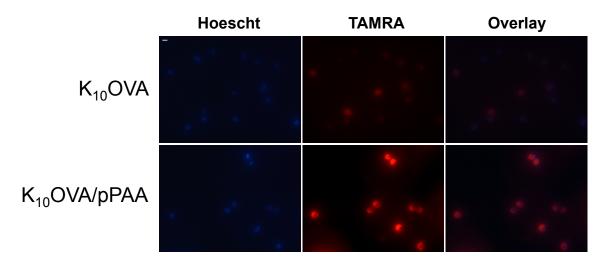
*CORRESPONDING AUTHOR. John T. Wilson; Tel: +1-615-322-6406; e-mail: john.t.wilson@vanderbilt.edu

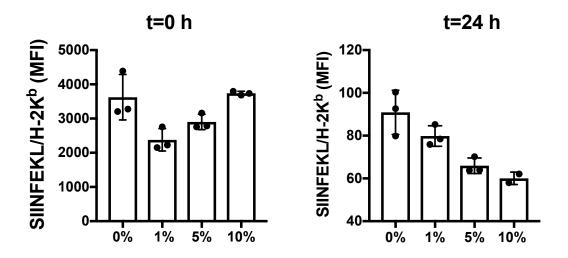
Supporting Data:

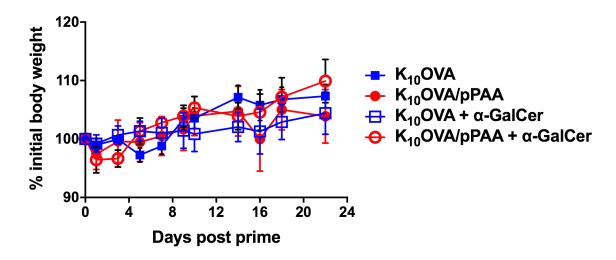




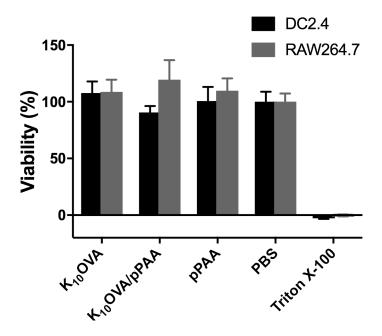

Figure S1: ¹H NMR spectrum of purified poly(propylacrylic acid) (pPAA) in DMSO-d6.


Figure S2: Representative size distribution (volume average) measured by DLS of soluble pPAA and complexes of pPAA with K_5 OVA or K_{10} OVA at a 2:1 COOH:NH₂ ratio.


Figure S3: Dynamic light scattering (DLS) analysis of particle size distribution of nanoplexes in PBS containing 10% serum. **(a)** DLS analysis of $K_{10}OVA/pPAA$ nanoplexes in PBS or 10% serum (FBS). **(b)** DLS analysis of $K_{10}OVA/pPAA$ nanoplexes in 10% serum at 1 min, 30 min, or 3.5 hours.


Figure S4: Effect of the percentage of serum (fetal bovine serum) in culture media on intracellular uptake of TAMRA-labeled $K_{10}OVA$ or $K_{10}OVA/pPAA$ nanoplexes by DC2.4 cells.


Figure S5: Median fluorescent intensity (MFI) values of DC2.4 cells incubated with TAMRA-labeled K_{10} OVA or K_{10} OVA/pPAA nanoplexes for 4h at 37°C or 4°C.


Figure S6: Representative fluorescent micrographs of DC2.4 cells incubated with TAMRA-labeled $K_{10}OVA$ or $K_{10}OVA/pPAA$ nanoplexes for 4h prior to washing and imaging. Scale bar (top left) = 10 μ m.

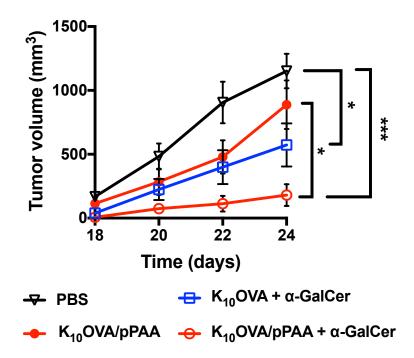

Figure S7: Effect of the percentage of serum (fetal bovine serum) in culture media on MHC-I (H-2K^b) SIINFEKL presentation after 4 h incubation with K_{10} OVA/pPAA polyplexes at 10 μ M peptide, followed by washing, culture for 0 h or 24 h, and staining with an antibody (25-D1.16) specific to the SIINFEKL/H-2K^b complex. Note that measurements for t=0 and t= 24 h were collected using two different flow cytometers and therefore MFI values between time points cannot be directly compared.

Figure S8: Change in relative body weight of mice immunized intranasally with the indicated formulation on d0 and d14.

Figure S9: Viability of DC2.4 dendritic cells and RAW264.7 macrophages after 24 h incubation with indicated treatment group.

Figure S10: Mice were inoculated with B16-OVA cells subcutaneously (SC) 3 days prior to IN administration of indicated formulations. Mean (\pm SEM) tumor volume (n=4-8 mice/per group) is shown. *p<0.05,***p<0.005 by one-way ANOVA with Tukey post-hoc test on day 24.