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Supplementary Info 
 
1. Modeling for μwheel translation on flat and textured surfaces 

We consider a µwheel that consists of n individual spheres with sphere i located at  

(Fig. S2A). Its instantaneous velocity is  

    (S1) 

where  is the position vector of the center of mass.  is the velocity of sphere , 

related to the force acting on particle j, , through the mobility matrix , i.e. 

. To gain essential physical insight and for simplicity, we only consider the 

self-mobility terms, i.e. , where  is the solvent viscosity. 

 and  are the mobilities of sphere i moving parallel and perpendicular to the 

substrate. When the sphere-wall separation is large, the polynomial expansion for  

and  are (10, 28, 29) 

 .    (S2) 

When is small, numerically precise and convenient expressions based on asymptotic 

lubrication theory (31) are available:   
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           (S3) 
In our work, μwheels are pulled to the surface by gravity and are very close to the 

substrate; therefore, we use Eqn S3 which provides the correct limits that  

when the contact distance .  

Assuming that the force  on each sphere has same magnitude, , the 

torque generated by all forces must balance the hydrodynamic torque 

      (S4) 

where  is the elevation of the µwheel center of mass, i.e. its vertical separation from the 

origin. In addition,  is a correction factor (30) 

for the hydrodynamic torque due to the existence of wall. The force  can then be 

related to the angular rotation frequency of the µwheel  and other system parameters 

.     (S5) 

After eliminating  in Eqn S1, we write the instantaneous μwheel velocities parallel ( ) 

and perpendicular ( ) to the substrate as    
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    (S6)   

where  and  is the angle between  and . 

The sphere-wall separation  is related to the elevation of the µwheel center of mass  

by 

 ℎ" = 𝑅%cos𝜙" + ℎ (S7) 

For a dimer rolling on a flat substrate, n=2 and Eqn. S6-7 simplifies to Eqn. 2 in the main 

text. It can be numerically solved with Eqn. S3.   

As shown in Fig. S3B, the geometric features on a textured substrate can be 

described by the topographic surface function ℎ+(𝑥). Here, we model the surface features 

by a series of small trapezoidal bumps that are evenly spaced. Clearly, a flat substrate 

corresponds to ℎ+(𝑥) = 0. To simulate the rolling of a dimer on the textured substrate, 

Eqn. S6 can still be used. As shown in Fig. S3A, the sphere-wall separation  in Eqn. S3 

is related to the elevation of the µwheel center of mass  by 

 ℎ0 = ℎ − ℎ+(𝑥 + 𝑎sin𝜔𝑡) + 𝑎cos𝜔𝑡
ℎ7 = ℎ − ℎ+(𝑥 − 𝑎sin𝜔𝑡) − 𝑎cos𝜔𝑡

 (S8) 

Solving Eqn. S6, S8, and S3 numerically yields the motion of a dimer on a textured 

substrate.  

   
2. Calculation of the ideal substrate for µwheels of different shape and 

symmetry 
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Using a square µwheel (4,4) as an example (Fig. S4), we mark four circles, O1-O4. When 

the µwheel rolls smoothly, its center of mass does not vary along the z direction. The 

distance traveled at time ti, will be 𝑥" = 𝜔𝑡"𝑅% = 𝜃"𝑅%	assuming OP as the starting point. 

From geometry, the height of wheel circumference to the wall will be ℎ" = 𝑃0𝑃7;;;;;;, where 

P1 and P2 are the intersections between OP and circle O and circle O1 and are calculated 

using the Matlab Mapping toolbox (linecirc function). Because of symmetry, we need 

only calculate (𝑥", ℎ") from 𝜃" = 0	𝑡𝑜	∠𝑃𝑂𝑃', i.e. 𝜃" = 𝜋 4⁄ . Similar calculation 

procedures can be followed for obtaining the commensurate microroads for µwheels of 

differing geometry (2,2) and (7,6).  

 
4.  Force analysis for μwheels climbing inclined surfaces 

 To understand the “rectifier” effect that we have observed for μwheels climbing 

an inclined surface, we use a force balance (33, 34) shown in the inset of Fig. 4a:  

 D
𝐹F + 𝐹G − 𝐹Hsin𝛾 = 0
𝑁K − 𝐹Hcos𝛾 = 0   (S9) 

where the hydrodynamic lift force has been neglected. The friction force is thus 𝐹F =

𝜇M𝑁K = 𝜇M𝐹Hcos𝛾. The hydrodynamic force has two components: translation-translation 

Fh,tt  and Fh,tr  which, for a sphere, can be expressed as 𝐹G,NN = 6𝜋𝜂𝑎𝑉𝑓NN  and 𝐹G,NS =

6𝜋𝜂𝜔𝑎7𝑓NS  following Goldman et al. (5), where correction functions due to the wall are 

𝑓NN = − T
0U
𝑙𝑛 XY

Z
[ − 0.9588 and 𝑓NS =

7
0U
𝑙𝑛 XY

Z
[ − 0.2526. The lowest frequency where 

μwheels roll and where 𝐹𝑓 + 𝐹ℎ,𝑡𝑟 = 𝐹𝑔sin𝛾, is 𝜔K =
cd(sinefghcose)

ijkZlFmn
. Under experimental 

conditions where 𝛿~200𝑛𝑚, 𝜇M~0.5 and 𝛾~30˚, fc ~ 0.58 Hz, consistent with 

experimental data.  
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Fig. S1 (A) Experimental setup. (B) The rolling of a µwheel under a 3D magnetic field.  
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Fig. S2. µWheels translating on flat surfaces. (A) Model for a µwheel rolling on a flat 
surface with a square (4,4) as an example. (B) A comparison between experimental data 
(dots) and modeling (line) for the instantaneous velocity v(t) parallel to the substrate. 
Snapshots correspond to instantaneous dimer configurations obtained from experiments 
(top view) and simulation (side view). (C) The calculated dimer center of mass with time. 
(D) Displacement of the centers of mass of each lobe. Inset: Fourier transform of 
instantaneous velocity.  
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Fig. S3 (A) Schematics for modelling the rolling of a dimer on a textured surface. (B) 
Textured surface with trapezoidal bumps used in the simulations.  
 

 
Fig. S4 Calculation of an ideal road for a square (4,4) µwheel translating without slip.  
 
 
List of supplementary movies 
 
Movie S1 Translation of a 7-mer and a 5-mer under a 3D magnetic field on a flat surface 
( =1.95 mT, =5.31 mT, and 𝜔t = 3.14 rad s⁄ ). The movie is displayed in real 
time.   
 
Movie S2 Top: Simulation of a dimer translating on flat surface (by solving Eqn. 2) with 
same rotation frequency in experiments. The initial separation between the dimer’s center 
of mass and substrate is 2.2a. Bottom: Translation of a dimer under a 3D magnetic field 
on a flat surface ( =1.95 mT, =5.31 mT, and 𝜔t = 0.628 rad s⁄ ). The movies are 
accelerated 5x.  
 
Movie S3 Translation of a dimer under a 3D magnetic field on a topographic surface 
along the blaze direction ( =1.95 mT, =5.31 mT, and 𝜔t = 0.628 rad s⁄ ). The 
movie is accelerated 5x.  
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Movie S4 The simulated translation (slip and flip) of a dimer on a topographic surface 
with evenly spaced trapezoidal bumps. The geometric dimensions of the bumps are 
shown in Fig. S3B. The initial separation between the dimer edge and the substrate is 
0.2a. Both horizontal and vertical dimensions are scaled by the sphere radius a.  
 
Movie S5 The simulated translation (sequential flip of two lobes) of a dimer on a flat 
substrate. The initial separation between the dimer edge and the substrate is 0.05a. Both 
horizontal and vertical dimensions are scaled by the sphere a.  
 
Movie S6 The simulated translation (continuous flip) of dimer on a topographic surface 
with trapezoidal bumps spaced by d=1.39a. The height and length of the bumps are the 
same as in Movie S4. The initial separation between the dimer edge and the substrate is 
0.2a. Both horizontal and vertical dimensions are scaled by the sphere radius a.  
 
Movie S7 The rectifier effect for the translation of a dimer under a 3D magnetic field on 
a topographic surface ( =1.95 mT, =5.31 mT, and 𝜔t = 0.628 rad s⁄ ). Top: dimer 
translating in the blaze direction; bottom: dimer translating against the blaze direction. 
The movie is accelerated 5x.   
 
Movie S8 Comparison of a diamond and square µwheel translation on the flat (top) vs. 
topographic surface against the blaze direction (bottom) ( =1.95 mT, =5.31 mT, 
and 𝜔t = 6.28 rad s⁄ ). The movie is in real time.   
 
Movie S9 Translation of a diamond and square against the blaze direction ( =1.95 mT, 

= 5.31 mT, and 𝜔t = 1.256 rad s⁄ ). The movie is accelerated 5x.   
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