Supporting Information for:

A Nontrigonal Tricoordinate Phosphorus Ligand Exhibiting Reversible 'Nonspectator' L/X–Switching

Gregory T. Cleveland[†] and Alexander T. Radosevich^{*†}

† Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Contents

I.	General Materials and Methods	S2
II.	Synthetic Procedures	S3
III.	Crystallographic Procedures and Data	S8
IV.	DFT Calculations	S49
	a. General Computational Information	
	b. Method for Calculating Fluoride Ion Affinity	
	c. Cartesian Coordinates of Computed Structures	
V.	Multinuclear NMR Spectra	S57
VI.	References	S85

I. General Materials and Methods.

All reagents were purchased from Sigma-Aldrich, Alfa Aesar, ACROS, TCI, or Oakwood Chemicals, and used as received unless otherwise noted. Diethyl ether (Et₂O), methylene chloride (CH₂Cl₂), tetrahydrofuran (THF), acetonitrile (MeCN) and pentane were dried according to the method of Grubbs¹ as modified by Bergman² using a Glass Contour Solvent Purification System. All glassware was oven-dried at 120 °C prior to use. All reactions were carried out under a dry nitrogen atmosphere (Schlenk line or glovebox) unless otherwise noted. Solution NMR spectra other than ⁵⁷Fe/³¹P 2-D spectra were recorded on a JEOL 500 MHz NMR and processed with the MestraNova software. $^{57}\mathrm{Fe}/^{31}\mathrm{P}$ 2-D spectra were recorded on a Bruker 600 MHz NMR and processed with the MestraNova software. ¹H NMR chemical shifts are given in ppm with respect to solvent residual peaks (CDCl₃, 7.26 ppm; CD₂Cl₂, 5.32 ppm; CD₃CN, 1.94 ppm; C₆D₆, 7.16 ppm), ¹³C{¹H} NMR shifts are given in ppm with respect to solvent residual peaks (CDCl₃, 77.16 ppm; CD₂Cl₂, 53.84 ppm; CD₃CN, 1.32, 118.26 ppm; C₆D₆, 128.06 ppm), ³¹P{¹H} NMR shifts are given in ppm with respect to 85% phosphoric acid (0 ppm), ¹⁹F NMR shifts are given in ppm with respect to CFCl₃ (0 ppm), ⁵⁷Fe NMR shifts are given in ppm with respect to Fe(CO)₅ (0 ppm). Coupling constants are reported as *J*-values in Hz. High resolution ESI Mass spectrometry spectra were obtained from the Mass Spectrometry Laboratory at the School of Chemical Sciences, University of Illinois at Urbana-Champagne. X-ray diffraction data was collected on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a MoKa fine-focus sealed tube ($\lambda = 0.71073$ Å). Raw data integration and reduction were performed with the SAINT³ and SADABS⁴ programs. Structures were solved using direct methods using SHELXT⁵ and refined using least-squares methods on F^2 using the SHELXL software package. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were fixed in their ideal geometries. Graphical representation was done using the XP program.

II. Synthetic Procedures.

HN

Н

S2

Synthesis of 1a:

NO2 H NO2 Bis(2-nitrophenyl)amine (S1): Synthesized according to a modified literature procedure.⁶ 1-Fluoro-2-nitrobenzene (15.8 mL, 150 mmol, 1 equiv) was added to a solution of 2-nitroaniline (20.7 g, 150 mmol, 1 equiv) and potassium carbonate (24.9 g, 180 mmol, 1.2 equiv) in DMSO (400 mL). The reaction mixture was heated with stirring at 120 °C for 72h. The reaction mixture was cooled and H2O (400 mL) was added to generate an orange precipitate. The solid was collected by filtration, washed with H2O (1000 mL), and dried under vacuum to give the product as an orange solid (35.8 g, 92.1%). The product was used in the next step without further purification.

¹**H** NMR (500 MHz, CDCl₃) δ 11.01 (s, 1H, NH), 8.18 (dd, *J* = 8.4, 1.5 Hz, 2H), 7.58-7.53 (m, 4H), 7.09 (ddd, *J* = 8.4, 7.1, 1.4 Hz, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.6, 137.3, 135.0, 126.9, 122.0, 119.9.

HRMS calculated for $C_{12}H_{10}N_3O_4$ [M+H]⁺ 260.0671. Found 260.0670.

Bis(2-methylaminophenyl)amine (S2): Synthesized according to a modified literature procedure.⁶ Palladium on carbon (300 mg, 10% by weight) was added to a suspension of S1 (3.00 g, 11.5 mmol, 1 equiv) in MeOH (50 mL). The

reaction mixture was placed in a high-pressure reactor and charged with hydrogen (400 psi). The reaction was stirred for 12 h. Following venting of the reactor, the reaction mixture was quickly filtered over celite and diluted with MeOH (150 mL). Paraformaldehyde (3.44 g, 115 mmol, 10 equiv) and then sodium methoxide (25% in MeOH, 7.80 mL) were added and the reaction mixture was heated to reflux for 1 h. The red solution was cooled to ambient temperature and then placed in an ice bath. Sodium borohydride (4.34 g, 115 mmol, 10 equiv) was then added slowly in small portions. The reaction mixture was subsequently heated to reflux and stirred for 1 h to give a colorless solution. The mixture was cooled and aqueous sodium hydroxide (150 mL, 1 M) was added to precipitate a solid. The flask was stored in a freezer for several hours and then the solid was collected on a glass frit. The solid was dried under vacuum overnight at 40 °C to afford the product as a light purple solid (1.90 g, 72.7%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.04 (m, 2H), 6.68 (m, 6H), 4.87 (s 1H), 3.74 (q, *J* = 5.4 Hz, 2H), 2.87 (d, *J* = 5.4 Hz, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.9, 130.8, 123.8, 119.8, 118.0, 110.8, 30.9. HRMS calculated for C₁₄H₁₈N₃ [M+H]⁺ 228.1501. Found 228.1504.

1a: Synthesized according to a modified literature procedure.⁶ Phosphorus trichloride (.64 mL, 7.3 mmol, 1 equiv) was added to Et_2O (80 mL) in a flame-dried, nitrogen filled flask and cooled to -78 °C. **S2** (1.7 g, 7.3 mmol, 1.2 equiv) was dissolved in THF (10 mL) and added dropwise via syringe. Triethylamine

(7.1 mL, 51 mmol, 7.0 equiv) in Et₂O (15 mL) was added dropwise via syringe. The reaction was stirred at -78 °C for 1 h and then warmed to room temperature and stirred for 4 h. The volatiles were removed, and the resulting solid residue was brought into a nitrogen filled glovebox. The solid was triturated with pentane and passed over a plug of celite. The filtrate was evaporated to give a slightly pink solid. This solid was dissolved in minimal Et₂O and cooled to -35 °C to induce crystallization of the title product as colorless crystals (1.2 g, 62%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.8, 1.1 Hz, 2H), 7.02 (td, *J* = 7.7, 1.2 Hz, 2H), 6.83 (td, *J* = 7.7, 1.2 Hz, 2H), 6.60 (d, *J* = 7.7 Hz, 2H), 3.08 (d, *J* = 8.4 Hz, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.3 (d, *J* = 7.1 Hz), 139.6, 124.4, 119.0, 117.1 (d, *J* = 6.0 Hz), 108.7, 29.9 (d, *J* = 30.7 Hz). ³¹P{¹H} NMR (203 MHz, CDCl₃) δ 160.4. HRMS calculated for C₁₄H₁₅N₃P [M+H]⁺ 256.1004. Found 256.1003. Synthesis of iron cyclopentadienyl dicarbonyl complexes:

Ironcyclopentadienyldicarbonyl(tetrahydrofuran)hexafluorophosphate ((**thf)**•Fp⁺): Synthesized according to a modified procedure. ⁷ Cyclopentadienyliron dicarbonyl dimer (1.00 g, 2.83 mmol, 0.5 eq) was

(thf)•Fp⁺ dissolved in a 2:1 mixture of CH_2Cl_2 (50 mL) and THF (25 mL). Silver hexafluorophosphate (1.43 g, 5.65 mmol, 1.0 eq) was added and the reaction was stirred overnight to produce a red solution with a grey precipitate. The reaction was filtered through a plug of celite and the filtrate was evaporated to give a light red solid, which was washed further with ether and dried under vacuum to give the product as a light red solid (1.02 g, 45.7%).

¹**H NMR** (500 MHz, CD₂Cl₂) δ 5.38 (s, 5H), 3.45 (s, 4H), 1.83 (s, 4H). ¹³C{¹**H**} **NMR** (126 MHz, CD₂Cl₂) δ 208.9, 85.8, 82.3, 26.6. ³¹**P**{¹**H**} **NMR** (203 MHz, CD₂Cl₂) δ -144.0 (sept, J = 708 Hz, **P**F₆⁻). ¹⁹**F NMR** (471 MHz, CD₂Cl₂) δ -72.9 (d, J = 707 Hz, **P**F₆⁻). **FTIR** (ATR) v(cm⁻¹): 2030, 2073. **HRMS** calculated for C₁₁H₁₃O₃Fe [M]⁺ 249.0214. Found 249.0221.

1a•Fp⁺: **(thf)**•Fp⁺ (126 mg, 0.327 mmol, 1 equiv) was dissolved in CH_2Cl_2 (3 mL). **1a** (100 mg, 0.392 mmol, 1.2 equiv) in CH_2Cl_2 (3 mL) was added and the reaction was stirred for 2 h. The solvent was removed, and the resulting solid was washed with ether and dried to give the product as a golden yellow solid (163 mg, 81.8%). Single crystals for X-ray diffraction were obtained by adding THF to the

solid and passing the suspension through a syringe filter to give a saturated solution, to which pentane was then slowly added via vapor diffusion at room temperature overnight.

¹**H** NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.9 Hz, 2H), 7.19 (t, *J* = 7.7 Hz, 2H), 7.03 (t, *J* = 7.7 Hz, 2H), 6.83 (d, *J* = 7.8 Hz, 2H), 5.37 (s, 5H), 3.16 (d, *J* = 10.7 Hz, 6H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 207.8 (d, *J* = 32.5 Hz), 139.0, 138.9, 137.3, 126.0, 121.6, 109.2 (d, *J* = 6.1 Hz), 88.7, 28.9 (d, *J* = 9.0 Hz). ³¹P{¹H} NMR (203 MHz, CD₃CN) δ 183.5, -144.0 (sept, J = 708 Hz, PF₆⁻). ¹⁹F NMR (471 MHz, CD₃CN) δ -72.9 (d, *J* = 707 Hz, PF₆⁻). ⁵⁷Fe NMR (16 Hz, CD₃CN) δ 616 (d, *J* = 59.5 Hz). FTIR (ATR) v(cm⁻¹): 2017, 2061. HRMS calculated for C₂₁H₁₉N₃O₂PFe [M]⁺ 432.0564. Found 432.0565.

1b•Fp⁺: Complex (thf)•Fp⁺ (0.13 mg, 0.33 mmol, 1 equiv) was dissolved in CH₂Cl₂ (3 mL). **1b** (0.71 mL, 0.39 mmol, 1.2 equiv) in CH₂Cl₂ (3 mL) was added and the reaction was stirred for 1 h. The volatiles were removed, and the resulting solid was washed with ether and dried to give the product as a brown solid (0.13 g, 85%). Single crystals for X-ray diffraction were obtained by adding THF to the solid

and passing the suspension through a syringe filter to give a saturated solution, to which pentane was then added slowly via vapor diffusion at room temperature overnight.

¹H NMR (500 MHz, CDCl₃) δ 5.41 (s, 5H), 2.64 (d, *J* = 9.8 Hz, 18H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 212.2 (d, *J* = 34.0 Hz), 87.9, 38.5 (d, *J* = 4.5 Hz). ³¹P{¹H} NMR (203 MHz, CD₃CN) δ 141.4, -144.0 (sept, J = 708 Hz, PF₆⁻). ¹⁹F NMR (471 MHz, CD₃CN) δ -72.9 (d, *J* = 707 Hz, PF₆⁻). ⁵⁷Fe NMR (16 Hz, CD₃CN) δ 688 (d, *J* = 50.4 Hz). FTIR (ATR) v(cm⁻¹): 2000, 2045. HRMS calculated for C₁₃H₂₃N₃O₂PFe [M]⁺ 340.0877. Found 340.0881.

Fluorination of $[Fp(PR_3)]PF_6$ complexes:

 $1a^{F} \cdot Fp: 1a \cdot Fp^{+}$ (40 mg, 0.069 mmol, 1 equiv) was dissolved in MeCN (4.5 mL). Tris(dimethylamino)sulfonium trimethyldifluorosilicate (19 mg, 0.069 mmol, 1 equiv) in MeCN (1.5 mL) was added slowly, immediately causing a color change from yellow to orange. After stirring

for 1 h, the volatiles were removed to give an orange residue. This residue was triturated with ether (15 mL), filtered through a syringe filter, and evaporated to give the product as an orange solid (20 mg, 44%). A single crystal of suitable quality for X-ray diffraction was obtained by slow evaporation of a saturated solution of $1a^{F}$ -Fp in CH₂Cl₂ at -30 °C over the course of 2 weeks.

¹**H NMR** (500 MHz, C₆D₆) δ 7.20 (d, *J* = 8.7 Hz, 2H), 6.87-6.94 (m, 4H), 6.54 (d, *J* = 7.5 Hz, 2H), 3.99 (s, 5H), 3.11 (d, *J* = 7.6 Hz, 6H).

¹³C{¹H} NMR (126 MHz, C₆D₆) δ 213.3 (dd, J = 44.4, 5.5 Hz), 137.7 (d, J = 20.3 Hz), 133.8 (d, J = 11.0 Hz), 120.8, 119.3, 110.2 (d, J = 4.0 Hz), 108.9 (dd, J = 7.9, 2.2 Hz), 83.8, 34.1 (dd, J = 16.6, 5.6 Hz).

³¹**P**{¹**H**} **NMR** (203 MHz, C_6D_6) δ -3.0 (d, J = 971 Hz).

¹⁹**F NMR** (471 MHz, C_6D_6) δ 27.4 (d, J = 971 Hz).

⁵⁷**Fe NMR** (16 Hz, C₆D₆) δ 1013 (d, *J* = 53.5 Hz).

FTIR (ATR) $v(cm^{-1})$: 1952, 2007.

HRMS calculated for $C_{21}H_{19}N_3O_2PFe \ [M-F]^+ 432.0564$. Found 432.0568.

Fluoride abstraction was performed by adding $AgPF_6$ (5.6 mg, .022 mmol, 1 equiv) to a solution of $1a^{F_{\bullet}}Fp$ (10 mg, .022 mmol, 1 equiv) in CD₃CN (1 mL), causing immediate precipitation of a solid and changing the color from orange to yellow. This solution was passed through a syringe filter and immediately analyzed by NMR showing regeneration of $1a^{\bullet}Fp^{+}$.

III. Crystallographic Procedures and Data

Compound **1a**•Fp⁺:

Identification code	fpnnnp_10		
Empirical formula	C25 H27 F6 Fe N3 O3 P2		
Formula weight	649.28		
Temperature	100(2) K		
Wavelength	Vavelength 0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 10.7202(6) Å	α= 90°.	
	b = 18.7967(10) Å	$\beta = 105.406(2)^{\circ}.$	
	c = 13.6423(8) Å	$\gamma = 90^{\circ}.$	
Volume	2650.2(3) Å ³		
Z	4		
Density (calculated)	1.627 Mg/m ³		
Absorption coefficient	0.767 mm ⁻¹		
F(000)	1328		
Crystal size	0.270 x 0.060 x 0.030 mm ³		
Theta range for data collection	2.167 to 32.618°.		
Index ranges -16<=h<=16, -28<=k<=28, -20<=l<=20)<=l<=20	
Reflections collected 269152			
Independent reflections	9682 [R(int) = 0.0542]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction Semi-empirical from		nts	
Max. and min. transmission	0.7464 and 0.6843		
Refinement method Full-matrix least-squares on F ²			
Data / restraints / parameters	9679 / 714 / 392		
Goodness-of-fit on F ²	1.079		
Final R indices [I>2sigma(I)]	R1 = 0.0381, $wR2 = 0.1046$		
R indices (all data)	R1 = 0.0463, wR2 = 0.1102		
Extinction coefficient n/a			
Largest diff. peak and hole	1.010 and -0.552 e.Å ⁻³		

Table S1. Crystal data and structure refinement for 1a•Fp+.

	Х	у	Z	U(eq)
Fe(1)	6892(1)	3762(1)	6290(1)	18(1)
P(1)	7251(1)	3108(1)	5073(1)	17(1)
O(2)	4378(1)	4318(1)	5143(1)	32(1)
N(1)	8598(1)	2583(1)	5248(1)	20(1)
O(1)	8461(2)	4935(1)	5863(1)	37(1)
N(2)	7566(1)	3554(1)	4106(1)	21(1)
N(3)	6236(1)	2414(1)	4764(1)	22(1)
C(16)	6895(2)	1766(1)	5015(1)	23(1)
C(26)	8742(1)	3343(1)	3924(1)	20(1)
C(21)	9355(2)	2800(1)	4579(1)	22(1)
C(7)	5368(2)	4101(1)	5566(1)	24(1)
C(11)	8240(2)	1850(1)	5282(1)	22(1)
C(4)	6415(2)	3917(1)	7674(1)	27(1)
C(15)	6349(2)	1096(1)	5022(1)	30(1)
C(5)	7770(2)	3938(1)	7845(1)	29(1)
C(25)	9303(2)	3629(1)	3205(1)	28(1)
C(3)	5982(2)	3232(1)	7271(1)	25(1)
C(23)	11108(2)	2827(1)	3809(1)	34(1)
C(6)	7839(2)	4481(1)	6012(1)	25(1)
C(27)	6880(2)	4177(1)	3593(1)	27(1)
C(22)	10543(2)	2538(1)	4537(1)	28(1)
C(2)	7068(2)	2838(1)	7197(1)	26(1)
C(24)	10500(2)	3362(1)	3161(1)	34(1)
C(12)	9068(2)	1272(1)	5520(1)	31(1)
C(1)	8183(2)	3270(1)	7536(1)	28(1)
C(17)	4828(2)	2461(1)	4528(1)	28(1)
C(14)	7184(2)	512(1)	5244(1)	37(1)
C(13)	8511(2)	596(1)	5479(1)	37(1)
P(1S)	3416(1)	3812(1)	1702(1)	22(1)
F(6S)	3094(1)	3727(1)	490(1)	32(1)
F(5S)	4321(1)	4481(1)	1650(1)	31(1)

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for 2a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(4S)	2190(1)	4329(1)	1564(1)	34(1)
F(3S)	4640(1)	3293(1)	1836(1)	34(1)
F(2S)	3722(1)	3896(1)	2909(1)	38(1)
F(1S)	2504(1)	3142(1)	1744(1)	39(1)
C(1S)	2305(2)	3695(1)	6305(2)	38(1)
C(4S)	2911(2)	4235(1)	7901(1)	34(1)
O(1S)	3316(2)	4068(2)	6992(3)	40(1)
C(2S)	1224(3)	3582(2)	6793(2)	34(1)
C(3S)	1461(9)	4168(6)	7592(8)	36(1)
O(1SB)	3355(12)	3783(10)	7305(11)	46(3)
C(2SB)	1098(12)	3938(11)	6505(11)	41(3)
C(3SB)	1400(40)	4150(30)	7700(30)	41(5)

Fe(1)-C(7)	1.7879(17)
Fe(1)-C(6)	1.7893(16)
Fe(1)-C(1)	2.1003(16)
Fe(1)-C(4)	2.1038(15)
Fe(1)-C(3)	2.1054(16)
Fe(1)-C(5)	2.1052(16)
Fe(1)-C(2)	2.1130(15)
Fe(1)-P(1)	2.1809(4)
P(1)-N(2)	1.6713(12)
P(1)-N(3)	1.6790(13)
P(1)-N(1)	1.7131(13)
O(2)-C(7)	1.140(2)
N(1)-C(21)	1.4329(19)
N(1)-C(11)	1.4338(19)
O(1)-C(6)	1.135(2)
N(2)-C(26)	1.406(2)
N(2)-C(27)	1.458(2)
N(3)-C(16)	1.404(2)
N(3)-C(17)	1.460(2)
C(16)-C(15)	1.390(2)
C(16)-C(11)	1.399(2)
C(26)-C(25)	1.388(2)
C(26)-C(21)	1.400(2)
C(21)-C(22)	1.381(2)
C(11)-C(12)	1.386(2)
C(4)-C(5)	1.409(3)
C(4)-C(3)	1.429(2)
C(4)-H(4)	0.9500
C(15)-C(14)	1.398(3)
C(15)-H(15)	0.9500
C(5)-C(1)	1.431(3)
C(5)-H(5)	0.9500
C(25)-C(24)	1.395(3)
C(25)-H(25)	0.9500

Table S3. Bond lengths [Å] and angles $[\circ]$ for 2a.

C(3)-C(2)	1.406(2)
C(3)-H(3)	0.9500
C(23)-C(24)	1.383(3)
C(23)-C(22)	1.402(3)
C(23)-H(23)	0.9500
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(22)-H(22)	0.9500
C(2)-C(1)	1.418(3)
C(2)-H(2)	0.9500
C(24)-H(24)	0.9500
C(12)-C(13)	1.398(3)
C(12)-H(12)	0.9500
C(1)-H(1)	0.9500
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(14)-C(13)	1.381(3)
C(14)-H(14)	0.9500
C(13)-H(13)	0.9500
P(1S)-F(2S)	1.5982(12)
P(1S)-F(5S)	1.6007(11)
P(1S)-F(6S)	1.6053(11)
P(1S)-F(4S)	1.6053(11)
P(1S)-F(1S)	1.6057(12)
P(1S)-F(3S)	1.6066(11)
C(1S)-O(1S)	1.416(3)
C(1S)-C(2SB)	1.465(13)
C(1S)-C(2S)	1.497(3)
C(1S)-O(1SB)	1.530(12)
C(1S)-H(1S1)	0.9900
C(1S)-H(1S2)	0.9900
C(4S)-O(1SB)	1.347(12)
C(4S)-O(1S)	1.453(3)
C(4S)-C(3SB)	1.57(5)

C(4S)-C(3S)	1.504(10)
C(4S)-H(4S1)	0.9900
C(4S)-H(4S2)	0.9900
C(2S)-C(3S)	1.522(10)
C(2S)-H(2S1)	0.9900
C(2S)-H(2S2)	0.9900
C(3S)-H(3S1)	0.9900
C(3S)-H(3S2)	0.9900
C(2SB)-C(3SB)	1.62(4)
C(2SB)-H(2S3)	0.9900
C(2SB)-H(2S4)	0.9900
C(3SB)-H(3S3)	0.9900
C(3SB)-H(3S4)	0.9900
C(7)-Fe(1)-C(6)	95.77(7)
C(7)-Fe(1)-C(1)	155.99(7)
C(6)-Fe(1)-C(1)	102.44(7)
C(7)-Fe(1)-C(4)	92.44(7)
C(6)-Fe(1)-C(4)	111.88(7)
C(1)-Fe(1)-C(4)	66.38(7)
C(7)-Fe(1)-C(3)	90.57(7)
C(6)-Fe(1)-C(3)	151.30(7)
C(1)-Fe(1)-C(3)	66.04(7)
C(4)-Fe(1)-C(3)	39.70(6)
C(7)-Fe(1)-C(5)	126.83(7)
C(6)-Fe(1)-C(5)	88.18(7)
C(1)-Fe(1)-C(5)	39.80(7)
C(4)-Fe(1)-C(5)	39.12(7)
C(3)-Fe(1)-C(5)	65.97(7)
C(7)-Fe(1)-C(2)	122.89(7)
C(6)-Fe(1)-C(2)	141.06(7)
C(1)-Fe(1)-C(2)	39.33(7)
C(4)-Fe(1)-C(2)	66.00(6)
C(3)-Fe(1)-C(2)	38.95(6)
C(5)-Fe(1)-C(2)	65.98(7)
C(7)-Fe(1)-P(1)	95.75(5)

C(6)-Fe(1)-P(1)	92.28(5)
C(1)-Fe(1)-P(1)	98.99(5)
C(4)-Fe(1)-P(1)	153.56(5)
C(3)-Fe(1)-P(1)	114.95(5)
C(5)-Fe(1)-P(1)	137.17(5)
C(2)-Fe(1)-P(1)	88.58(4)
N(2)-P(1)-N(3)	116.39(7)
N(2)-P(1)-N(1)	93.42(6)
N(3)-P(1)-N(1)	93.04(7)
N(2)-P(1)-Fe(1)	115.53(5)
N(3)-P(1)-Fe(1)	113.34(5)
N(1)-P(1)-Fe(1)	122.13(4)
C(21)-N(1)-C(11)	119.82(12)
C(21)-N(1)-P(1)	110.24(10)
C(11)-N(1)-P(1)	109.59(10)
C(26)-N(2)-C(27)	120.20(12)
C(26)-N(2)-P(1)	112.14(10)
C(27)-N(2)-P(1)	126.85(11)
C(16)-N(3)-C(17)	121.98(13)
C(16)-N(3)-P(1)	111.23(11)
C(17)-N(3)-P(1)	124.84(11)
C(15)-C(16)-C(11)	120.47(15)
C(15)-C(16)-N(3)	127.03(16)
C(11)-C(16)-N(3)	112.50(13)
C(25)-C(26)-C(21)	121.00(15)
C(25)-C(26)-N(2)	126.42(15)
C(21)-C(26)-N(2)	112.57(12)
C(22)-C(21)-C(26)	121.03(15)
C(22)-C(21)-N(1)	127.54(15)
C(26)-C(21)-N(1)	111.43(13)
O(2)-C(7)-Fe(1)	176.91(14)
C(12)-C(11)-C(16)	121.63(15)
C(12)-C(11)-N(1)	126.89(16)
C(16)-C(11)-N(1)	111.46(13)
C(5)-C(4)-C(3)	107.71(15)
C(5)-C(4)-Fe(1)	70.49(9)

C(3)-C(4)-Fe(1)	70.21(9)
C(5)-C(4)-H(4)	126.1
C(3)-C(4)-H(4)	126.1
Fe(1)-C(4)-H(4)	124.8
C(16)-C(15)-C(14)	117.78(19)
C(16)-C(15)-H(15)	121.1
C(14)-C(15)-H(15)	121.1
C(4)-C(5)-C(1)	108.22(15)
C(4)-C(5)-Fe(1)	70.38(9)
C(1)-C(5)-Fe(1)	69.92(9)
C(4)-C(5)-H(5)	125.9
C(1)-C(5)-H(5)	125.9
Fe(1)-C(5)-H(5)	125.4
C(26)-C(25)-C(24)	117.91(17)
C(26)-C(25)-H(25)	121.0
C(24)-C(25)-H(25)	121.0
C(2)-C(3)-C(4)	108.17(15)
C(2)-C(3)-Fe(1)	70.82(9)
C(4)-C(3)-Fe(1)	70.09(9)
C(2)-C(3)-H(3)	125.9
C(4)-C(3)-H(3)	125.9
Fe(1)-C(3)-H(3)	124.8
C(24)-C(23)-C(22)	121.03(16)
C(24)-C(23)-H(23)	119.5
C(22)-C(23)-H(23)	119.5
O(1)-C(6)-Fe(1)	178.07(15)
N(2)-C(27)-H(27A)	109.5
N(2)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
N(2)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(21)-C(22)-C(23)	117.90(17)
C(21)-C(22)-H(22)	121.0
C(23)-C(22)-H(22)	121.0
C(3)-C(2)-C(1)	108.46(14)

C(3)-C(2)-Fe(1)	70.23(9)
C(1)-C(2)-Fe(1)	69.85(9)
C(3)-C(2)-H(2)	125.8
C(1)-C(2)-H(2)	125.8
Fe(1)-C(2)-H(2)	125.7
C(23)-C(24)-C(25)	121.13(16)
C(23)-C(24)-H(24)	119.4
C(25)-C(24)-H(24)	119.4
C(11)-C(12)-C(13)	117.54(19)
C(11)-C(12)-H(12)	121.2
C(13)-C(12)-H(12)	121.2
C(2)-C(1)-C(5)	107.42(15)
C(2)-C(1)-Fe(1)	70.82(9)
C(5)-C(1)-Fe(1)	70.29(9)
C(2)-C(1)-H(1)	126.3
C(5)-C(1)-H(1)	126.3
Fe(1)-C(1)-H(1)	124.2
N(3)-C(17)-H(17A)	109.5
N(3)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
N(3)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(13)-C(14)-C(15)	121.41(17)
C(13)-C(14)-H(14)	119.3
C(15)-C(14)-H(14)	119.3
C(14)-C(13)-C(12)	121.05(17)
C(14)-C(13)-H(13)	119.5
C(12)-C(13)-H(13)	119.5
F(2S)-P(1S)-F(5S)	90.45(7)
F(2S)-P(1S)-F(6S)	179.48(7)
F(5S)-P(1S)-F(6S)	89.92(6)
F(2S)-P(1S)-F(4S)	89.96(7)
F(5S)-P(1S)-F(4S)	90.40(6)
F(6S)-P(1S)-F(4S)	89.67(6)
F(2S)-P(1S)-F(1S)	90.03(7)

F(5S)-P(1S)-F(1S)	179.52(7)
F(6S)-P(1S)-F(1S)	89.60(6)
F(4S)-P(1S)-F(1S)	89.57(7)
F(2S)-P(1S)-F(3S)	90.25(7)
F(5S)-P(1S)-F(3S)	89.75(6)
F(6S)-P(1S)-F(3S)	90.12(6)
F(4S)-P(1S)-F(3S)	179.74(8)
F(1S)-P(1S)-F(3S)	90.28(7)
O(1S)-C(1S)-C(2S)	108.8(2)
C(2SB)-C(1S)-O(1SB)	106.1(7)
O(1S)-C(1S)-H(1S1)	109.9
C(2S)-C(1S)-H(1S1)	109.9
O(1S)-C(1S)-H(1S2)	109.9
C(2S)-C(1S)-H(1S2)	109.9
H(1S1)-C(1S)-H(1S2)	108.3
O(1SB)-C(4S)-C(3SB)	109.8(17)
O(1S)-C(4S)-C(3S)	105.2(4)
O(1S)-C(4S)-H(4S1)	110.7
C(3S)-C(4S)-H(4S1)	110.7
O(1S)-C(4S)-H(4S2)	110.7
C(3S)-C(4S)-H(4S2)	110.7
H(4S1)-C(4S)-H(4S2)	108.8
C(1S)-O(1S)-C(4S)	108.8(2)
C(1S)-C(2S)-C(3S)	102.4(4)
C(1S)-C(2S)-H(2S1)	111.3
C(3S)-C(2S)-H(2S1)	111.3
C(1S)-C(2S)-H(2S2)	111.3
C(3S)-C(2S)-H(2S2)	111.3
H(2S1)-C(2S)-H(2S2)	109.2
C(4S)-C(3S)-C(2S)	103.1(5)
C(4S)-C(3S)-H(3S1)	111.2
C(2S)-C(3S)-H(3S1)	111.2
C(4S)-C(3S)-H(3S2)	111.2
C(2S)-C(3S)-H(3S2)	111.2
H(3S1)-C(3S)-H(3S2)	109.1
C(4S)-O(1SB)-C(1S)	108.2(8)

C(1S)-C(2SB)-C(3SB)	108.1(19)
C(1S)-C(2SB)-H(2S3)	110.1
C(3SB)-C(2SB)-H(2S3)	110.1
C(1S)-C(2SB)-H(2S4)	110.1
C(3SB)-C(2SB)-H(2S4)	110.1
H(2S3)-C(2SB)-H(2S4)	108.4
C(4S)-C(3SB)-C(2SB)	97(2)
C(4S)-C(3SB)-H(3S3)	112.3
C(2SB)-C(3SB)-H(3S3)	112.3
C(4S)-C(3SB)-H(3S4)	112.3
C(2SB)-C(3SB)-H(3S4)	112.3
H(3S3)-C(3SB)-H(3S4)	109.9

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	24(1)	17(1)	13(1)	1(1)	6(1)	2(1)
P(1)	21(1)	17(1)	13(1)	1(1)	5(1)	-1(1)
O(2)	30(1)	38(1)	29(1)	7(1)	8(1)	9(1)
N(1)	23(1)	20(1)	15(1)	-1(1)	5(1)	2(1)
O(1)	45(1)	28(1)	36(1)	3(1)	7(1)	-11(1)
N(2)	24(1)	22(1)	16(1)	4(1)	8(1)	0(1)
N(3)	24(1)	20(1)	20(1)	0(1)	5(1)	-4(1)
C(16)	36(1)	19(1)	14(1)	0(1)	7(1)	-2(1)
C(26)	23(1)	24(1)	15(1)	-3(1)	6(1)	-5(1)
C(21)	24(1)	26(1)	14(1)	-4(1)	5(1)	-2(1)
C(7)	30(1)	24(1)	21(1)	2(1)	10(1)	3(1)
C(11)	34(1)	19(1)	13(1)	1(1)	7(1)	2(1)
C(4)	40(1)	27(1)	17(1)	-1(1)	12(1)	5(1)
C(15)	50(1)	22(1)	18(1)	0(1)	12(1)	-7(1)
C(5)	40(1)	31(1)	14(1)	-1(1)	4(1)	-3(1)
C(25)	33(1)	32(1)	19(1)	-2(1)	11(1)	-10(1)
C(3)	34(1)	28(1)	17(1)	3(1)	10(1)	-1(1)
C(23)	23(1)	51(1)	29(1)	-11(1)	11(1)	-4(1)
C(6)	32(1)	22(1)	20(1)	0(1)	5(1)	-1(1)
C(27)	34(1)	27(1)	21(1)	9(1)	8(1)	3(1)
C(22)	23(1)	38(1)	23(1)	-8(1)	4(1)	2(1)
C(2)	42(1)	22(1)	15(1)	4(1)	10(1)	5(1)
C(24)	32(1)	47(1)	26(1)	-8(1)	15(1)	-12(1)
C(12)	47(1)	27(1)	18(1)	3(1)	9(1)	11(1)
C(1)	31(1)	36(1)	17(1)	7(1)	6(1)	7(1)
C(17)	25(1)	30(1)	30(1)	1(1)	6(1)	-7(1)
C(14)	74(1)	18(1)	21(1)	1(1)	16(1)	-3(1)
C(13)	68(1)	22(1)	23(1)	5(1)	15(1)	12(1)
P(1S)	26(1)	21(1)	19(1)	-1(1)	7(1)	0(1)
F(6S)	38(1)	38(1)	20(1)	-4(1)	8(1)	-2(1)
F(5S)	31(1)	24(1)	35(1)	1(1)	6(1)	-4(1)

Table S4. Anisotropic displacement parameters (Å2x 103) for 2a. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*2U¹¹ + ... + 2 h k a* b* U¹²]

F(4S)	29(1)	35(1)	38(1)	-4(1)	10(1)	7(1)
F(3S)	36(1)	28(1)	39(1)	2(1)	10(1)	10(1)
F(2S)	47(1)	48(1)	19(1)	-2(1)	8(1)	3(1)
F(1S)	46(1)	31(1)	43(1)	-1(1)	19(1)	-12(1)
C(1S)	38(1)	39(1)	39(1)	-13(1)	14(1)	-9(1)
C(4S)	40(1)	33(1)	26(1)	-1(1)	2(1)	0(1)
O(1S)	31(1)	47(2)	45(1)	-23(1)	15(1)	-8(1)
C(2S)	38(1)	33(1)	35(1)	-12(1)	17(1)	-10(1)
C(3S)	38(2)	39(2)	35(3)	-12(2)	18(2)	-4(2)
O(1SB)	41(4)	58(7)	37(5)	-17(5)	5(4)	3(5)
C(2SB)	35(4)	55(9)	36(5)	-17(5)	12(4)	-18(5)
C(3SB)	45(6)	49(12)	28(7)	-22(7)	9(7)	-11(7)

Compound **1b**•Fp⁺:

Identification code	fppnme2_7	fppnme2_7		
Empirical formula	C13 H23 F6 Fe N3 O2 P2	C13 H23 F6 Fe N3 O2 P2		
Formula weight	485.13	485.13		
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P21/c			
Unit cell dimensions	a = 13.0704(6) Å	$\alpha = 90^{\circ}$.		
	b = 19.2166(9) Å	$\beta = 90.417(2)^{\circ}.$		
	c = 15.4820(7) Å	$\gamma = 90^{\circ}.$		
Volume	3888.5(3) Å ³			
Z	8			
Density (calculated)	1.657 Mg/m ³	1.657 Mg/m ³		
Absorption coefficient	1.009 mm ⁻¹	1.009 mm ⁻¹		
F(000)	1984	1984		
Crystal size	0.230 x 0.130 x 0.030 mm	0.230 x 0.130 x 0.030 mm ³		
Theta range for data collection	2.292 to 33.204°.			
Index ranges	-20<=h<=20, -29<=k<=29	9, -23<=l<=23		
Reflections collected	429575			
Independent reflections	14863 [R(int) = 0.0462]			
Completeness to theta = 25.242°	99.9 %	99.9 %		
Absorption correction	Semi-empirical from equi	Semi-empirical from equivalents		
Max. and min. transmission	.7465 and .6786	.7465 and .6786		
Refinement method	Full-matrix least-squares of	Full-matrix least-squares on F ²		
Data / restraints / parameters	14863 / 0 / 499	14863 / 0 / 499		
Goodness-of-fit on F ²	1.026	1.026		
Final R indices [I>2sigma(I)] $R1 = 0.0424$, wR		52		
R indices (all data)	R1 = 0.0519, wR2 = 0.125	R1 = 0.0519, $wR2 = 0.1253$		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	1.971 and -1.354 e.Å ⁻³	1.971 and -1.354 e.Å ⁻³		

Table S5. Crystal data and structure refinement for $1b \cdot Fp^+$.

	Х	у	Z	U(eq)
Fe(1)	2667(1)	5656(1)	4332(1)	16(1)
Fe(2)	2408(1)	4170(1)	-94(1)	17(1)
P(2)	3006(1)	3453(1)	-1103(1)	17(1)
P(3)	4984(1)	5828(1)	7382(1)	22(1)
P(1)	2104(1)	6754(1)	4419(1)	18(1)
P(4)	43(1)	4245(1)	2341(1)	22(1)
F(31)	6199(1)	5840(1)	7288(1)	34(1)
F(32)	3762(1)	5804(1)	7479(1)	40(1)
F(33)	5082(1)	6139(1)	8344(1)	45(1)
F(41)	-94(1)	4679(1)	1464(1)	37(1)
F(34)	4899(1)	6602(1)	7014(1)	51(1)
F(42)	-1156(1)	4088(1)	2337(1)	45(1)
F(43)	1241(1)	4403(1)	2344(1)	45(1)
F(44)	178(1)	3827(1)	3231(1)	48(1)
F(45)	-159(1)	4938(1)	2884(1)	46(1)
F(35)	5060(1)	5067(1)	7786(1)	44(1)
F(36)	4874(1)	5522(1)	6432(1)	53(1)
O(11)	4800(1)	6073(1)	4530(1)	32(1)
O(12)	2569(2)	5760(1)	2455(1)	41(1)
O(21)	271(1)	3910(1)	-501(1)	39(1)
F(46)	254(2)	3561(1)	1793(1)	60(1)
N(11)	970(1)	6907(1)	3946(1)	28(1)
N(12)	1867(1)	7002(1)	5424(1)	22(1)
N(13)	2912(2)	7336(1)	4002(1)	29(1)
N(21)	4203(1)	3168(1)	-971(1)	26(1)
N(22)	3061(1)	3808(1)	-2075(1)	25(1)
O(22)	2675(2)	3105(1)	1231(1)	48(1)
N(23)	2293(1)	2731(1)	-1193(1)	30(1)
C(21)	3313(1)	4992(1)	-570(1)	22(1)
C(11)	2199(2)	4609(1)	4230(1)	26(1)
C(122)	2635(1)	6868(1)	6095(1)	26(1)

Table S6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 2b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(12)	1374(1)	5023(1)	4544(1)	24(1)
C(22)	2286(2)	5218(1)	-470(1)	26(1)
C(15)	3017(2)	4663(1)	4821(2)	31(1)
C(23)	2037(2)	5149(1)	430(1)	28(1)
C(25)	3683(1)	4774(1)	248(1)	24(1)
C(121)	1126(2)	7531(1)	5679(1)	32(1)
C(111)	61(2)	6540(1)	4232(2)	36(1)
C(13)	1690(2)	5326(1)	5337(1)	27(1)
C(14)	2703(2)	5113(1)	5510(1)	32(1)
C(131)	3636(2)	7228(1)	3299(1)	31(1)
C(16)	2606(2)	5719(1)	3186(1)	26(1)
C(26)	1114(1)	3998(1)	-345(1)	26(1)
C(221)	2217(2)	4241(1)	-2389(1)	35(1)
C(132)	2707(2)	8079(1)	4140(2)	45(1)
C(24)	2899(2)	4879(1)	864(1)	27(1)
C(17)	3961(1)	5922(1)	4444(1)	23(1)
C(231)	1708(2)	2388(1)	-520(2)	32(1)
C(112)	941(2)	7058(2)	3013(1)	46(1)
C(27)	2562(2)	3511(1)	705(1)	31(1)
C(211)	4393(2)	2588(1)	-375(2)	41(1)
C(212)	5068(2)	3640(1)	-1012(2)	34(1)
C(222)	3765(2)	3610(2)	-2756(1)	40(1)
C(232)	2518(3)	2256(2)	-1905(2)	66(1)

Fe(1)-C(17)	1.7739(19)
Fe(1)-C(16)	1.7792(18)
Fe(1)-C(14)	2.1022(18)
Fe(1)-C(15)	2.1026(19)
Fe(1)-C(11)	2.1086(19)
Fe(1)-C(12)	2.1108(18)
Fe(1)-C(13)	2.1177(18)
Fe(1)-P(1)	2.2381(5)
Fe(2)-C(26)	1.7640(19)
Fe(2)-C(27)	1.781(2)
Fe(2)-C(25)	2.0957(18)
Fe(2)-C(22)	2.1015(18)
Fe(2)-C(23)	2.1060(19)
Fe(2)-C(21)	2.1089(17)
Fe(2)-C(24)	2.1092(19)
Fe(2)-P(2)	2.2305(5)
P(2)-N(22)	1.6538(16)
P(2)-N(21)	1.6676(16)
P(2)-N(23)	1.6766(17)
P(3)-F(36)	1.5897(16)
P(3)-F(35)	1.5946(15)
P(3)-F(31)	1.5961(13)
P(3)-F(34)	1.5963(16)
P(3)-F(32)	1.6064(13)
P(3)-F(33)	1.6078(15)
P(1)-N(12)	1.6592(15)
P(1)-N(13)	1.6715(18)
P(1)-N(11)	1.6742(16)
P(4)-F(46)	1.5903(17)
P(4)-F(43)	1.5954(14)
P(4)-F(42)	1.5957(14)
P(4)-F(45)	1.5970(15)
P(4)-F(41)	1.6014(14)
P(4)-F(44)	1.6035(14)

Table S7. Bond lengths [Å] and angles [°] for 2b.

O(11)-C(17)	1.141(2)
O(12)-C(16)	1.135(2)
O(21)-C(26)	1.139(2)
N(11)-C(111)	1.455(3)
N(11)-C(112)	1.473(3)
N(12)-C(121)	1.460(2)
N(12)-C(122)	1.462(2)
N(13)-C(131)	1.462(3)
N(13)-C(132)	1.470(3)
N(21)-C(212)	1.451(3)
N(21)-C(211)	1.467(3)
N(22)-C(222)	1.456(3)
N(22)-C(221)	1.461(3)
O(22)-C(27)	1.137(3)
N(23)-C(231)	1.455(3)
N(23)-C(232)	1.463(3)
C(21)-C(25)	1.415(3)
C(21)-C(22)	1.420(3)
C(21)-H(21)	0.9500
C(11)-C(15)	1.406(3)
C(11)-C(12)	1.428(3)
C(11)-H(11)	0.9500
C(122)-H(12A)	0.9800
C(122)-H(12B)	0.9800
C(122)-H(12C)	0.9800
C(12)-C(13)	1.417(3)
C(12)-H(12)	0.9500
C(22)-C(23)	1.439(3)
C(22)-H(22)	0.9500
C(15)-C(14)	1.436(3)
C(15)-H(15)	0.9500
C(23)-C(24)	1.407(3)
C(23)-H(23)	0.9500
C(25)-C(24)	1.420(3)
C(25)-H(25)	0.9500
C(121)-H(12D)	0.9800

C(121)-H(12E)	0.9800
C(121)-H(12F)	0.9800
C(111)-H(11A)	0.9800
C(111)-H(11B)	0.9800
C(111)-H(11C)	0.9800
C(13)-C(14)	1.410(3)
C(13)-H(13)	0.9500
C(14)-H(14)	0.9500
C(131)-H(13A)	0.9800
C(131)-H(13B)	0.9800
C(131)-H(13C)	0.9800
C(221)-H(22A)	0.9800
C(221)-H(22B)	0.9800
C(221)-H(22C)	0.9800
C(132)-H(13D)	0.9800
C(132)-H(13E)	0.9800
C(132)-H(13F)	0.9800
C(24)-H(24)	0.9500
C(231)-H(23A)	0.9800
C(231)-H(23B)	0.9800
C(231)-H(23C)	0.9800
C(112)-H(11D)	0.9800
C(112)-H(11E)	0.9800
C(112)-H(11F)	0.9800
C(211)-H(21A)	0.9800
C(211)-H(21B)	0.9800
C(211)-H(21C)	0.9800
C(212)-H(21D)	0.9800
C(212)-H(21E)	0.9800
C(212)-H(21F)	0.9800
C(222)-H(22D)	0.9800
C(222)-H(22E)	0.9800
C(222)-H(22F)	0.9800
C(232)-H(23D)	0.9800
C(232)-H(23E)	0.9800
C(232)-H(23F)	0.9800

C(17)-Fe(1)-C(16)	96.58(9)
C(17)-Fe(1)-C(14)	92.43(8)
C(16)-Fe(1)-C(14)	154.10(9)
C(17)-Fe(1)-C(15)	91.20(8)
C(16)-Fe(1)-C(15)	115.40(9)
C(14)-Fe(1)-C(15)	39.94(10)
C(17)-Fe(1)-C(11)	123.90(8)
C(16)-Fe(1)-C(11)	88.83(8)
C(14)-Fe(1)-C(11)	66.14(8)
C(15)-Fe(1)-C(11)	39.00(8)
C(17)-Fe(1)-C(12)	156.16(8)
C(16)-Fe(1)-C(12)	99.44(9)
C(14)-Fe(1)-C(12)	65.88(8)
C(15)-Fe(1)-C(12)	65.97(8)
C(11)-Fe(1)-C(12)	39.57(7)
C(17)-Fe(1)-C(13)	126.42(8)
C(16)-Fe(1)-C(13)	136.87(9)
C(14)-Fe(1)-C(13)	39.03(8)
C(15)-Fe(1)-C(13)	66.05(9)
C(11)-Fe(1)-C(13)	65.96(8)
C(12)-Fe(1)-C(13)	39.17(7)
C(17)-Fe(1)-P(1)	92.14(6)
C(16)-Fe(1)-P(1)	89.05(6)
C(14)-Fe(1)-P(1)	114.89(7)
C(15)-Fe(1)-P(1)	154.75(7)
C(11)-Fe(1)-P(1)	143.90(6)
C(12)-Fe(1)-P(1)	105.62(5)
C(13)-Fe(1)-P(1)	92.14(6)
C(26)-Fe(2)-C(27)	97.06(10)
C(26)-Fe(2)-C(25)	156.82(8)
C(27)-Fe(2)-C(25)	97.66(9)
C(26)-Fe(2)-C(22)	92.77(8)
C(27)-Fe(2)-C(22)	151.89(9)
C(25)-Fe(2)-C(22)	66.29(7)
C(26)-Fe(2)-C(23)	91.70(8)

C(27)-Fe(2)-C(23)	113.17(9)
C(25)-Fe(2)-C(23)	66.03(8)
C(22)-Fe(2)-C(23)	40.00(8)
C(26)-Fe(2)-C(21)	127.06(8)
C(27)-Fe(2)-C(21)	135.60(9)
C(25)-Fe(2)-C(21)	39.32(7)
C(22)-Fe(2)-C(21)	39.41(8)
C(23)-Fe(2)-C(21)	66.25(8)
C(26)-Fe(2)-C(24)	124.24(9)
C(27)-Fe(2)-C(24)	86.51(9)
C(25)-Fe(2)-C(24)	39.48(7)
C(22)-Fe(2)-C(24)	66.32(8)
C(23)-Fe(2)-C(24)	39.00(8)
C(21)-Fe(2)-C(24)	66.04(7)
C(26)-Fe(2)-P(2)	94.00(7)
C(27)-Fe(2)-P(2)	90.47(7)
C(25)-Fe(2)-P(2)	103.68(5)
C(22)-Fe(2)-P(2)	115.11(6)
C(23)-Fe(2)-P(2)	154.80(6)
C(21)-Fe(2)-P(2)	91.00(5)
C(24)-Fe(2)-P(2)	141.73(6)
N(22)-P(2)-N(21)	101.59(8)
N(22)-P(2)-N(23)	107.09(9)
N(21)-P(2)-N(23)	105.03(9)
N(22)-P(2)-Fe(2)	113.54(6)
N(21)-P(2)-Fe(2)	116.74(6)
N(23)-P(2)-Fe(2)	111.83(6)
F(36)-P(3)-F(35)	91.64(11)
F(36)-P(3)-F(31)	90.25(8)
F(35)-P(3)-F(31)	89.41(8)
F(36)-P(3)-F(34)	90.49(11)
F(35)-P(3)-F(34)	177.77(11)
F(31)-P(3)-F(34)	91.24(8)
F(36)-P(3)-F(32)	89.50(9)
F(35)-P(3)-F(32)	89.70(8)
F(31)-P(3)-F(32)	179.07(9)

F(34)-P(3)-F(32)	89.65(9)
F(36)-P(3)-F(33)	179.33(9)
F(35)-P(3)-F(33)	88.41(9)
F(31)-P(3)-F(33)	90.42(8)
F(34)-P(3)-F(33)	89.45(10)
F(32)-P(3)-F(33)	89.83(8)
N(12)-P(1)-N(13)	107.03(9)
N(12)-P(1)-N(11)	100.92(8)
N(13)-P(1)-N(11)	105.85(10)
N(12)-P(1)-Fe(1)	113.01(6)
N(13)-P(1)-Fe(1)	113.44(6)
N(11)-P(1)-Fe(1)	115.48(7)
F(46)-P(4)-F(43)	89.12(11)
F(46)-P(4)-F(42)	90.93(11)
F(43)-P(4)-F(42)	179.90(11)
F(46)-P(4)-F(45)	179.20(12)
F(43)-P(4)-F(45)	90.30(10)
F(42)-P(4)-F(45)	89.66(10)
F(46)-P(4)-F(41)	89.80(10)
F(43)-P(4)-F(41)	90.39(8)
F(42)-P(4)-F(41)	89.52(8)
F(45)-P(4)-F(41)	89.66(9)
F(46)-P(4)-F(44)	91.50(11)
F(43)-P(4)-F(44)	89.49(8)
F(42)-P(4)-F(44)	90.60(8)
F(45)-P(4)-F(44)	89.03(10)
F(41)-P(4)-F(44)	178.69(10)
C(111)-N(11)-C(112)	112.30(19)
C(111)-N(11)-P(1)	120.22(14)
C(112)-N(11)-P(1)	118.70(16)
C(121)-N(12)-C(122)	112.57(14)
C(121)-N(12)-P(1)	125.59(13)
C(122)-N(12)-P(1)	118.93(12)
C(131)-N(13)-C(132)	111.40(18)
C(131)-N(13)-P(1)	127.42(14)
C(132)-N(13)-P(1)	118.55(16)

C(212)-N(21)-C(211)	111.91(18)
C(212)-N(21)-P(2)	121.36(14)
C(211)-N(21)-P(2)	118.75(14)
C(222)-N(22)-C(221)	112.77(17)
C(222)-N(22)-P(2)	125.64(16)
C(221)-N(22)-P(2)	120.01(13)
C(231)-N(23)-C(232)	111.48(18)
C(231)-N(23)-P(2)	127.61(14)
C(232)-N(23)-P(2)	117.65(15)
C(25)-C(21)-C(22)	108.12(16)
C(25)-C(21)-Fe(2)	69.84(10)
C(22)-C(21)-Fe(2)	70.01(10)
C(25)-C(21)-H(21)	125.9
C(22)-C(21)-H(21)	125.9
Fe(2)-C(21)-H(21)	125.8
C(15)-C(11)-C(12)	108.10(18)
C(15)-C(11)-Fe(1)	70.27(11)
C(12)-C(11)-Fe(1)	70.30(11)
C(15)-C(11)-H(11)	126.0
C(12)-C(11)-H(11)	126.0
Fe(1)-C(11)-H(11)	125.1
N(12)-C(122)-H(12A)	109.5
N(12)-C(122)-H(12B)	109.5
H(12A)-C(122)-H(12B)	109.5
N(12)-C(122)-H(12C)	109.5
H(12A)-C(122)-H(12C)	109.5
H(12B)-C(122)-H(12C)	109.5
C(13)-C(12)-C(11)	107.88(16)
C(13)-C(12)-Fe(1)	70.68(10)
C(11)-C(12)-Fe(1)	70.14(11)
C(13)-C(12)-H(12)	126.1
C(11)-C(12)-H(12)	126.1
Fe(1)-C(12)-H(12)	124.7
C(21)-C(22)-C(23)	107.35(16)
C(21)-C(22)-Fe(2)	70.57(10)
C(23)-C(22)-Fe(2)	70.17(11)

C(21)-C(22)-H(22)	126.3
C(23)-C(22)-H(22)	126.3
Fe(2)-C(22)-H(22)	124.6
C(11)-C(15)-C(14)	107.91(17)
C(11)-C(15)-Fe(1)	70.73(11)
C(14)-C(15)-Fe(1)	70.02(11)
C(11)-C(15)-H(15)	126.0
C(14)-C(15)-H(15)	126.0
Fe(1)-C(15)-H(15)	124.8
C(24)-C(23)-C(22)	108.05(17)
C(24)-C(23)-Fe(2)	70.63(11)
C(22)-C(23)-Fe(2)	69.83(10)
C(24)-C(23)-H(23)	126.0
C(22)-C(23)-H(23)	126.0
Fe(2)-C(23)-H(23)	125.2
C(21)-C(25)-C(24)	108.33(17)
C(21)-C(25)-Fe(2)	70.84(10)
C(24)-C(25)-Fe(2)	70.77(11)
C(21)-C(25)-H(25)	125.8
C(24)-C(25)-H(25)	125.8
Fe(2)-C(25)-H(25)	124.2
N(12)-C(121)-H(12D)	109.5
N(12)-C(121)-H(12E)	109.5
H(12D)-C(121)-H(12E)	109.5
N(12)-C(121)-H(12F)	109.5
H(12D)-C(121)-H(12F)	109.5
H(12E)-C(121)-H(12F)	109.5
N(11)-C(111)-H(11A)	109.5
N(11)-C(111)-H(11B)	109.5
H(11A)-C(111)-H(11B)	109.5
N(11)-C(111)-H(11C)	109.5
H(11A)-C(111)-H(11C)	109.5
H(11B)-C(111)-H(11C)	109.5
C(14)-C(13)-C(12)	108.25(18)
C(14)-C(13)-Fe(1)	69.89(11)
C(12)-C(13)-Fe(1)	70.15(10)

C(14)-C(13)-H(13)	125.9
C(12)-C(13)-H(13)	125.9
Fe(1)-C(13)-H(13)	125.7
C(13)-C(14)-C(15)	107.86(17)
C(13)-C(14)-Fe(1)	71.08(11)
C(15)-C(14)-Fe(1)	70.05(11)
C(13)-C(14)-H(14)	126.1
C(15)-C(14)-H(14)	126.1
Fe(1)-C(14)-H(14)	124.4
N(13)-C(131)-H(13A)	109.5
N(13)-C(131)-H(13B)	109.5
H(13A)-C(131)-H(13B)	109.5
N(13)-C(131)-H(13C)	109.5
H(13A)-C(131)-H(13C)	109.5
H(13B)-C(131)-H(13C)	109.5
O(12)-C(16)-Fe(1)	179.9(3)
O(21)-C(26)-Fe(2)	177.67(18)
N(22)-C(221)-H(22A)	109.5
N(22)-C(221)-H(22B)	109.5
H(22A)-C(221)-H(22B)	109.5
N(22)-C(221)-H(22C)	109.5
H(22A)-C(221)-H(22C)	109.5
H(22B)-C(221)-H(22C)	109.5
N(13)-C(132)-H(13D)	109.5
N(13)-C(132)-H(13E)	109.5
H(13D)-C(132)-H(13E)	109.5
N(13)-C(132)-H(13F)	109.5
H(13D)-C(132)-H(13F)	109.5
H(13E)-C(132)-H(13F)	109.5
C(23)-C(24)-C(25)	108.13(17)
C(23)-C(24)-Fe(2)	70.38(11)
C(25)-C(24)-Fe(2)	69.75(10)
C(23)-C(24)-H(24)	125.9
C(25)-C(24)-H(24)	125.9
Fe(2)-C(24)-H(24)	125.5
O(11)-C(17)-Fe(1)	177.85(17)

N(23)-C(231)-H(23A)	109.5
N(23)-C(231)-H(23B)	109.5
H(23A)-C(231)-H(23B)	109.5
N(23)-C(231)-H(23C)	109.5
H(23A)-C(231)-H(23C)	109.5
H(23B)-C(231)-H(23C)	109.5
N(11)-C(112)-H(11D)	109.5
N(11)-C(112)-H(11E)	109.5
H(11D)-C(112)-H(11E)	109.5
N(11)-C(112)-H(11F)	109.5
H(11D)-C(112)-H(11F)	109.5
H(11E)-C(112)-H(11F)	109.5
O(22)-C(27)-Fe(2)	177.9(2)
N(21)-C(211)-H(21A)	109.5
N(21)-C(211)-H(21B)	109.5
H(21A)-C(211)-H(21B)	109.5
N(21)-C(211)-H(21C)	109.5
H(21A)-C(211)-H(21C)	109.5
H(21B)-C(211)-H(21C)	109.5
N(21)-C(212)-H(21D)	109.5
N(21)-C(212)-H(21E)	109.5
H(21D)-C(212)-H(21E)	109.5
N(21)-C(212)-H(21F)	109.5
H(21D)-C(212)-H(21F)	109.5
H(21E)-C(212)-H(21F)	109.5
N(22)-C(222)-H(22D)	109.5
N(22)-C(222)-H(22E)	109.5
H(22D)-C(222)-H(22E)	109.5
N(22)-C(222)-H(22F)	109.5
H(22D)-C(222)-H(22F)	109.5
H(22E)-C(222)-H(22F)	109.5
N(23)-C(232)-H(23D)	109.5
N(23)-C(232)-H(23E)	109.5
H(23D)-C(232)-H(23E)	109.5
N(23)-C(232)-H(23F)	109.5
H(23D)-C(232)-H(23F)	109.5

Symmetry transformations used to generate equivalent atoms:
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	16(1)	20(1)	13(1)	1(1)	0(1)	3(1)
Fe(2)	16(1)	16(1)	18(1)	1(1)	4(1)	0(1)
P(2)	18(1)	16(1)	17(1)	-1(1)	1(1)	0(1)
P(3)	16(1)	29(1)	20(1)	7(1)	-1(1)	-1(1)
P(1)	20(1)	22(1)	13(1)	-1(1)	-1(1)	6(1)
P(4)	17(1)	25(1)	24(1)	3(1)	-2(1)	0(1)
F(31)	17(1)	45(1)	40(1)	10(1)	2(1)	-1(1)
F(32)	17(1)	68(1)	35(1)	11(1)	1(1)	-1(1)
F(33)	39(1)	64(1)	30(1)	-10(1)	-6(1)	9(1)
F(41)	31(1)	54(1)	26(1)	13(1)	-4(1)	-2(1)
F(34)	40(1)	43(1)	70(1)	29(1)	2(1)	6(1)
F(42)	21(1)	64(1)	49(1)	19(1)	-5(1)	-12(1)
F(43)	18(1)	77(1)	39(1)	13(1)	-4(1)	-6(1)
F(44)	35(1)	62(1)	47(1)	34(1)	-2(1)	4(1)
F(45)	59(1)	41(1)	38(1)	-13(1)	-11(1)	12(1)
F(35)	40(1)	33(1)	60(1)	18(1)	-1(1)	-4(1)
F(36)	38(1)	96(1)	26(1)	-15(1)	-4(1)	4(1)
O(11)	20(1)	40(1)	37(1)	7(1)	3(1)	0(1)
O(12)	73(1)	33(1)	16(1)	-5(1)	2(1)	6(1)
O(21)	20(1)	30(1)	65(1)	1(1)	-2(1)	-4(1)
F(46)	68(1)	38(1)	72(1)	-19(1)	-4(1)	11(1)
N(11)	28(1)	35(1)	21(1)	-5(1)	-9(1)	14(1)
N(12)	21(1)	31(1)	16(1)	-7(1)	-1(1)	5(1)
N(13)	38(1)	22(1)	26(1)	2(1)	8(1)	3(1)
N(21)	20(1)	27(1)	32(1)	1(1)	4(1)	4(1)
N(22)	26(1)	31(1)	17(1)	2(1)	4(1)	0(1)
O(22)	71(1)	42(1)	32(1)	15(1)	1(1)	3(1)
N(23)	34(1)	23(1)	32(1)	-8(1)	9(1)	-8(1)
C(21)	27(1)	20(1)	20(1)	0(1)	0(1)	-8(1)
C(11)	29(1)	20(1)	29(1)	0(1)	0(1)	2(1)
C(122)	25(1)	36(1)	15(1)	-4(1)	-3(1)	-1(1)

Table S8. Anisotropic displacement parameters (Å2x 103) for 2b. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*2U¹¹ + ... + 2 h k a* b* U¹²]

C(12)	19(1)	26(1)	28(1)	-1(1)	-3(1)	-1(1)
C(22)	28(1)	16(1)	33(1)	2(1)	-10(1)	-2(1)
C(15)	23(1)	29(1)	41(1)	16(1)	-4(1)	3(1)
C(23)	25(1)	24(1)	36(1)	-7(1)	3(1)	4(1)
C(25)	23(1)	25(1)	24(1)	-4(1)	-4(1)	-1(1)
C(121)	28(1)	39(1)	30(1)	-17(1)	-1(1)	9(1)
C(111)	21(1)	43(1)	43(1)	-14(1)	-11(1)	10(1)
C(13)	28(1)	31(1)	22(1)	0(1)	6(1)	-8(1)
C(14)	34(1)	40(1)	21(1)	13(1)	-9(1)	-13(1)
C(131)	39(1)	31(1)	24(1)	6(1)	7(1)	0(1)
C(16)	38(1)	22(1)	18(1)	-2(1)	1(1)	6(1)
C(26)	21(1)	20(1)	38(1)	0(1)	3(1)	-1(1)
C(221)	41(1)	43(1)	20(1)	4(1)	-4(1)	6(1)
C(132)	62(2)	24(1)	51(1)	2(1)	15(1)	6(1)
C(24)	33(1)	28(1)	21(1)	-6(1)	1(1)	2(1)
C(17)	21(1)	27(1)	22(1)	5(1)	3(1)	4(1)
C(231)	28(1)	23(1)	44(1)	1(1)	7(1)	-4(1)
C(112)	52(1)	62(2)	24(1)	-1(1)	-16(1)	25(1)
C(27)	40(1)	28(1)	24(1)	4(1)	6(1)	3(1)
C(211)	30(1)	40(1)	53(1)	15(1)	5(1)	13(1)
C(212)	18(1)	30(1)	54(1)	-3(1)	1(1)	0(1)
C(222)	44(1)	50(1)	25(1)	-5(1)	13(1)	-1(1)
C(232)	80(2)	50(2)	69(2)	-39(2)	41(2)	-36(2)

Compound **1a^F•**Fp:

Identification code	dentification code FpNNNPF5x		
Empirical formula C21 H19 F Fe N3 O2 P			
Formula weight 451.21			
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pca21		
Unit cell dimensions	a = 20.512(2) Å	$\alpha = 90^{\circ}$.	
	b = 7.2560(8) Å	$\beta = 90^{\circ}$.	
	c = 12.6618(13) Å	$\gamma=90^{\circ}.$	
Volume	1884.5(3) Å ³		
Z	4		
Density (calculated)	1.590 Mg/m ³		
Absorption coefficient	0.919 mm ⁻¹		
F(000)	928		
Crystal size	0.200 x 0.110 x 0.080 mm ³		
Theta range for data collection	1.986 to 31.503°.		
Index ranges	-30<=h<=30, -10<=k<=10, -12<=l<=18		
Reflections collected	65006		
Independent reflections	5534 [R(int) = 0.0617]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.7463 and 0.6680		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5534 / 1 / 265		
Goodness-of-fit on F ²	1.076		
Final R indices [I>2sigma(I)]	R1 = 0.0359, wR2 = 0.0802		
R indices (all data)	R1 = 0.0418, wR2 = 0.0826		
Absolute structure parameter	Absolute structure parameter 0.03(2)		
Extinction coefficient n/a			
gest diff. peak and hole 0.592 and -0.446 e.Å ⁻³			

Table S9. Crystal data and structure refinement for $1a^{F}{\mbox{\cdot}}\mbox{Fp}.$

	Х	У	Z	U(eq)
Fe(1)	6375(1)	3610(1)	3663(1)	14(1)
P(1)	5812(1)	4860(1)	5067(1)	14(1)
F(1)	6046(1)	7049(2)	4929(2)	18(1)
O(2)	7423(1)	2377(3)	5039(2)	27(1)
O(1)	6973(1)	7139(3)	3150(2)	28(1)
N(1)	5399(1)	2902(3)	5628(2)	16(1)
N(2)	5043(1)	5611(3)	4731(2)	19(1)
N(3)	6274(1)	4836(3)	6230(2)	16(1)
C(12)	4732(1)	2816(4)	5455(2)	15(1)
C(3M)	6039(2)	928(4)	3348(3)	21(1)
C(25)	6600(2)	766(5)	7958(3)	20(1)
C(11)	4529(1)	4403(4)	4907(2)	15(1)
C(4M)	5524(2)	2188(5)	3191(3)	21(1)
C(13)	4282(2)	1481(4)	5751(3)	19(1)
C(16)	3879(1)	4627(4)	4640(3)	18(1)
C(22)	5756(1)	1989(4)	6400(2)	16(1)
C(24)	6094(2)	-344(4)	7621(3)	19(1)
C(26)	6701(1)	2507(4)	7504(2)	17(1)
C(21)	6268(1)	3136(4)	6739(2)	16(1)
C(5M)	5710(2)	3440(5)	2397(3)	24(1)
C(23)	5672(2)	244(4)	6825(3)	18(1)
C(15)	3428(2)	3259(4)	4918(3)	21(1)
C(2)	7001(2)	2886(4)	4519(3)	19(1)
C(14)	3625(2)	1729(5)	5474(3)	22(1)
C(1)	6727(2)	5776(4)	3377(3)	19(1)
C(2M)	6550(2)	1378(5)	2624(3)	23(1)
C(27)	6828(2)	6034(5)	6459(3)	21(1)
C(17)	4924(2)	7199(5)	4036(3)	28(1)
C(1M)	6346(2)	2923(5)	2044(3)	26(1)

Table S10. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for 3. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Fe(1)-C(2)	1.761(3)
Fe(1)-C(1)	1.767(3)
Fe(1)-C(3M)	2.103(3)
Fe(1)-C(5M)	2.109(3)
Fe(1)-C(1M)	2.112(3)
Fe(1)-C(4M)	2.114(3)
Fe(1)-C(2M)	2.118(3)
Fe(1)-P(1)	2.3047(9)
P(1)-F(1)	1.6687(18)
P(1)-N(2)	1.723(3)
P(1)-N(3)	1.750(3)
P(1)-N(1)	1.800(3)
O(2)-C(2)	1.147(4)
O(1)-C(1)	1.146(4)
N(1)-C(12)	1.388(4)
N(1)-C(22)	1.389(4)
N(2)-C(11)	1.389(4)
N(2)-C(17)	1.471(4)
N(3)-C(21)	1.392(4)
N(3)-C(27)	1.460(4)
C(12)-C(13)	1.389(4)
C(12)-C(11)	1.407(4)
C(3M)-C(4M)	1.411(5)
C(3M)-C(2M)	1.431(5)
C(3M)-H(3M)	0.9500
C(25)-C(24)	1.381(5)
C(25)-C(26)	1.403(4)
C(25)-H(25)	0.9500
C(11)-C(16)	1.385(4)
C(4M)-C(5M)	1.407(5)
C(4M)-H(4M)	0.9500
C(13)-C(14)	1.405(4)
C(13)-H(13)	0.9500
C(16)-C(15)	1.402(4)

Table 11. Bond lengths [Å] and angles $[\circ]$ for 3.

C(16)-H(16)	0.9500
C(22)-C(23)	1.386(4)
C(22)-C(21)	1.406(4)
C(24)-C(23)	1.396(4)
C(24)-H(24)	0.9500
C(26)-C(21)	1.392(4)
C(26)-H(26)	0.9500
C(5M)-C(1M)	1.430(5)
C(5M)-H(5M)	0.9500
C(23)-H(23)	0.9500
C(15)-C(14)	1.376(5)
C(15)-H(15)	0.9500
C(14)-H(14)	0.9500
C(2M)-C(1M)	1.404(5)
C(2M)-H(2M)	0.9500
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(1M)-H(1M)	0.9500
C(2)-Fe(1)-C(1)	95.37(15)
C(2)-Fe(1)-C(3M)	94.57(14)
C(1)-Fe(1)-C(3M)	156.64(14)
C(2)-Fe(1)-C(5M)	157.27(14)
C(1)-Fe(1)-C(5M)	99.23(14)
C(3M)-Fe(1)-C(5M)	65.76(13)
C(2)-Fe(1)-C(1M)	123.22(15)
C(1)-Fe(1)-C(1M)	91.26(14)
C(3M)-Fe(1)-C(1M)	65.67(13)
C(5M)-Fe(1)-C(1M)	39.60(14)
C(2)-Fe(1)-C(4M)	129.12(14)
C(1)-Fe(1)-C(4M)	135.50(14)
C(3M)-Fe(1)-C(4M)	39.10(13)

C(5M)-Fe(1)-C(4M)	38.91(14)
C(1M)-Fe(1)-C(4M)	65.57(13)
C(2)-Fe(1)-C(2M)	91.76(14)
C(1)-Fe(1)-C(2M)	118.90(14)
C(3M)-Fe(1)-C(2M)	39.63(13)
C(5M)-Fe(1)-C(2M)	65.93(14)
C(1M)-Fe(1)-C(2M)	38.78(14)
C(4M)-Fe(1)-C(2M)	65.82(13)
C(2)-Fe(1)-P(1)	90.47(11)
C(1)-Fe(1)-P(1)	90.75(10)
C(3M)-Fe(1)-P(1)	110.26(9)
C(5M)-Fe(1)-P(1)	106.58(10)
C(1M)-Fe(1)-P(1)	145.87(11)
C(4M)-Fe(1)-P(1)	89.84(9)
C(2M)-Fe(1)-P(1)	149.88(10)
F(1)-P(1)-N(2)	86.33(11)
F(1)-P(1)-N(3)	86.69(11)
N(2)-P(1)-N(3)	134.91(13)
F(1)-P(1)-N(1)	158.11(12)
N(2)-P(1)-N(1)	85.18(12)
N(3)-P(1)-N(1)	85.12(12)
F(1)-P(1)-Fe(1)	98.61(7)
N(2)-P(1)-Fe(1)	113.12(10)
N(3)-P(1)-Fe(1)	111.96(9)
N(1)-P(1)-Fe(1)	103.28(9)
C(12)-N(1)-C(22)	127.5(3)
C(12)-N(1)-P(1)	116.0(2)
C(22)-N(1)-P(1)	113.9(2)
C(11)-N(2)-C(17)	117.7(3)
C(11)-N(2)-P(1)	117.1(2)
C(17)-N(2)-P(1)	123.2(2)
C(21)-N(3)-C(27)	116.3(3)
C(21)-N(3)-P(1)	113.2(2)
C(27)-N(3)-P(1)	125.6(2)
N(1)-C(12)-C(13)	130.1(3)
N(1)-C(12)-C(11)	109.4(2)

C(13)-C(12)-C(11)	120.5(3)
C(4M)-C(3M)-C(2M)	108.0(3)
C(4M)-C(3M)-Fe(1)	70.87(18)
C(2M)-C(3M)-Fe(1)	70.73(18)
C(4M)-C(3M)-H(3M)	126.0
C(2M)-C(3M)-H(3M)	126.0
Fe(1)-C(3M)-H(3M)	124.0
C(24)-C(25)-C(26)	120.7(3)
C(24)-C(25)-H(25)	119.7
C(26)-C(25)-H(25)	119.7
C(16)-C(11)-N(2)	128.1(3)
C(16)-C(11)-C(12)	120.0(3)
N(2)-C(11)-C(12)	111.8(2)
C(5M)-C(4M)-C(3M)	108.5(3)
C(5M)-C(4M)-Fe(1)	70.34(19)
C(3M)-C(4M)-Fe(1)	70.04(18)
C(5M)-C(4M)-H(4M)	125.8
C(3M)-C(4M)-H(4M)	125.8
Fe(1)-C(4M)-H(4M)	125.5
C(12)-C(13)-C(14)	118.7(3)
C(12)-C(13)-H(13)	120.6
C(14)-C(13)-H(13)	120.6
C(11)-C(16)-C(15)	119.4(3)
C(11)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(23)-C(22)-N(1)	130.0(3)
C(23)-C(22)-C(21)	121.0(3)
N(1)-C(22)-C(21)	109.0(3)
C(25)-C(24)-C(23)	120.7(3)
C(25)-C(24)-H(24)	119.6
C(23)-C(24)-H(24)	119.6
C(21)-C(26)-C(25)	119.1(3)
C(21)-C(26)-H(26)	120.5
C(25)-C(26)-H(26)	120.5
C(26)-C(21)-N(3)	127.4(3)
C(26)-C(21)-C(22)	119.7(3)

N(3)-C(21)-C(22)	113.0(3)
C(4M)-C(5M)-C(1M)	107.6(3)
C(4M)-C(5M)-Fe(1)	70.75(19)
C(1M)-C(5M)-Fe(1)	70.31(19)
C(4M)-C(5M)-H(5M)	126.2
C(1M)-C(5M)-H(5M)	126.2
Fe(1)-C(5M)-H(5M)	124.3
C(22)-C(23)-C(24)	118.8(3)
C(22)-C(23)-H(23)	120.6
C(24)-C(23)-H(23)	120.6
C(14)-C(15)-C(16)	120.4(3)
C(14)-C(15)-H(15)	119.8
C(16)-C(15)-H(15)	119.8
O(2)-C(2)-Fe(1)	176.9(3)
C(15)-C(14)-C(13)	120.9(3)
C(15)-C(14)-H(14)	119.6
C(13)-C(14)-H(14)	119.6
O(1)-C(1)-Fe(1)	176.5(3)
C(1M)-C(2M)-C(3M)	107.4(3)
C(1M)-C(2M)-Fe(1)	70.4(2)
C(3M)-C(2M)-Fe(1)	69.64(18)
C(1M)-C(2M)-H(2M)	126.3
C(3M)-C(2M)-H(2M)	126.3
Fe(1)-C(2M)-H(2M)	125.3
N(3)-C(27)-H(27A)	109.5
N(3)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
N(3)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
N(2)-C(17)-H(17A)	109.5
N(2)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
N(2)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5

C(2M)-C(1M)-C(5M)	108.5(3)
C(2M)-C(1M)-Fe(1)	70.8(2)
C(5M)-C(1M)-Fe(1)	70.1(2)
C(2M)-C(1M)-H(1M)	125.8
C(5M)-C(1M)-H(1M)	125.8
Fe(1)-C(1M)-H(1M)	124.9

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	19(1)	13(1)	11(1)	0(1)	-1(1)	-1(1)
P(1)	18(1)	12(1)	11(1)	0(1)	-1(1)	-1(1)
F(1)	25(1)	12(1)	18(1)	1(1)	-1(1)	-1(1)
O(2)	26(1)	35(1)	18(1)	-4(1)	-3(1)	10(1)
O (1)	32(1)	18(1)	36(2)	1(1)	10(1)	-3(1)
N(1)	19(1)	15(1)	14(1)	3(1)	-2(1)	0(1)
N(2)	20(1)	16(1)	19(1)	3(1)	-2(1)	0(1)
N(3)	20(1)	15(1)	12(1)	-2(1)	-1(1)	-1(1)
C(12)	19(1)	17(1)	10(1)	-1(1)	1(1)	0(1)
C(3M)	30(2)	16(1)	17(1)	-1(1)	-1(1)	-6(1)
C(25)	20(1)	26(2)	14(1)	2(1)	0(1)	5(1)
C(11)	19(1)	16(1)	10(1)	0(1)	1(1)	1(1)
C(4M)	22(1)	26(2)	15(2)	-6(1)	-2(1)	-5(1)
C(13)	21(1)	22(1)	15(1)	3(1)	1(1)	-2(1)
C(16)	20(1)	21(1)	14(1)	1(1)	0(1)	2(1)
C(22)	19(1)	18(1)	12(1)	-1(1)	0(1)	1(1)
C(24)	25(1)	19(1)	15(1)	4(1)	1(1)	3(1)
C(26)	21(1)	21(1)	11(1)	-1(1)	-1(1)	2(1)
C(21)	19(1)	17(1)	11(1)	1(1)	1(1)	1(1)
C(5M)	30(2)	24(2)	19(2)	-3(1)	-9(1)	-1(1)
C(23)	21(1)	17(1)	18(1)	3(1)	1(1)	1(1)
C(15)	18(1)	28(2)	15(2)	-1(1)	0(1)	0(1)
C(2)	22(1)	18(1)	17(2)	-4(1)	1(1)	1(1)
C(14)	20(1)	27(2)	18(2)	0(1)	1(1)	-4(1)
C(1)	22(1)	19(1)	16(1)	-2(1)	3(1)	2(1)
C(2M)	24(1)	22(2)	22(2)	-9(1)	2(1)	-2(1)
C(27)	21(1)	21(1)	22(2)	-3(1)	-3(1)	-3(1)
C(17)	28(2)	22(2)	34(2)	12(1)	-7(1)	1(1)
C(1M)	36(2)	28(2)	12(2)	-2(1)	1(1)	-9(1)

Table S12. Anisotropic displacement parameters (Å²x 10³) for 3. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

IV. DFT Calculations

A. General Computational Information

Geometries were optimized in Orca 4.0.0⁸ using the M06-L⁹ density functional with the def2-TZVP basis set.¹⁰ Functional choice was based on a survey of several functionals and comparing optimized geometries with experimental crystallographic structures, specifically with regards to metrics involving the Fe and P local environment (See **Table S13** below). Its accuracy for reproducing bond lengths in **1a^F**•Fp in comparison to other functionals led to its usage. Calculations were carried out in the gas phase without symmetry constraint unless otherwise noted. Stationary points were characterized by frequency calculations to confirm their identity as local minima (zero imaginary frequencies). Natural bond order (NBO) analysis was performed with the NBO 6.0 program¹¹ through Orca. NLMOs were visualized using the Jmol software.¹²

Table S13. Collected bond metrics for the phosphorus and iron local environments with different functionals for $1a^{\bullet}Fp^{+}$ and $1a^{F} \bullet Fp$ in comparison with experimental crystallographic data.

Iu I P .					
Functional	d(P-Fe)	d(P-N _{mid})	d(P-N _{side,mean})	d(Fe-(CO) _{mean)}	$\angle(N_2$ -P-N ₃)
X-Ray Diffraction	2.181	1.713	1.675	1.789	116.4
BP86	2.226	1.719	1.699	1.769	118.5
TPSS	2.232	1.716	1.694	1.781	118.8
PBE	2.219	1.718	1.698	1.766	118.5
B97D	2.197	1.711	1.691	1.772	118.4
M06L	2.205	1.705	1.682	1.788	117.5
1a ^F •Fp:					
Functional	d(P-Fe)	d(P-N _{mid})	d(P-N _{side,mean})	d(Fe-(CO) _{mean})	d(P-F)
X-Ray Diffraction	2.305	1.800	1.737	1.764	1.668
BP86	2.372	1.827	1.754	1.751	1.686
TPSS	2.366	1.823	1.745	1.763	1.682
PBE	2.365	1.823	1.753	1.749	1.686
B97D	2.348	1.822	1.754	1.753	1.676
M06L	2.329	1.809	1.735	1.761	1.665

1a•Fp⁺:

Energy decomposition analysis (EDA-NOCV)¹³ was performed, analyzed, and visualized using a trial version of the ADF modeling suite¹⁴ with the BP86¹⁵ density functional and a frozen core treatment. Fragments were defined as the $Fe(Cp)(CO)_2^+$ metal center and the appropriate phosphorus ligand.

For topological analysis of the electron density (QTAIM),¹⁶ an all-electron single point calculation was conducted. Coordinates obtained from the above geometry optimization were used as the input, and analysis and visualization of the QTAIM data was performed with the Multiwfn program.¹⁷

B. Method for Calculating Fluoride Ion Affinity

Fluoride ion affinities (FIA) were calculating using Christe's method.¹⁸ Briefly, this is done by measuring the enthalpy of reaction for the following reaction, where **A** is the molecule of interest to be studied. A known value for the FIA of CF₂O (-49.8 kcal/mol) is added to the calculated value to give the final FIA. Solvent corrections (CPCM(CH₂Cl₂)) were applied to the calculations to account for charge neutralization.¹⁹

 $CF_3O^- + A \longrightarrow CF_2O + A-F^-$

Compound	Computed Total Enthalpy (Eh)	Computed Total Enthalpy (kcal/mol)
CF ₂ O	-313.10169285	-196474.1302
CF ₃ O ⁻	-413.12358904	-259238.7702
1a• Fp ⁺	-2731.29635077	-1713913.042
1a ^F ∙Fp	-2831.33339594	-1776687.188
1b•Fp ⁺	-2428.76981290	-1524074.917
1b ^F •Fp	-2528.76475665	-1586822.644

 $FIA = \Delta H_{rxn} - 49.8 \text{ kcal/mol}$

C. Cartesian Coordinates for Stationary Points

Cartesian coordinates of the M06-L/def2-TZVP stationary points in Å units and the absolute thermochemical data in Hartrees.

$1a \cdot Fp^+$

	1			
Ten	perature = 298.150 K			
Pres	ssure = 1.0000 Atm			
Elec	ctronic Energy = -2731	.68354853		
Tota	al Thermal Energy = -2	2731.29729498		
Entl	nalpy = -2731.2963507	77		
Free	e Energy = -2731.3720	8436		
Fe	5.30180233927635	7.17809079486311	8.13996341584950	
Р	5.79822016423460	5.66458672155575	6.61621952674889	
0	3.25888234915385	8.60494217447179	6.58792662762768	
Ν	7.16275696480110	4.67315226263149	6.84767802700012	
0	7.59418094633389	8.85443714507702	7.37935127450114	
Ν	6.43490654056998	6.33127684972016	5.18440943250371	
Ν	4.75457812380467	4.37156065474302	6.47136429150928	
С	5.43736113554392	3.14166321438853	6.52146707865113	
С	7.83700736957748	6.21125249497039	5.23510968524033	
С	8.26703892914803	5.26082761363313	6.17114943429931	
С	4.07763569037560	8.03761071896756	7.15881980705511	
С	6.80834473195583	3.30520286152233	6.74516515772027	

С	4.29174822827166	7.63571802109186	9.93705545542127
Η	3.61450543031092	8.46608762871882	10.05874671093913
С	4.88300812623635	1.87904833301205	6.40548051032849
Η	3.82218442984896	1.75341754501250	6.23196396207792
С	5.68156007845184	7.66006606613155	10.16002592326031
Η	6.25918302075808	8.51294822845344	10.48012940015282
С	8.76333695885702	6.94311750526932	4.50985788516703
Η	8.44410403673908	7.69755881288185	3.80262587657508
С	3.93753791282175	6.32411177542930	9.49343144854574
Η	2.94374528118126	5.98360458277786	9.24905905165313
С	10.53800045575277	5.73078036925434	5.63278635215050
Η	11.59450126183304	5.55419476689211	5.78508236425712
С	6.69383471848915	8.19421750891606	7.64286208533761
С	5.80888856822935	7.43291103063570	4.47105001547702
Η	6.05237853045094	8.40762441475779	4.90706260158740
Η	4.72927528899561	7.29871817744730	4.47403591472095
Η	6.13933596565857	7.42989740298438	3.43388410168421
С	9.60750947336880	5.01245850379076	6.38164799173965
Η	9.92322797422774	4.28988360707742	7.12275996623129
С	5.11770122307120	5.54463438336338	9.47263982049157
Η	5.18483615730016	4.50499183288072	9.18691754512526
С	10.11690145287316	6.68471548596018	4.71688460261053
Η	10.85105415002251	7.25148847669631	4.15865919093357
С	7.64677746628355	2.21153390690201	6.83980725889695
Η	8.70758962673446	2.34130640617172	7.00717665393055
С	6.20491351982413	6.36687263207297	9.85386637954023
Η	7.23824372529089	6.06368117231086	9.91864434105620
С	3.30187449262724	4.43186208133354	6.51344739916023
Η	2.86929227733957	4.03709930030449	5.59423271544574
Η	2.98269798386694	5.46604025193568	6.62605535195024
Η	2.92437642921099	3.85324853131458	7.35877048495763
С	5.73021029658094	0.77629876668920	6.49973248738885
Η	5.31500292609740	-0.21875790738011	6.40540491932697
С	7.09264180013227	0.93977154531043	6.70539091252562
Η	7.73739544748631	0.07279534705535	6.76800856064663

1a^F•Fp

Temperature = 298.150 K Pressure = 1.0000 Atm Electronic Energy = -2831.72272823 Total Thermal Energy = -2831.33434015 Enthalpy = -2831.33339594

Free Energy = -2831.40603176

F	e 5.08663446815943	6.93955536002039	8.21398825401729
Р	5.48632782117047	5.89852250098078	6.16947338780497
0	2.23825250396543	6.49000982582239	7.82391527570712
Ν	6.85980167629974	4.76787044060991	6.49972090359946
0	5.06873676303350	9.49970514987651	6.83145907914972
Ν	6.61147384155726	6.72234835127760	5.13653926248371
Ν	4.56122846698555	4.45677647520393	5.89677551363588
С	5.13412280133296	3.29421430776186	6.39136410261067
С	7.94359587711220	6.41083951985448	5.36559458889863
С	8.10067878803850	5.26368697793338	6.15923997617316
С	3.36864975596425	6.65963346743285	7.94412251794324
С	6.48301118528615	3.46374223414877	6.74107830564912
С	5.25510166121675	7.43156193711632	10.26241709461601
Η	4.64492893409904	8.15792710462590	10.77230073323994
С	4.51956124955004	2.06148230941574	6.53774476095556
Η	3.48228360839509	1.92784237717790	6.26478168322942
С	6.48532552657093	7.67868213599394	9.60343400063636
Η	6.96940305450834	8.63809490108123	9.51149745813522
С	9.05103493654572	7.09200384103154	4.88799762258784
Н	8.93203913186940	7.97244198172633	4.27235420241780
С	4.97558419589741	6.04900573863721	10.11842067186847
Η	4.09980125135754	5.54112092433689	10.49043003805597
С	10.47891962790044	5.48803541635962	5.97995429624113
Η	11.47039681018599	5.12677629433361	6.21691843459934
С	5.07425239372396	8.47310087522974	7.34831198441097
С	6.35327178553490	7.87173352615979	4.28941550959211
Н	6.75212182048402	8.78951962742291	4.72986368692356
Н	5.29476726542331	7.99967592329015	4.12198899923847
Н	6.84307185968043	7.72573819514659	3.32474885916016
С	9.37065819899312	4.80330072236984	6.47117363224109
Η	9.51020145501929	3.92768743224304	7.08544169793023
С	6.01833460571413	5.44894290143798	9.37451659793801
Н	6.08264680879725	4.40861480912173	9.10088326397565
С	10.32202008078112	6.61890616098690	5.20073785345572
Η	11.19033939342428	7.14603284588526	4.82923377716838
С	7.21267360401131	2.39223459207760	7.23289859283048
Η	8.24929294401956	2.50450464917825	7.50880008901424
С	6.95899692299266	6.46435078984638	9.05315319633835
H	7.86950775075177	6.33721043728111	8,49102206568141
C	3.17214563822960	4.36781191327333	5.48679231372483
Н	3.06759429825032	3.58646645516943	4.73163529344968
Н	2.83139826758439	5.30107526183216	5.06522956125284

Η	2.52492252432634	4.10600901351337	6.32845102641028
С	5.26100951221977	0.99042274035149	7.02790714720974
Η	4.78651345130076	0.02522424017251	7.14236269243072
С	6.59091422086574	1.15384629784865	7.36747310362552
Η	7.16053217666110	0.31563356439115	7.74512607997606
F	4.27103908420865	6.74568745301144	5.40921081176546

CF₂O

Temperature = 298.150 K	
Pressure = 1.0000 Atm	
Electronic Energy = -313.11969618	
Total Thermal Energy = -313.10263706	
Enthalpy = -313.10169285	
Free Energy = -313.13072472	
C -0.42133741418179 0.47734087977204	4 -0.00008835993986
O -0.48069139616926 1.65523975071994	4 0.00004722650399
F -1.19734196216790 -0.33105425065643	3 0.68137918112219
F 0.43162077251896 -0.24922637983555	-0.68133804768633

CF₃O⁻

Temperature = 298.150 K			
Pressure = 1.0000 Atm			
Electronic Energy = -413.1	4387409		
Total Thermal Energy = -4	13.12453325		
Enthalpy = -413.12358904			
Free Energy = -413.154909	981		
C -2.37812881844211	-0.22230805235799	-0.00003185935012	
O -1.15904665023943	-0.22233590037019	0.00000628171387	
F -3.02047900066111	0.63715561068676	0.91903165323811	
F -3.02063129856707	-1.44810278914832	0.28477572676222	
F -3.02051423209027	0.14369113118974	-1.20378180236408	

1b•Fp⁺

 Temperature = 298.150 K

 Pressure = 1.0000 Atm

 Electronic Energy = -2529.14681029

 Total Thermal Energy = -2528.76570086

 Enthalpy = -2528.76475665

 Free Energy = -2528.84051461

 Fe 3.11607495068511
 7.97027165640346
 -0.07945805949463

 P 3.89740201343032
 6.60853852670720
 -1.74109139250948

1b ^F	•Fp		
Н	2.52480914550732	3.75175498382826	-3.30933309127623
Н	3.95378871119997	4.71116337812560	-3.70239797781267
Η	4.05711252762984	3.44359852280802	-2.47370332427448
С	3.41585590554193	4.22443721925381	-2.89504568168585
Н	5.41325288478269	7.84812638210813	-4.69033774930478
Η	5.60239905850584	6.23051366312444	-3.99577283111410
Η	4.30066692111242	6.55158790472111	-5.15209474426938
С	4.87720118531577	6.96943710544052	-4.32220295555367
Н	7.48458454952775	6.48442050091775	-2.08784434395787
Н	6.37940485148699	7.81282940903387	-2.43585128898990
Н	6.89615775431460	7.49837768751735	-0.76992334858619
С	6.61490867196323	7.03159952107921	-1.71912857754079
Н	5.98269648196759	5.57277577096597	0.44034430410396
Н	4.92836055762361	4.42723360272575	-0.40859563621921
Н	6.64288337785335	4.51863048861700	-0.81636894833170
С	5.76982340860646	5.10555492717236	-0.52851546966651
С	3.27434461501687	6.68565691287372	1.15023799000977
Н	2.74283358821326	3.86987551181105	-0.23123692354923
Н	1.75961134702949	5.33611510314167	-0.17791110163951
Н	1.35748653347650	4.06376075170380	-1.31549887202135
С	2.18530471196612	4.59048475436285	-0.83972544166442
Н	3.73491958433011	9.14824218653566	2.44858971792834
С	3.74385487438552	9.34920626074018	1.38859866513664
Н	2.32947078983930	7.76395192299086	-4.46998362341447
Н	2.23989604122322	8.47875877058812	-2.85991600307616
Н	3.33183232900123	9.16794322293778	-4.06511754715978
С	2.91419906724410	8.23564323924668	-3.67579391122151
С	1.41146154701120	7.69316551111441	-0.51818947460100
H	5.77668920790001	8.64659673439066	0.77355418187791
C	4.82260586409364	9.06512022965380	0.49535139255934
H	1.72980397541012	10.21460154573477	1.02847854951652
C	2.68955148657316	9.90841980178049	0.64335456767825
н	2.52536718261754	10.37383613888581	-1.53939447831110
C	3.10656674371866	9.98004466467568	-0.72074390283761
н	5 01095412300398	9 39893714554214	-1 70123825209770
C	4 42540626648898	9 47844847066798	-0 79875681792647
N	3.070+70+7000579	5.72342700000753	2.00473204902199 _1 87573130618966
	3.7004/UJ/24U838 3.306/78/0268270	1.33302430001303	-3.22071200837808
IN N	3.47010331123349	0.101/9220/001202	-1.30123000904239
U N	0.30214407097707	/.5/80455//80091	-0./990901139010/
Ο	0 3021//07007707	7 5786/1537780601	-0.70000011300107

 $\frac{1}{\text{Temperature}} = 298.150 \text{ K}$

Pressure = 1.0000 Atm Electronic Energy = -2529.14681029 Total Thermal Energy = -2528.76570086 Enthalpy = -2528.76475665 Free Energy = -2528.84051461

Fe	3.31788364566214	8.16732232841299	0.06090458867345
Р	3.92371592646721	6.28859065892481	-1.37976895743103
0	0.67985470046451	6.96167721993102	0.38201186204476
Ν	5.57456046258212	5.84261573866126	-1.34603173150078
Ν	4.09635230425402	7.18300865977865	-2.89408266665512
0	4.73282168385849	6.91711833198382	2.30030310299899
Ν	2.92388623752643	5.09937546862518	-2.06484828740710
С	4.11733160025370	9.67728253832777	-1.22866994665943
Η	4.60526166695163	9.45776033287690	-2.16393433820898
С	2.73170785736965	9.88679089902582	-1.04557319974566
Η	1.98177181854050	9.91845922775851	-1.81891740510723
С	2.50682921538760	10.10908180192022	0.34722579666274
Η	1.55028219838114	10.29469799098602	0.81032186298397
С	4.74742967949693	9.73240844380353	0.03115122666207
Η	5.80174486481574	9.60870240546027	0.22325509712511
С	1.74541307685679	7.39163761430112	0.24457614025989
С	2.89484162038801	7.76967206419147	-3.43165015626581
Η	3.04646056629231	8.81406730175551	-3.73797790606652
Η	2.09257226058971	7.75204058963975	-2.69321061787491
Η	2.53899937661026	7.22722794618350	-4.31990312310566
С	3.74166556539443	10.01387143479668	1.01091415412045
Η	3.90351611285868	10.11507425090191	2.07263671328014
С	1.95191407809072	4.28371268304656	-1.34975827206031
Η	1.10165619292816	4.10156832192336	-2.01281588838418
Η	1.58782983355755	4.78030332784880	-0.45971983340150
Η	2.36227556962700	3.31161734588189	-1.05354360501676
С	4.15831927549953	7.32300974466501	1.38564208046025
С	5.96537096891763	4.57787492902866	-0.75312636737008
Η	6.93613275933287	4.28642666522422	-1.16284435610648
Η	5.23781233074602	3.80763212318312	-1.00086269204177
Η	6.05344430678484	4.62440590800631	0.33891624756373
С	6.53603646168636	6.90245059617584	-1.08823338870171
Η	6.68025385147480	7.09141878523838	-0.01493321935387
Η	6.21480685681049	7.83296091737627	-1.55291876482493
Η	7.50741071315117	6.63222421438479	-1.51157362259877
С	5.16905856147100	7.18054476597397	-3.86132784642374
Η	4.81888604261523	6.82297948411433	-4.84140451250922
Н	5.98446411402849	6.53528072823813	-3.54814726891285

Η	5.57346867376328	8.19107089339249	-4.02386248738192
С	3.10049389485258	4.62521500632940	-3.42833435386666
Η	3.23117751038394	3.53819660172548	-3.41573425882835
Η	3.98019154362661	5.05233843624565	-3.89531571728044
Η	2.22871619320100	4.84309477649393	-4.05558760161266
F	3.66327782644868	5.32338049725677	0.17463351986887

VI. Multinuclear NMR Spectra

Figure S1. ¹H NMR of S1.

58 59	83 85 85	
34.33	26 21	
NZ	$ \rangle$	

— 76.89

Figure S2. ¹³C{¹H} NMR of **S1**.

Figure S6. ¹³C{¹H} NMR of **1a**.

Figure S7. ${}^{31}P{}^{1}H$ NMR of 1a.

Figure S8. ¹H NMR of (**thf**)•Fp⁺.

Figure S9. ¹³C{¹H} NMR of (**thf**)•Fp⁺.

Figure S10. ¹⁹F NMR of (**thf**)•Fp⁺.

Figure S12. ¹H NMR of 1a•Fp⁺.

Figure S13. ${}^{13}C{}^{1}H{}$ NMR of 1a•Fp⁺.

Figure S14. ¹⁹F NMR of 1a•Fp⁺.

Figure S15. ${}^{31}P{}^{1}H$ NMR of 1a•Fp⁺.

Figure S16. ³¹P-⁵⁷Fe 2D NMR of 1a•Fp⁺. f1 is ⁵⁷Fe and f2 is ³¹P. 1-D ³¹P{¹H} NMR shown along top horizontal axis

Figure S18. ¹³C{¹H} NMR of **1b**•Fp⁺.

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure S19. ¹⁹F NMR of **1b**•Fp⁺.

Figure S20. ³¹P{¹H} NMR of **1b**•Fp⁺.

Figure S21. ³¹P-⁵⁷Fe 2D NMR of 1b•Fp⁺. f1 is ⁵⁷Fe and f2 is ³¹P. 1-D ³¹P{¹H} NMR shown along top horizontal axis

Figure S23. ${}^{13}C{}^{1}H$ NMR of $1a^{F}$ ·Fp.

Figure S24. ¹⁹F NMR of 1a^F•Fp.

Figure S26. ³¹P-⁵⁷Fe 2D NMR of 1a^F•Fp. f1 is ⁵⁷Fe and f2 is ³¹P. 1-D ³¹P{¹H} NMR shown along top horizontal axis

VI. References

- 1 Pangborn, A.B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics*, **1996**, 15, 1518–1520.
- 2 Alaimo, P. J; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64.
- 3 Bruker, SAINT, 2012, Bruker AXS Inc., Madison, Wisconsin, USA.
- 4 Bruker, SADABS, 2001, Bruker AXS Inc., Madison, Wisconsin, USA.
- 5 Sheldrick, G. M. Acta. Cryst. 2008, A64, 112-122.
- 6 Zhao, W.; McCarthy, S. M.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. J. Am. Chem. Soc. 2014, 136 (50), 17634–17644.
- 7 Catheline, D.; Astruc, D. Organometallics. 1984, 3 (7), 1094–1100.
- 8 Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- 9 Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
- 10 Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- a) NBO 6.0, Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013 (http://nbo6.chem.wisc.edu) b) Glendening, E. D.; Landis, C. R.; Weinhold, F. WIREs Comput. Mol. Sci. 2012, 2, 1-42 c) Glendening, E. D.; Landis, C. R.; Weinhold, F. J. Comput. Chem. 2013, 34, 1429-1437.
- 12 Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
- 13 Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory Comput. 2009, 5 (4), 962–975.
- 14 ADF2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
- 15 Becke, A. D. Phys. Rev. A. 1988, 38, 3098-3100.
- 16 Bader, R. F. W. Atoms in Molecules, A Quantum Theory. Oxford University Press, Oxford, 1990.
- 17 Lu, T. Multiwfn: A Multifunctional Wavefunction Analyzer; Bejing Kein Research Center for Natural Sciences, Bejing, 2015.
- 18 Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem., 2000, 101, 151–153.
- 19 Slattery, J. M.; Hussein, S. Dalton Trans., 2012, 41, 1808-1815.