

Article

Supplementary Materials: A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer as Novel Polymer Membranes for CO₂ Separation

Iqubal Hossain 1,2, Abu Zafar Al Munsur 1,2 and Tae-Hyun Kim 1,2,*

- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon, 22012, Korea.
- ² Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Korea.
- * Correspondance: tkim@inu.ac.kr (T.-H. Kim); Tel. +82-32-8358232.

S-1. Materials

4,4'-(Hexafluoroisopropylidene) di-phthalic anhydride (6FDA), 2,3,5,6-tetramethyl benzene-1,4-diamine (durene), and 4,5-dichloro phthalonitrile (98%), were purchased from Tokyo Chemical Industry (TCI) Co. Ltd. (Tokyo, Japan) and were used as obtained. 5,5',6,6'-Tetrahydroxy-3,3,3',3'-tetramethyl-1,10-spirobisindane (97%) was obtained from Alfa Aesar. Acetic anhydride, toluene, and triethylamine were obtained from Sigma Aldrich. Methanol, ethanol, dimethylformamide, dimethylacetamide, potassium carbonate, and potassium hydroxide were purchased from DaeJung Chemicals & Metals Co. Ltd. in South Korea. 6FDA, durene, and K₂CO₃ were dried under a vacuum at 60 °C for 24 h prior to use. Anhydride monomer of PIM (An) was synthesized following the literature method [22]. All chemicals, unless otherwise noted, were obtained from commercial sources and were used as received.

S-2. Characterization and Measurements

The ¹H NMR spectra were obtained on an Agilent 400-MR (400 MHz) instrument using d_6 -DMSO or CDCl₃ as a reference or an internal deuterium lock.

The attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were recorded using a Bruker Vertex 80v Hyperion 2000 ATR-FTIR spectrometer.

Molar masses were determined by gel permeation chromatography (GPC) using two PL Gel 30 cm \times 5 μ m mixed C columns at 30 °C running in DMF and calibrated against polystyrene (M_n = 600×106 gmol⁻¹) standards using a Knauer refractive index detector.

The thermal stability of the membranes was analyzed by thermogravimetric analysis (TGA) measurements conducted on a Shimadzu TGA-2950 instrument at a heating rate of 10 $^{\circ}$ C min⁻¹ under a nitrogen flow.

The tensile properties were measured on a Shimadzu EZ-TEST E2-L instrument benchtop tensile tester using a crosshead speed of 5 mm.min $^{-1}$ at 25 $^{\circ}$ C under 50% relative humidity. The engineering stress was calculated from the initial cross-sectional area of the sample and Young's modulus (E) was determined from the initial slope of the stress-strain curve. The membrane samples were cut into rectangular shapes 40 mm \times 10 mm (total) and 20 mm \times 10 mm (test area) in size.

The densities of the membranes (g.cm⁻³) were determined experimentally using a top-loading electronic Mettler Toledo balance (XP205, Mettler-Toledo, Switzerland) coupled with a density kit based on the Archimedes principle. The samples were weighed in air and in a known-density liquid, high-purity heptane. The measurements were performed at room temperature using the buoyancy method, and the density was calculated as follows:

$$\rho_{polymer} = \frac{W_0}{W_0 - W_1} \cdot \rho_{liquid} \tag{S1}$$

where W_0 and W_1 are the membrane weights in air and in heptane respectively. Heptane sorption of the membranes was not considered due to their extremely low absorption properties.

The X-ray diffraction patterns of the membranes were measured using a Rigaku DMAX-2200H diffractometer operated at a scanning rate of 4° min⁻¹ in a 2θ range from 5° to 30° with Cu K α 1 X-ray radiation (λ = 0.1540598). The d-spacings were calculated using Bragg's law (d = λ /2sin θ).

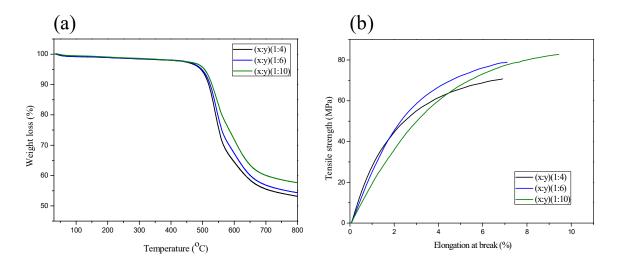
Tapping-mode AFM was conducted using a Bruker MultiMode instrument. A silicone cantilever with an end radius of <10 nm and a force constant of 40 Nm⁻¹ (NCHR, nanosensors, f=300 kHz) was used to image the samples at an ambient temperature.

S-3. Gas Permeation Procedure

Permeation measurements of pure gas were taken using a high-vacuum time-lag measurement unit based on a constant-volume/variable-pressure method. All of the experiments were performed at a feed pressure of 2 bar (except for the pressure effect experiments which were carried out in the range of 100 mbar to 2 bar feed pressure) and a feed temperature of 30 °C. Before taking these measurements, both the feed and the permeate sides were thoroughly evacuated to below 10^{-5} Torr $(1.33\times10^{-8} \text{ bar})$ until the readout showed zero values for the removal of any residual gases. The downstream volume was calibrated using a Kapton membrane and was found to be 50 cm³. The upstream and downstream pressures were measured using a Baraton transducer (MKS; Model No. 626B02TBE) with a full scale of 10,000 and 2 Torr (13.3 and 2.7×10^{-3} bar), respectively. The pressure on the permeate side was recorded as a function of time using a pressure transducer and passed to a desktop computer through a shielded data cable. The permeability coefficient was determined from the linear slope of the downstream pressure versus a time plot (dp/dt) according to the following equation:

$$P = \frac{273}{76} \times \frac{Vl}{ATp_0} \times \frac{dp}{dt}$$
 (S2)

where, P is the permeability expressed in Barrer (1 Barrer = 10^{-10} [cm³ (STP) cm.cm-².s-¹.cm-¹.Hg-¹], V (cm³) is the downstream volume, l (cm) is the membrane thickness, A (cm²) is the effective area of the membrane, T (K) is the measurement temperature, p_0 (Torr) is the pressure of the feed gas in the upstream chamber, and dp/dt is the rate of the pressure change under a steady state. For each gas, the permeation tests were repeated more than three times, and the standard deviation from the mean values of the permeabilities was within ca. \pm 3%. Sample-to-sample reproducibility was high and within \pm 3%. The effective membrane areas were 15.9 cm². The ideal permselectivity, $\alpha_{A/B}$, of the membrane for a pair of gases (A and B) is defined as the ratio of the individual gas permeability coefficients:


$$\alpha_{A/B} = \frac{P_A}{P_B} \tag{S3}$$

The diffusivity and solubility were obtained from the time-lag (θ) value according to the equations:

$$D = \frac{l^2}{6\theta} \tag{S4}$$

$$S = \frac{P}{D} \tag{S5}$$

where, D (cm² s⁻¹) is the diffusivity coefficient, l is the membrane thickness (cm) and θ is the time lag (s), as obtained from the intercept of the linear steady-state part of the downstream pressure versus a time plot. The solubility, S, was calculated from Equation. (S5) with the permeability and diffusivity obtained from Equation. (S3) and (S4).

Figure S1. TGA graph (a) and S-S curve (b) of the copolymer [(PIM-PI)x-(6FDA-durene-PI)y] membranes.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).