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Figure S1  Maps of sampling locations (above) and maps displaying the CMR (capture-mark-recapture) movement vector data (below). On  
the global map (left), “N” refers to Netherlands, “B” to Belgium, “L” to Luxemburg, “S” to Switzerland and “UK” to United Kingdom.
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Figure S2  Environmental layers tested as potential factors influencing the genetic differentiation among Cervus elaphus and Sus scrofa 
individuals in Wallonia (raster cell size: 0.05 arcmin). On the “main roads” layer, red and orange lines respectively correspond to motorways 
and primary roads, and on the “main waterways” layer, blue and blue-green lines respectively correspond to rivers and streams. 
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Figure S3. Map of Wallonia displaying the overall forest coverage (in green) and the hunting administrative areas (called triages) for Cervus 
elaphus (polygons with black contour). Contrary to Sus scrofa for which we have relatively precise sampling coordinates (see the text for 
further details), centroid points of these administrative areas correspond to the most precise sampling information available for 
C. elaphus. Red points indicate potential sampling locations randomly distributed within sampled administrative areas. The number of 
sampling locations simulated per administrative area is proportional to the area of the corresponding polygon (with a maximum of 10,000 
locations simulated within the largest sampled administrative area). Simulated sampling locations falling outside the forest coverage have 
been eventually discarded. The remaining simulated sampling points have been used to estimate the distribution of geographic distances 
between potential sampling locations and centroid points of hunting administrative areas. The estimated distribution (on the left) was 
then used to determine a relevant radius that could realistically define the uncertainty related to the sampling precision of C. elaphus. 
Based on the 0.95 quantile of this distribution equal to 4.966 km, we define such a radius equal to 5 km for C. elaphus.
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= 4.966 km
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Fig. S4. Maps of relative density for Cervus elaphus and Sus scrofa in Wallonia. Relative densities were estimated per hunting admini-
strative area (called triages) by dividing the total number of deaths (i.e. animals shouted and found deaths during the sampling period 
of each species) by the area of each polygon. The sampling period was 2003-2007 for C. elaphus and 2005-2013 for S. scrofa.
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Figure S9  Interpolation graphs generated
for the two clusters inferred by STRUCTURE 
(log(P(K)) method) for Sus scrofa.

Figure S6  Interpolation graphs generated for 
the two clusters inferred by STRUCTURE 
(log(P(K)) method) for Cervus elaphus.

Figure S8  Interpolation graphs generated for the three clusters inferred by GENELAND for Cervus elaphus.

Figure S7  Interpolation graphs generated for the three clusters inferred by STRUCTURE (Evanno method) for Cervus elaphus.

Figure S5  Summary 
of STRUCTURE 
results: log(P(K)
and delta(K)
against K.
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Figure S10  Interpolation graphs generated
for the eight clusters inferred by 
STRUCTURE (Evanno method) for
Sus scrofa.

Figure S11  Interpolation graphs generated
for the five clusters inferred by GENELAND 
for Sus scrofa.
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Figure S12  IBD (isolation-by-distance) analyses: density plots, Mantel tests and linear regressions performed with each genetic distance.
N.B.: a negative slope is expected in the case of the LKC metric, which is a kinship coefficient measuring genetic similarity rather than
dissimilarity.

Figure S13  Position and age of wildlife 
crossings in Wallonia (in green). Grey 
areas and red lines respectively corres-
pond to artificial areas and motorways.
Starting year of the different motorway
segments are also reported on the 
map (in red; www.wegen-routes.be).
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Table S1  Properties of the microsatellite loci used in this study. “N” refers to the number of samples successfully analysed, “A” to the 
number of alleles, “HO” to the observed heterozygosity and “HE” to the expected heterozygosity. 

 
 
Table S2  Results of the univariate analyses performed with the pairwise approach - determination coefficient R2 estimated from univariate 
regressions between genetic and environmental distances. (*) refers to significant R2 values (p-value < 0.05), values in bold refer to R2 value 
higher than R2 value estimated for the null raster (in blue), italic values indicate that the associated coefficient beta of the linear regression 
is negative, and “C”/“R” indicate if the considered environmental raster was respectively treated as a conductance or resistance factor for 
the computation of environmental distances with circuit theory. 

 

Cervus elaphus (red deer)  Sus scrofa (wild boar) 
locus N A HO HE  locus N A HO HE 

BM1818 1707 9 0.746 0.759  S0002 1230 16 0.774 0.800 
Cer14 1704 15 0.695 0.739  S0005 1229 28 0.839 0.874 

CSPS115 1704 14 0.803 0.811  S0026 1231 8 0.997 0.709 
CSSM14 1702 4 0.088 0.087  S0090 1229 8 0.726 0.746 
CSSM16 1707 8 0.576 0.605  S0097 1231 12 0.755 0.804 
CSSM66 1706 12 0.658 0.752  S0155 1231 7 0.431 0.443 
CSSM19 1707 13 0.775 0.808  S0226 1231 8 0.536 0.560 
CSSM22 1706 6 0.660 0.661  Sw122 1231 7 0.539 0.613 
ETH225 1704 14 0.827 0.863  Sw240 1231 14 0.713 0.701 
Haut14 1706 14 0.858 0.875  Sw632 1231 9 0.598 0.591 
ILSTS06 1695 14 0.799 0.840  Sw857 1230 8 0.667 0.727 
INRA35 1706 10 0.762 0.781  Sw911 1231 6 0.527 0.526 
MM12 1701 7 1.000 0.788  Sw936 1231 14 0.934 0.857 

      Sw951 1231 5 0.022 0.022 

Environmental  Cervus elaphus (red deer)  Sus scrofa (wild boar) 
distances  BCD aR LKC  BCD aR LKC 

Null raster (R)  0.015* 0.012* 0.014*  0.009* 0.009* 0.010* 
Elevation (C)  0.012* 0.010* 0.009*  0.001* 0.001* 0.003* 
Elevation (R)  0.004* 0.004* 0.007*  0.014* 0.004* 0.002* 

Artificial areas (R)  0.003* 0.003* 0.001*  0.013* 0.005* 0.000* 
Agricultural areas (R)  0.001* 0.000* 0.003*  0.001* 0.004* 0.001* 

Broad leaved forests (C)  0.001* 0.002* 0.002*  0.000* 0.000* 0.001* 
Coniferous forests (C)  0.005* 0.003* 0.003*  0.000* 0.001* 0.002* 

Mixed forests (C)  0.000* 0.000* 0.001*  0.000 0.001* 0.001* 
Motorways (R; k=10)  0.006* 0.005* 0.008*  0.001* 0.000* 0.000* 

Motorways (R; k=100)  0.000* 0.000 0.000*  0.000* 0.000* 0.000* 
Motorways (R; k=1,000)  0.000* 0.000* 0.000*  0.000* 0.001* 0.001* 
Primary roads (R; k=10)  0.007* 0.006* 0.005*  0.003* 0.002* 0.002* 

Primary roads (R; k=100)  0.002* 0.001* 0.001*  0.000* 0.000 0.000 
Primary roads (R; k=1000)  0.001* 0.001* 0.000*  0.000* 0.000 0.000 

Railways (R; k=10)  0.008* 0.006* 0.008*  0.003* 0.002* 0.002* 
Railways (R; k=100)  0.001* 0.000* 0.001*  0.000 0.000* 0.000* 

Railways (R; k=1000)  0.000* 0.000 0.000*  0.000 0.000* 0.000* 
Rivers (R; k=10)  0.006* 0.006* 0.004*  0.003* 0.003* 0.003* 

Rivers (R; k=100)  0.001* 0.001* 0.000*  0.001* 0.000* 0.000* 
Rivers (R; k=1000)  0.000* 0.000* 0.000*  0.000* 0.000 0.000 
Streams (R; k=10)  0.002* 0.003* 0.002*  0.001* 0.000* 0.000* 

Streams (R; k=100)  0.000* 0.001* 0.000*  0.000 0.000* 0.000* 
Streams (R; k=1000)  0.000 0.000* 0.000*  0.000* 0.000* 0.000* 



Appendix S1

Using capture-markage-recapture data to study the impact of a barrier on dispersal frequency

Simon Dellicour

June 21, 2018

The present tutorial describes how to analyse capture-markage-recapture (CMR) data to study the impact of barriers
on the dispersal frequency of individuals. In particular, this tutorial describes how analysing the impact of motorways
on the dispersal frequency of wild boar (Sus scrofa) individuals in southern Belgium (Dellicour et al. submitted). The
first step is to install and load the following R packages: “raster”, “rgdal”1, “rgeos”, “sp” and “yhat”:

> install.packages("raster"); library(raster)

> install.packages("rgdal"); library(rgdal)

> install.packages("rgeos"); library(rrgeos)

> install.packages("sp"); library(sp)

> install.packages("yhat’"); library(yhat’)

This tutorial requires the CMR data example files for S. scrofa also available at http://evolve.zoo.ox.ac.uk/Evolve/
Software.html. These files are “Sscrofa CMR data.csv”, a csv file containing the CMR records for S. scrofa (Dellicour
et al. submitted), and “Motorways shapefile”, a directory containing the motorways shapefile.

Step 1: plotting the motorways and CMR data

CMR data analysed in this tutorial are composed of a set of 1674 movement records for wild boar individuals (S. scrofa,
Dellicour et al. submitted). Each CMR record is considered as an independent movement vector with a starting location,
a dispersal duration and an nding location. The first step is here to plot the different data, i.e. the CMR movement
vectors as well as the motorways on the study area. The CMR data, motorways shapefile and template raster can be
loaded from the working directory with the following commands:

> motorways_shapefile = readOGR(dsn="./Motorways_shapefile",

layer="Motorways_shapefile")

> tab = read.csv("Sscrofa_CMR_data.csv", header=T, sep=",")

We can then plot the different elements as follows:

> plot(template_raster, col="white", legend=F)

> plot(motorways_shapefile, col="red", add=T)

> segments(tab[,"x0"], tab[,"y0"], tab[,"x1"], tab[,"y1"], col="black", lwd=0.5)

1The “rgdal” package requires the preliminary installation of GDAL (Geospatial Data Abstraction Library), a C++ library for
reading and writing raster geospatial data formats. See http://www.gdal.org for further details.
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The resulting graph is displayed in Figure 1.

A B

Figure 1: (A) CMR (capture-mark-recapture) records available for wild boar (Sus scrofa) individuals in southern Belgium
(Wallonia). Red and black lines respectively indicate the position motorways and CMR movement vectors. (B) Example of CMR
movement randomisation within a minimum convex hull defined by initial vector positions (blue contour).

Step 2: creating one SpatialLinesDataFrame per motorway

The second step is to create a distinct “SpatialLinesDataFrame” object per motorway segment and to store these new
object in a “motorways list”:

> motorways_names = motorways_shapefile@data[,"ref"]

> motorways_list = list()

> for (i in 1:length(unique(motorways_names)))

> {

> ids = which(motorways_names == unique(motorways_names)[i])

> motorway = motorways_shapefile

> motorway@lines = motorway@lines[ids]

> motorway@data = motorway@data[ids,]

> motorways_list[[i]] = motorway

> }

Step 3: computing the branch distances and the minimum distance
between each branch and motorway

The third step is to compute the minimum distance between each branch and the nearest motorway segment. This
step is necessary to avoid testing the impact of motorways on CMR movement vectors that could not have crossed such
barrier anyway.

> branch_distances = matrix(nrow=dim(tab)[1], ncol=1)

> minimum_distances = matrix(nrow=dim(tab)[1], ncol=length(motorways_list))

> for (i in 1:dim(tab)[1])

> {

> pt1 = SpatialPoints(cbind(tab[i,"x0"],tab[i,"y0"]))

> pt2 = SpatialPoints(cbind(tab[i,"x1"],tab[i,"y1"]))

> branch_distances[i,1] = gDistance(pt1, pt2)

> for (j in 1:length(motorways_list))

> {

> minimum_distances[i,j] = gDistance(pt1, motorways_list[[j]])

> }

> }
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Step 4: counting the number of observed crossing motorway events

The fourth step is to count the number of times CMR movement vectors cross motorway segments (No). It is important
to note that we will here consider that a CMR movement vector actually crosses a motorway segment if the number of
intersections with this segment is an odd number. Indeed, an even number of intersections does not guarantee that the
individual actually crossed the motorway. Furthermore, as the motorways are by nature composed of two distinct lines
(one line per traffic direction), we also have to divide the numbers of identified intersections per two to assess if they
correspond to odd or even numbers.

> No = 0

> for (i in 1:dim(tab)[1]) {

> nS = 0

> ids = which(minimum_distances[i,]<branch_distances[i,1])

> if (length(ids) > 0)

> {

> x = c(tab[i,"x0"],tab[i,"x1"])

> y = c(tab[i,"y0"],tab[i,"y1"])

> branch = SpatialLines(list(Lines(Line(cbind(x,y)), ID=i)))

> for (j in 1:length(ids)) {

> n = 0

> intersections = gIntersection(motorways_list[[ids[j]]], branch)

> if (!is.null(intersections))

> {

> if (odd(dim(intersections@coords)[1]/2)) n = n + 1

> points(intersections, col="green3")

> }

> nS = nS + n

> }

> }

> No = No + nS

> }

> print(No)

22

Step 5: creating a minimum convex hull around CMR records

The fifth step is to create a minimum convex hull around CMR records:

> points1 = tab[,c("x0","y0")]; points2 = tab[,c("x1","y1")]

> colnames(points1) = c("x","y"); colnames(points2) = c("x","y")

> points = rbind(points1, points2)

> hull = chull(points)

> hull = c(hull,hull[1])

> hull = Polygon(points[hull,])

> hull = Polygons(list(hull),1)

> hull = SpatialPolygons(list(hull))

> hull_raster = mask(template_raster, hull, snap="out")

> plot(hull, add=T, border="blue")

As coded above, the minimum convex hull is subsequently used to create a “hull raster” object that will be useful to
constraint the CMR randomisations performed in step 6.

Step 6: randomisation step for testing the significance level of No

The last step is to use a randomisation procedure to assess the level of significance of the observed number of crossing
motorway events (No). The randomisation procedure requires the preliminary definition of a “rotation” function:
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> rotation = function(pt1, pt2, angle)

> {

> s = sin(angle); c = cos(angle)

> x = pt2[1]-pt1[1]; y = pt2[2]-pt1[2]

> x_new = (x*c)-(y*s); y_new = (x*s)+(y*c)

> x_new = x_new+pt1[1]; y_new = y_new+pt1[2]

> return(c(x_new,y_new))

> }

This function basically allows to randomly rotate each CMR movement vector around its starting point and while
maintaining the whole vector within the minimum convex hull created in step 5. The following randomisation procedure
thus uses the “rotation” fonction to randomise all the CMR movement vectors to compute and generate a null distribution
of numbers of crossing motorway events (Fig. 1). No is eventually compared to this null distribution to estimate a
p-value reflecting its level of significance:

> nberOfRandomisations = 1000

> Ns = matrix(nrow=nberOfRandomisations, ncol=1)

> for (s in 1:nberOfRandomisations)

> {

> N = 0

> for (i in 1:dim(tab)[1])

> {

> nS = 0

> ids = which(minimum_distances[i,]<branch_distances[i,1])

> if (length(ids) > 0)

> {

> pt1 = c(tab[i,"x0"],tab[i,"y0"])

> pt2 = c(tab[i,"x1"],tab[i,"y1"])

> rotationWithinHull = FALSE

> while (rotationWithinHull == FALSE)

> {

> angle = (2*pi)*runif(1)

> pt2_rotated = rotation(pt1, pt2, angle)

> if (!is.na(extract(hull_raster, cbind(pt2_rotated[1],pt2_rotated[2]))))

> {

> rotationWithinHull = TRUE

> }

> }

> x = c(pt1[1],pt2_rotated[1])

> y = c(pt1[2],pt2_rotated[2])

> branch = SpatialLines(list(Lines(Line(cbind(x,y)), ID=i)))

> for (j in 1:length(ids)) {

> n = 0

> intersections = gIntersection(motorways_list[[ids[j]]], branch)

> if (!is.null(intersections))

> {

> if (odd(dim(intersections@coords)[1]/2)) n = n + 1

> }

> nS = nS + n

> }

> }

> N = N + nS

> }

> print(N)

> Ns[s,1] = N

> }

> write.table(Ns, "Ns.txt", col.names=F, row.names=F)

> pValue = sum(Ns<=No)/length(Ns); print(pValue)
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