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Ridge National Laboratory, Oak Ridge, TN, 37831, USA

NSE; neutron spin-echo; spallation neutron source; data reduction

1. Derivation of the NSE signal in Gaussian approximation (Eq. 3-6) in
the main text.

We start by considering the main spin-precession coding variables, the field integrals

in the first and second spectrometer arm J1 and J2 respectively.

J1 =

∫ sample

π/21

|B(l)|dl and J2 =

∫ π/22

sample
|B(l)|dl (1)

where B is the magnetic field (induction) along the neutron path parametrized by the

path length variable l. For simplicity we assume that the π-flipper, which reverses the

effective precession sense, coincides with the sample.

The neutron velocities in both arms are v1 and v2, their difference corresponds

to the energy transfer to the neutron by the scattering process at the sample. The

spin-precession angle in each arm then is
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ψi =
γnJi
vi

(2)

and taking into account the action of the π-flipper the final precession angle is

Ψ = ψ1 − ψ2 =
γnJ1

v1
− γnJ2

v2
(3)

Application of high resolution spin-echo implies that the velocity difference ∆v

due to a typical energy transfer ∆E = h̄ω is very small, with v1 = v = h/(mnλ) and

v2 = v + ∆v ' h/(mnλ) + λω/2π then inserting the resulting precession angle into

the (ideal) analyzer transmission function T = 1± cos(±Ψ)/2 yields the probability

of this neutron to arrive at the detector:

1

2

[
1± cos

(
− γnJ1

(h/mn)λ−1
+

γnJ2

(h/mn)λ−1 + λω/2π

)]
(4)

since ω is small the second term in the argument of the cosine in Eq. 4 can be replaced

by its Taylor expansion and to get the average over the probabilities of energy transfers

we integrate over the spectral part of the scattering function:

IDet ∝
∫ [

1± cos

(
− γnJ1

(h/mn)λ−1
+

γnJ2

(h/mn)λ−1
+

γnJ2λ
3

2π(h/mn)2
ω

)]
S(Q,ω)dω (5)

where IDet denotes the detector intensity for an ensemble on neutrons still with unique,

sharp value of the initial velocity, c.f. wavelength λ.

For the next step we utilize the fact that S(Q,ω) ' S(Q,−ω) in the typical realm of

NSE experiments (i.e. h̄ω << kBT ), the cosine addition theorem and S(Q) =
∫
S(Q,ω)dω:

IDet ∝
[
S(Q)± cos

(
γn(J2 − J1)λ

(h/mn)

)∫
cos

(
γnJ2λ

3

2π(h/mn)2
ω

)
S(Q,ω)dω

]
(6)

since the NSE spectrometer is operated such that the precession paths are very

close to symmetry we have J1 ' J2 = J and the further steps are expressed now in
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terms of J the nominal field integral and the field integral asymmetry ∆J = J2 − J1,

at ideal (full) symmetry ∆J = 0.

1.1. Gaussian approximation for envelope shape and resolution

In a real spectrometer it is not possible to work with one exactly defined wavelength,

in fact the main reason for the applicability of spin echo is the large possible width of

the incoming neutron wavelength (velocity) band ensuring enough intensity. For the

same reason it is necessary to accept a wide and divergent beam instead of a ”single

ray” and thus the exact value of the asymmetry parameter ∆J depends on the path

within the beam.

In order to proceed with the analysis of the salient properties of a NSE signal in

terms of analytic expressions we resort to Gaussian approximations for the incoming

wavelength distribution

w(λ− λ0) =
1

Λ
√
π

exp

[
−
(
λ− λ0

2Λ

)2
]

(7)

this distribution is quite realistic for reactor based instruments with a wavelength

selector even if it deviates slightly from the more triangular transmission function of

a neutron velocity selector.

For the distribution of field integral differences within the beam we also use a

Gaussian approximation

W (δ −∆J) =
1

Σ
√
π

exp

[
−
(
δ −∆J

2Σ

)2
]
. (8)

Here a Gaussian shape can only be considered as a generic description coarsely approx-

imating some distribution with width corresponding to Σ.

However, these Gaussian approximations allow to derive analytical expressions for

the NSE signal.
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With that the detector signal as function of the spectrometer control variables

[J, δ, λ0], i.e. field integral (proportional to the main solenoid current), asymmetry

(proportional to the phase coil current) and wavelength (at TOF instruments a func-

tion of the neutron arrival time:

IDet[J, δ, λ0] =
1

2

∫
Sλdλ (9)

with

Sλ = S(Q)±
∫
W (δ−∆J) cos

(
∆Jγn

mn

h
λ

) {∫
cos

(
Jλ3γn

m2
n

2πh2
ω

)
S(Q,ω)dω

}
d∆J

(10)

Performing the integration over the field integral inhomogeneity distribution yields

Sλ = S(Q)±η exp

(
−
[
Σγn

mn

h
λ

]2
)

︸ ︷︷ ︸
R

cos

(
δγn

mn

h
λ

) ∫
cos

Jλ3γn
m2
n

2πh2︸ ︷︷ ︸
t

ω

S(Q,ω)dω.

(11)

This yields the expression showing the salient features of the so-called resolution

function R, where we introduced an additional factor η '< 1, which accounts for

non-idealities of the polarisation analysis. Note that at high resolution Σ ∝ J . The

prefactor to ω in the second term of Eq. 11 corresponding to a cosine Fourier transform

of the scattering function reveals the origin of the expression for the Fourier-time t.

1.1.1. Lambda integration The still missing integration over the wavelength distri-

bution involves the implicit λ-dependence of the scattering function through its Q-

dependence (Q = 4π/λ sin(θ/2) = cq/λ). With the abbreviation b = Jλ3γn(mn/h)2/2π

we write t = bλ3 and t0 = bλ3
0, with that the expression in the cosine Fourier integral

in Eq. 10 can be written as a Taylor expansion around λ0
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S(Q, t) = S(Q0, t0) +
(λ− λ0)

λ0
S1 +

(λ− λ0)2

λ2
0

1

2
S2 +

(λ− λ0)3

λ3
0

1

6
S3 + · · · (12)

with

S1 =

[{
−Q d

dQ
+ 3t

d

dt

}
S(Q, t)

]
Q0,t0

(13)

S2 =

[{
Q2 d2

dQ2
+ 2Q

d

dQ
+ 9t2

d2

dt2
+ 6t

d

dt
6Qt

d2

dQdt

}
S(Q, t)

]
Q0,t0

(14)

The λ integration then yields

I ∝

〈S(Q0)〉 ± η 1

A
e
− (Σλ0γnmn)2

(hA)2︸ ︷︷ ︸
R

× e−
(Λδγnmn)2

(hA)2 cos

(
δγnmnλ0

hA2

)
︸ ︷︷ ︸

E

S(Q0, t0) + ...

 (15)

where we can identify the resolution R and the echo-shape E = Ee(δ · · ·) × cos(δ · · ·)

as parts of the prefactor to the intermediate scattering function. 〈S(Q0)〉 denotes

the wavelength averaged ”static” scattering function. The factor A is a result of the

wavelength dependence of the resolution function

A = 1 + 4Σ2Λ2γ2
n(mn/h)2 (16)

For practical purposes A ' 1, which can be verified by inserting typical values for the

wavelength width parameter Λ = ∆λFWHM/(4
√

ln 2), λ0 = 1 nm, FWHM width 10%

and the inhomogeneity parameter Σ = 2× 10−6 Tm yields A = 1.0015. The present

analytical form and appearance of A can only be given in this simple form if the

Gaussian approximations for w and W are assumed, for other shapes of w no analytic

form could be found. Nevertheless, the Gaussian approximation exercise allows for the

estimation of the magnitude of the effect and assures us that for the normal range of

NSE parameters A is virtually 1. In the DrSpine implementation A = 1.
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Finally, with the abbreviations g = γnmn/h, ψ2 = [(Σλ0)2 + (Λδ)2](g/A)2 and Φ = δλ0g/A
2

the next order of the λ can be written as

I ∝
[
〈S(Q0)〉 ± η

A
e−ψ

2

{
cos(φ)S0 −

Λ2

λ2
0

2

A

(
[A2φ sin(φ) + 2(Σλ0g)2 cos(φ)]S1 −

cos(φ)

2A2
S2

)
+O(

Λ4

λ4
0

)

}]
(17)

For a 10% selector Λ2

λ2
0

is about 10−3 but S1 and S2 contain derivatives of the

scattering function that may become large. However, for polymer systems S(Q, t) is

sufficiently smooth to result in negligible higher order contributions in Eq. 17. For

intermediate function with sharper peaks these contributions can become larger.

Since at a TOF instrument (SNS) the effective width of the used λ-bins can be made

very small these effects are suppressed even further compared to a selector instrument.

1.1.2. Echo shape envelope functions for selector instruments

Gaussian

Ee(δ) = exp

(
−(δγnmn)2

h2

∆λFWHM

16 ln 2

2)
(18)

Triangular

Ee(δ) = 2
1− cos(z)

z2

with

z = −(δγnmn)

h
∆λFWHM (19)

Triangular (smoothed edges)

Ee(δ) = 2
1− cos(z)

z2

× exp

(
−(δγnmn)2

h2
δλ2

)
(20)

with a smoothing parameter δλ << ∆λ.
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2. Combination rule derivation

The data combination rule given in Eq. 19 of the main paper may easily be derived.

The problem is basically that of combining two experimental results s1 and s2, both

with experimental errors δs1 and δs2, such that the combined results has the lowest

possible error. The optimisation pertains the prefactors α and 1− α used for the linear

combination s12 = αs1 + (1− α)s2. In that case the squared error of the result is

δs2
12 = (αδs1)2 + ([1− α]δs2)2 (21)

and the minimum of Eq. 21 with respect to α corresponds to the optimum combination,

i.e.

α =
δs2

2

δs2
1 + δs2

2

. (22)

Inserting Eq. 22 into the expression for s12 it immediately yields

s12 =
δs2

2 s1 + δs2
1s2

δs2
1 + δs2

2

=
s1/δs

2
1 + s2/δs

2
2

1/δs2
1 + 1/δs2

2

. (23)

The resulting error immediately follows from inserting the minimum α into Eq. 21

which – after trivial algebraic rearrangements – equals Eq. 20 of the main paper. As

indicated in the main paper the case for more than two terms in the combination

immediately follows by iterating the latest combination step.

3. Explanations pertaining the example report

report20670 707 stems from the evaluation of an experiment performed at the reac-

tor instrument J-NSE in Garching. The name is derived from the run number of the

leading (first) sample run and the following 707 is an automatic sequence number

counting the created reports.
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The first table summarizes all loaded raw-data files with the corresponding spec-

trometer settings etc.. Since this is a reactor experiment the wavelength frame λ1, n

contains a single nominal wavelength, 8Å. Then the wavelength width is read from

the selector parameters contained in each raw data file. The consistency of wavelength

and wavelength band width can immediately be judged by the plots show e.g. in figure

1 of the report. The only parameters to fit each of these curves to the counts in the

corresponding pixel (symbols) are: δ0, the location of the exact phase symmetry, the

echo amplitude a and average level b.

3.1. Parameters

The data reduction in DrSpine can be controlled by a number of parameters pertain-

ing pre-binning, post-histogramming and controls for acceptance/rejection of pixels.

Once optimized for one instrument (and possibly classes of experiments, e.g. low Q

vs high Q, coherent vs incoherent) it will rarely be necessary to adjust them further.

This pertains the values listed in table 2 of the report. In order to expose all aspects

of the evaluation they are explicitly set in lines 11 to 22 of the macro shown at the

end of the report.

Besides those the detector pixel prebinning and, for TOF instruments, the prebin-

ning of time channels can be specified. These are applied in the data reading step.

The user can also adjust some parameters pertaining the fitting of the echo, like for

example the largest acceptable chi-square, the accepted tolerance or the smallest echo

amplitude.

Next, the instruction match in the macro finds the corresponding data sets (refer-

ence, sample, background, etc.), and the fit command performs the actual echo signal

fitting for all pixels and TOF bins. Starting with the best (central) pixels, the program

determines the symmetry phase automatically for each pixel, which are then used in
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the subsequent steps. In case of small magnetic disturbances and sufficient echo signal

in the sample data, the user has the option to apply a global phase offset to the sample

data (shifting the reference phase table as a whole) by selecting the option fit sam

offset. This phase offset comprises all data from the entire detector area.

At last the user may choose to personalize the number of binning in Q and in the

Fourier time. The final histogramming serves to collect this information into a selected

grid of (Q, t) boxes. There one may explore the trade-offs between the degree of divi-

sion in either Q, t or both versus statistics, i.e errors of each data point. Due to the

application of proper weighting in determining the best effective Q and t values for

each histogram box, even coarse binning yields reliable Q, t tables. Histogramming

boxes that remain empty after the collection phase are ignored when preparing the

output tables. This feature is employed in the example (800 time bins) to make sure

that each Fourier time setting of the experiment gets a unique time slot assigned.

For the continuous distribution of Fourier times encountered in an TOF-NSE (SNS)

experiment one rather uses a t-binning into a few (typically 5· · ·30) time slots equally

distributed on a log-scale over the interval covering a range from minimum to max-

imum time compatible with the extremes of field integral settings and wavelength

frames used in the experiment. As is done in the present example report a standard

list covering settings from a range of possible divisions is created, enabling a posteriori

selection.

As already mentioned in the main text, the final report provides, besides the curves

for the intermediate scattering function in a linear and in logarithmic plot, also the

possibility of choosing among some basic fitting functions that allow to extract first

information on, e.g., the diffusion coefficient. A text (ASCII) file containing the S(Q, τ)

points vs. τ data is automatically generated.
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