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1. 2D Skin Lesion Segmentation

We further validated our proposed method with the International Skin
Imaging Collaboration (ISIC) 2018 skin lesion segmentation dataset (Tschandl
et al., 2018; Codella et al., 2018). Skin cancer is the most prevalent cancer in
the United States where melanoma is the most dangerous type. Dermoscopy
is a promising imaging technique for diagnosis of skin cancer (Siegel et al.,
2017). Automatic assessment of dermoscopic images is attracting increasing
attentions due to the shortage of dermatologists per capita. Segmentation of
the lesion regions plays an important role for automatic measurement and
diagnosis of skin cancer (Yuan et al., 2017).
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1.1. Data and Implementation

We used the publicly available dataset of ISIC 2018 skin lesion segmen-
tation challenge 1 (Tschandl et al., 2018; Codella et al., 2018). The lesion
images were collected with a variety of dermatoscope types from several dif-
ferent institutions. Each image contained exactly one primary lesion, and
smaller secondary lesions, other pigmented regions or other fiducial markers
may be neglected. The released training dataset consisted of 2594 images
with corresponding ground truth masks annotated by human experts. We
randomly split them into 2000 images for training, 294 images for validation
and 300 images for testing. We resized these images into a consistent size
192×192.

For experiments, we used 2D U-Net (Ronneberger et al., 2015) and Dense
U-Net (Guan et al., 2018) that is an extension of U-Net with dense connection
blocks. The networks were implemented in TensorFlow2 (Abadi et al., 2016)
using NiftyNet3 (Li et al., 2017; Gibson et al., 2018). During training, we
used Adaptive Moment Estimation (Adam) to adjust the learning rate that
was initialized as 10−3, with batch size 10, weight decay 10−7 and iteration
number 20k. We represented the transformation parameter β in the proposed
augmentation framework as a combination of fl, r and s, where fl is a random
variable for flipping in 2D, r is the rotation angle in 2D, and s is a scaling
factor. The prior distributions of these parameters were modeled as: fl ∼
Bern(0.5), r ∼ U(0, 2π), s ∼ U(0.8, 1.2) and e ∼ N(0, 0.05). We used data
augmentation at both training and test time based on this formulation.

1.2. Segmentation Results with Uncertainty

Fig. 1 shows a visual comparison of different types of uncertainties for
segmentation of skin lesion. The results were based on the same trained
model of Dense U-Net, and the Monte Carlo simulation number N was 40
for TTD, TTA, and TTA + TTD to obtain epistemic, aleatoric and hybrid
uncertainties respectively. The subfigures show three cases with different skin
lesion sizes and appearances. In Fig. 1 (a), the first row presents the input
and the segmentation obtained by the single-prediction baseline. The other
rows show the three types of uncertainties and their corresponding segmen-
tation results respectively. It can be observed that the TTD-based epistemic

1https://challenge2018.isic-archive.com
2https://www.tensorflow.org
3http://www.niftynet.io
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Figure 1: Visual comparison of different types of uncertainties and their corresponding
segmentations of skin lesion. In the second column of each subfigure, the first image
shows segmentation by the single-prediction baseline, and the others are based on Monte
Carlo simulation with N = 40. TTD: test-time dropout, TTA: test-time augmentation.

uncertainty map mainly highlights the border of the segmented foreground.
In contrast, the TTA-based aleatoric uncertainty map shows uncertain seg-
mentations not only on the border but also in some challenging areas in the
left up corner of the image. It can be observed that both the TTA-based
aleatoric and hybrid uncertainty maps have a better performance in indicat-
ing potential mis-segmentations than the TTD-based epistemic uncertainty.

1.3. Quantitative Evaluation

To quantitatively evaluate the segmentation results, we measured Dice
score and ASSD of each prediction for different testing methods of baseline
single prediction, TTD, TTA and TTA + TTD. We also compared training
with and without data augmentation. We found the Monte Carlo sample
number N that obtained the performance plateau was 40. Table 1 shows the
quantitative evaluation results for these different testing methods when N
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Table 1: Dice (%) and ASSD (pixels) evaluation of 2D skin lesion segmentation by different
training and testing methods. Tr-Aug: Training without data augmentation. Tr+Aug:
Training with data augmentation.* denotes significant improvement from the baseline of
single prediction in Tr-Aug and Tr+Aug respectively (p-value < 0.05). † denotes significant
improvement from Tr-Aug with TTA + TTD (p-value < 0.05).

Train Test
Dice (%) ASSD (pixels)

U-Net Dense U-Net U-Net Dense U-Net

Tr-Aug

Baseline 84.67±16.55 85.83±13.99 6.20±6.71 5.63±5.49
TTD 84.91±16.23 86.02±13.94 6.13±6.62 5.62±5.45
TTA 85.32±16.19* 86.48±13.67* 5.74±6.19* 4.82±5.36*
TTA + TTD 85.63±15.89* 86.77±13.32* 5.71±6.26* 4.79±5.23*

Tr+Aug

Baseline 85.73±15.02 86.30±13.72 5.75±5.67 5.45±5.93
TTD 85.95±14.94 86.48±13.81 5.72±5.61 5.36±5.66
TTA 86.42±14.82* 87.02±13.65* 5.19±5.30* 4.39±4.87*
TTA + TTD 86.56±14.55*† 87.11±13.47* 5.15±5.26*† 4.37±4.84*

was 40. For both networks we found that TTA led to a higher improvement
of segmentation accuracy than TTD.

1.4. Correlation between Uncertainty and Segmentation Error

We also investigated the correlation between prediction uncertainty and
segmentation error. For pixel-level evaluation, we measured the joint his-
togram of pixel-wise uncertainty and pixel-wise error rate for TTD, TTA,
and TTA + TTD respectively, and the joint histograms were normalized by
the overall pixel number in test images. Fig. 2 shows the results based on
Dense U-Net using training with data augmentation and N set as 40. For
each type of uncertainties, we calculated the average error rate at each uncer-
tainty level, and obtained a curve of error rate as a function of uncertainty,
i.e., the red curves in Fig. 2. This figure shows that when the uncertainty in-
creases, the error rate also becomes higher gradually. The curves in Fig. 2(b)
and Fig. 2(c) have higher slopes than that in Fig. 2(a), showing that TTA has
fewer overconfident incorrect predictions than TTD and a better correlation
with mis-segmentations.

For structure-level evaluation, we measured structure-level uncertainty
represented by volume variance coefficient (VVC) and structure-level error
represented by 1 - Dice. Fig. 3 shows their joint distributions with three
different testing methods using 2D Dense U-Net that was trained with data
augmentation. The Monte Carlo sample number was 40. The figure shows
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Figure 2: Normalized joint histogram of prediction uncertainty and error rate for 2D skin
lesion segmentation. The average error rates at different uncertainty levels are depicted
by the red curves.
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Figure 3: Structure-level uncertainty in terms of volume variation coefficient (VVC) vs
1 - Dice for different testing methods in 2D skin lesion segmentation.

that for all the three types of testing methods, the achieved structure-level
uncertainties increase with 1 - Dice. However, TTA-based testing has a larger
slope than TTD-based testing, as shown in Fig. 3(a) and (b). TTA + TTD
obtained similar results compared with TTA, as shown in Fig. 3(c).
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