
Supplemental Figure 1

Supplemental Figure 1: Scree plot of power analyses and sample size calculations.  

The figure displays the predictive power of  various sample sizes based on the variability of 
the data (s) and the treatment effect size.  As indicated, the  samples size of our smallest 
study group, n=6, is associated with an 80-98% power of detecting a fold-change (Fc) effect 
in the 1.5-2.0 range.  

Calculations are based on a Completely Randomized Design with Repeated Measures of a 
single Treatment Factor (Uninfected /Mtb infection of unsorted BAL cells /Mtb infection of 
CD4-depleted) on independent Experimental Units (subject-specific cell cultures). The a
priori power analysis was based on calculation of the group sample size n required to detect 
a minimum effect in the Treatment Factor as a function of power, while controlling for an 
appropriate error rate that is consistent with the large number of simultaneous inferences 
associated with this type of high-dimensional dataset. This type of data requires application 
of methology that gives a sample size that would control the False Discovery Rate (denoted 
FDR or a) [30] and simultaneously guarantee a certain power (denoted 1-b).  We utilized 
methodology described in Liu, et al [31] with a less conservative extension of the FDR called 
positive FDR (denoted pFDR) [34-35]. After variance stabilization and normalization of the 
data [34-35], the usual distributional assumptions of test statistics become applicable [31].  
Calculations utilized the experimental group sample size n, and the common standard 
deviation of all variables (i.e. genes) by s and the effect size by D/s.  We calculated the 
group sample size n required to detect e.g a minimum fold change Fc (effect size D/s = 
log2(Fc)/s) in the treatment factor effect as a function of power 1-b, the parameter po

(interpreted as the probability of non-differentially expressed variables), the common 
standard deviation s, and a fixed level a of pFDR.  Using Bayes Rule, for any estimate of po

and a level of pFDR that we wish to control, we find the rejection region and the 
corresponding critical values for each sample size n [31].  Based on a pilot study in our 
hands, estimates of the parameters po and of the common standard deviation s of the 
variables across experiments were po = 0.41-0.98 and and s = 0.72-1.19, which is consistent 
with estimates found in other platforms in high-dimensional data [31].  Under the above 
assumption and most conservative estimations (for fixed po = 0.98 and s = 1.19), while 
controlling the FDR at 5% (FDR ≤ 0.05), a group sample size of n n ≥ 6 is can detect a Fold-
Change effect within the 1.5 ≤ Fc ≤ 2.0 range, with at least 80% power, as illustrated..  



Supplemental Figure 2

Supplemental Figure 2:  Shrinkage plots of differential Mtb-induced BAL cells gene expression.  

The determination of differentially-expressed genes in unsorted BAL cells from LTBI subjects in the CD4-depletion and CD8-depletion studies (A and B) 
and in Mtb-naïve subjects (C) are represented.  Differential expression was determined after initial preprocessing using implementations and algorithms 
(including our own) available from the R project, which is a open-access programming language and platform for statistical computing and visualization of 
the Comprehensive R Archive Network (CRAN) consortium (http://cran.r-project.org/).  A single pre-filtering was performed on the initial 33,297 features 
of the Affymetrix Human Genome U133 plus 2.0 arrays: After filtering the 4,201 Affymetrix control probesets out, the dataset was left with 29,096 
mRNA probesets. There were no missing values. The dataset of measured intensities was corrected for global normalization, variance-stabilization and 
normality using our recently developed ‘Joint Adaptive Mean-Variance Regularization’ procedure as previously described [34-35] on the variables (genes 
or mRNA probesets). The entire procedure, including plot-generating functions, are implemented in our R package ‘MVR’ [36].
Analysis of differential expression of our variables (genes or mRNA probesets) between contrasts of interest was assessed in the context variable selection 
in a regression setting using our recent Bayesian hierarchical model and termed “Bayesian ANOVA”. The Bayesian hierarchical model produces so-called 
Spike & Slab shrunken regression estimates [38-40], that are advantageous in that they allow to build a parsimonious model. These estimates work by 
borrowing information across variables in a way that optimally balances false positive and false negative detection rates, and hence minimize the total 
misclassification errors. This approach eliminates the huge problem of specifying an arbitrarily FDR cutoff value of significance, and the drawback of 
excessive conservativeness [41]. In addition, it does not ignore the correlation structure or dependency between the variables, which is very frequently 
present within large datasets of observational data. Finally, minimal assumptions about the data are made, which makes this approach applicable to a wide 
range of settings. Overall, this methodology has practical and important applications in high-dimensional, noisy and correlated data, as often occur with 
“omics” datasets. It is currently implemented as a R package ‘spikeslab‘, and as a stand-alone Java-based software, freely available to academic users: 
Bayesian Analysis of Microarray (BAM) (www.bamarray.com) [42]. Our further analysis was based on an absolute Z-cut value of 2.5 for each data set.
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Supplemental Table II:  
Functions of genes comprising the signature of the role of CD4+ T cells in BAL cell recall responses to Mtb in healthy LTBI subjects
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