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Supplementary Figures  

 

Supplementary Figure 1. Nano-HT reconstruction of a sample that was heated at 300°C, for 70 min, 
showing density oscillations perpendicular to the sample surface (pixel size is 35 nm). b) Intensity plot 
from the yellow line   

 

 
 

Supplementary Figure 2. a) BSE image of a lens embedded in epoxy and polished. b) Intensity plot 
from the yellow line   

 

Supplementary Figure 3. HRSEM (SE) image from a broken lens.  
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Supplementary Figure 4. a) Nano-HT reconstruction of a spicule sample at room temperature, showing 
density oscillations perpendicular to the sample surface (pixel size is 35 nm). b) Intensity plot from the 
yellow line. 

 

 

Supplementary Figure 5. Free energy of Mg-calcite taken as a binary solid solution of calcite and 

dolomite at T = 298K with the constants A0 and A1 from Busenberg and Plummer.1  Crosses correspond 

to zero second derivative of the free energy (XMg = 0.14 and XMg = 0.48).The region of negative second 

derivative of the free energy is in between the crosses. 
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Supplementary Figure 6. (a).  (104) XRD peak from Mg-calcite crystallized from hydrothermally 

treated Mg-ACC in solution in the presence of 0.1M Aspartic acid. Data were acquired by synchrotron 

radiation (λ=0.496 Ȧ). (b) (Mg/Ca+Mg) in the calcite crystals, obtained from the refined lattice 

parameters and the equations linking the lattice parameters and the amount of Mg in the crystal 

obtained by Zolotoyabko et al.,2 as a function of amount of Mg in solution, in the absence (lack circles) 

and presence (red triangles) of aspartic acid. The grayed area represents the range for which Mg-

calcite did not form. 

 

Supplementary Figure 7. Data from Figure 7 (in manuscript), plotted together with the (104) XRD 

peak from Mg-calcite crystallized in an identical manner but in the presence of polyaspartic acid (200 

µg.mL-1 polyaspartic acid and 10%Mg in solution). Numbers near the peaks are the η (Mg/Ca+Mg) in 

the calcite crystals, obtained from the refined lattice parameters. XRD from the sample synthesized in 

the presence of polyaspartic acid was acquired with a CuKα radiation (λ=1.5406 Ȧ, rescaled at 

λ=0.496 Ȧ), the other XRD data were acquired by synchrotron radiation (λ=0.496 Ȧ).   
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Supplementary Tables 

AA weight% 

asp 0,000202 

ser 0,000131 

glu 0,000252 

gly 0,000193 

ala 0,000122 

val 0,000109 

Ile 7,95E-05 

leu 0,000154 

phe 7,74E-05 

Total 0,00132 
 

Supplementary Table 1. Amino Acid Analysis results 

 

 Temperature phase wt% 
a-parameter 

Å 

c-parameter 

Å 

wR 

% 
GOF 

spicules 

RT low-Mg calcite 100 4.92857(3) 16.77874(7) 14.4 4.9 

RT after 400°C 
low-Mg calcite 97.7 4.9338(2) 16.8066(5) 

11.8 4.6 
high-Mg calcite 2.3 4.827(5) 16.19(1) 

arm  
vertebrae 

RT low-Mg calcite 100 4.92680(2) 16.776904(6) 14.0 3.2 

RT after 400°C 
low-Mg calcite 97.7 4.9326(1) 16.8015(3) 

12.5 2.8 
high-Mg calcite 2.3 4.836(2) 16.156(5) 

teeth 

RT low-Mg calcite 100 4.92827(2) 16.77693(5) 16.5 3.6 

RT after 400°C 
low-Mg calcite 94.5 4.9353(2) 16.8159(4) 

12.3 2.5 
high-Mg calcite 5.5 4.837(2) 16.163(4) 

 

Supplementary Table 2. Rietveld refinement results: Lattice parameters, phase fraction and goodness 

of fit parameters. 

 

%Mg in 
solution 

Wt% 
aragonite 

0 48 

5 67 

10 69 

15 77 

20 81 

25 79 

30 65 

40 78 

50 25 

 

Supplementary Table 3. Relative amount of aragonite (wt%) obtained during the synthesis of Mg-

calcite, extracted from Rietveld refinement results. 
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Supplementary Notes 

 

Supplementary Note 1: Kinetics of the spinodal decomposition of gel-like Mg-ACC  

 

Consider a homogeneous, quasi-binary liquid solution L(A-B) thermally treated at a temperature T 

below the critical point, thereby providing spinodal decomposition. The equation describing evolution 

of the concentrations of element A and element B over time in the liquid (or gel) matrix M (CA+CB=1) 

can be written in the form specified in [3]. Assuming that we can neglect non-linear concentration 

derivatives, these equations can be written in the following one-dimensional form:   

 
𝜕𝐶A

𝜕𝑡
= 𝑀AM [𝐺AA ⋅

𝜕2𝐶A

𝜕𝑥2 − 2𝜅AB
𝜕4𝐶A

𝜕𝑥4 ] ,    (1) 

where 𝐺AA ≡
𝜕2𝐺

𝜕𝐶A
2, G is the molar Gibbs free energy and 𝑀AM is the effective mobility of element A in 

the gel matrix M. The gradient energy coefficient 𝜅AB can be evaluated according to the known relation 

for solid binary alloys and corrected for gel solutions: 

 
𝜅AB =

2𝛼

3
𝑎2𝛥ℎ0.5

AB  ,
     (2)

 

where 𝛥ℎ0.5
ij

 is the mixing enthalpy of the corresponding equimolar i−j binary alloy, 𝑎 is the interatomic 

distance, and  is a gel correction parameter. 

Possible fluctuations in concentration of element A that satisfy Supplementary Equation 1 can be 

written in the form: 

𝛥𝐶A = 𝐴0𝑒𝑄𝑡 𝑐𝑜𝑠( 𝛽𝑥) ,     (3)
  
 

where 𝑄 = −𝑀AM𝛽2(𝐺AA + 2𝜅AB𝛽2). The fluctuation in concentration will grow for Q > 0, i.e. 𝐺AA <

−2𝜅AB𝛽2. The maximum rate of fluctuation growth corresponds to 𝛽m
2 = −𝐺AA/4𝜅AB: 

𝑄m = 𝑀AM
(𝐺AA)2

8𝜅AB
 .     (4) 

Let us now estimate possible values of this amplification factor and the wavelength of fluctuations 𝜆m =

2π/𝛽m for the case of the Mg-ACC aqueous matrix. Using Equations 1 and 2 for the Gibbs free energy, 
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and Supplementary Equation 2, we can write 𝜆m = 2π𝑎√−2𝛼𝐴0/3𝐺AA. For T = 300K and 

concentrations slightly above the critical concentration Xc = 0.14, the second derivative can be about 

𝐺AA = –(0.006÷0.4) kJ.mol-1, and 𝜆m = (4 ÷ 34)√𝛼 nm. The value of the amplification factor can be 

estimated using the mobility 𝑀AM = (𝑉𝑚/𝑅𝑇)𝐷̄ ≈ 1.5 ⋅ 10−23𝑚5(𝐽𝑠)−1 , where 𝐷̄ ≈ 10−15  ,

𝑚2. 𝑠−1 is the diffusion coefficient in the gel, and Vm is the molar volume of calcite. For applied values 

of 𝐺AAand 𝜅AB it can be seen that 𝑄mvaries over a wide range, from ~(0.02/𝛼) s−1 for 𝐺AA = −0.006  

kJ.mol-1 to (90/𝛼) s−1 for 𝐺AA = −0.4  kJ.mol-1. Assuming  = 10÷100, we can estimate the time 

needed to increase the fluctuation for 5 orders of value 𝑡5 = (5/𝑄m) 𝑙𝑛 1 0 as 5.8 ⋅ (103 ÷ 104) s for 

𝐺AA = −0.006 kJ.mol-1, and (1.3 ÷ 13) s for 𝐺AA = −0.4 kJ.mol-1. We can conclude here that the 

spinodal decomposition becomes increasingly faster with growth of the average Mg concentration 

above the critical value. 

 

Supplementary Note 2: The layered structure formation, 1
st
 route: alternating repelling and 

attachment of the Mg-rich particles 

We assume that the Mg-rich nanoparticles do not become attached to the growing crystalline front 

because of some Columbian repulsive force caused by absorbed negatively charged organic and water 

molecules, both on the nanodomains and the crystallizing surface. Assuming approximately 

homogeneous distribution of charged molecules throughout the crystallizing surface, the corresponding 

disjoining force can be written as follows: 

                                                              𝐹q =
𝜎𝑞p

2𝜀0
  .                                                                         (5) 

where  is the surface charge density, qp is the charge accumulated by a  nanodomain, 0=8.8510-12 

F.m-1 is the electric constant.                 

The crystallization front expands at a rate V and drags the Mg-rich nanoparticles. The balancing force 

in a viscous media was derived as a lubrication force caused by viscous fluid flow near the base of 
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particle.4–7 In the case of small spherical particles of radius R near a flat interface, the viscous drag force 

is: 4–7   

                                            𝐹𝜇 = 6π𝜇𝑉
𝑅2

𝑑
                                                                        (6) 

where 𝜇 is the suspension viscosity. The particles are rejected by the expanding crystalline front if the 

disjoining force exceeds the viscous lubrication force. The transition from rejection to encapsulation of 

the particle occurs when: 

            𝐹𝑞 = 𝐹𝜇  i.e.      6π𝜇𝑉
𝑅2

𝑑
=

𝜎𝑞p

2𝜀0
.                                                 (7) 

This condition allows to derive the maximum radius of rejected particles, Rm(𝜇):      

                                                     𝑅m(𝜇) = (
𝜎𝑞p𝑑

12π𝜇𝑉𝜀0
)1 2⁄                                                               (8) 

The larger particles (𝑅 > 𝑅m(𝜇)) are trapped by the crystalline front and encapsulated (or coherently 

crystallized in our case), while smaller particles (𝑅 < 𝑅m(𝜇)) are repelled and pushed to the gel.  

According to theory of Vand,8 the viscosity of a gel containing a volume fraction of suspended particles 

 can be written as: 

                                            𝜇(𝜑) =
𝜇0

(1−𝜑−𝑞𝜑2)𝑘                                                                   (9)  

where k = 2.5 for spherical particles and k > 2.5 for elongated particles, and q1 is a fitting parameter. 

Using the reasonable values of d = 0.5 nm, 𝜇0 = 16𝑃𝑎 ⋅ 𝑠, V = 0.01 m.s-1, 𝜎 = 1012𝑒̅ m-2, 𝑞p = 𝑒̅ , 

where e is elementary charge,   as well as an initial volume fraction 00.08 (as estimated by Polishchuk 

et al.9), yields a critical radius of repelled particles 𝑅m(𝜇0) = 5 𝑛𝑚. Polishchuk et al. assessed the 

average diameter of the nanoparticles as 5 nm (meaning 𝑟̄ ∼ 2.5𝑛𝑚)9, therefore, almost all of the 

particles should be rejected by the crystallization front. An increase in the effective viscosity results in 

a corresponding decrease of the critical radius, Supplementary Equation 8. We estimate that the 

viscosity should increase by a factor of 3 to 4 (see below). If, for example, the viscosity increases by 4-
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fold, the critical radius will decrease from 5 nm to 2.5 nm, and almost all particles will then become 

attached to the crystallization front and crystallize together with the matrix. 

Let us consider a crystallization front advancing radially from radius R1 to radius R2, and sweeping up 

all colloidal particles in its path. If N0 particles were initially distributed in a spherical layer between 

radii R3 and R1 (R3 >R2> R1), with a volume fraction of 𝜑0 = 𝑁0𝑟̄3/(𝑅3
3 − 𝑅1

3) ( r  being the average 

radius of the particles), these particles, after being swept up, are concentrated in the spherical layer 

between R3 and R2, and their volume fraction reaches the value 𝜑s = 𝑁0𝑟̄3/(𝑅3
3 − 𝑅2

3). The ratio of 

particle-depleted to particle-enriched layers can be estimated as 
𝛥𝐿12

𝛥𝐿23
=

(𝑅2−𝑅1)

(𝑅3−𝑅2)
≈ (

𝜑s

𝜑0
− 1). The 

distance between particles (𝑑 = 𝑟̄(4π/3𝜑)1/3) decreases and may reach a critical value (2 r ) at 𝜑𝑠 =

π/6, when particles meet and agglomerate. In this case, 
𝛥𝐿12

𝛥𝐿23
≈ (

𝜋

6𝜑0
− 1). If 𝜑0 = 0.08 (as estimated 

by Polishchuk et al.9), the ratio of layer thicknesses should be 5.5. From the results presented above, 

this ratio can be estimated as (23), which corresponds to 𝜑s/𝜑0 ≈ (3 ÷ 4), and 𝜑s = (0.24 ÷ 0.32). 

For r =5 nm, d0
  18.7 nm and ds = (13.0÷11.8) nm, this means that the real distance between particle 

surfaces decreases from 8.7 to 3 nm for  𝜑s = 0.24 and to 1.8 nm for 𝜑s = 0.32. At such distances, the 

particles may interact substantially with each other, and by these means form an immobile particle-

enriched layer. In other words, when the volume fraction of particles in the gel increases, the effective 

viscosity of the suspension may also increase substantially, and the particles will be pushed to the 

crystallization front by the increased viscous force. If, because of the repelled nanoparticles, their local 

volume fraction increases from the initial value of 0  0.08 to 𝜑𝑠 = (0.24 ÷ 0.32), the effective 

viscosity will increase, according to Supplementary Equation 9, by a factor of (2.0 ÷ 3.4). 

In order to estimate possible values of particle-depleted and particle-enriched layer widths, one should 

consider Brownian motion of particles ahead of the crystallization front. Assuming that the swept 

particles are distributed within the mean squared displacement distance, 𝑙 ̅ = √2𝐷p𝜏, where 𝐷p =

kB𝑇/(6π𝑟̅𝜉) is the diffusion coefficient of spherical particles of radius r in a viscous liquid 𝜉, 𝜏  is the 

time needed to reach critical concentration of particles, we can write the ratio of final to initial 

concentration as following: 
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   𝑞 ≡
𝐶f

𝐶in
=

𝛥𝐿12

𝛥𝐿23
=

𝑉𝜏

√2𝐷𝑝𝜏
                                                             (10) 

where V is the crystallization front velocity. Eliminating 𝜏  from this equation, one can find: 

                                                           𝛥𝐿12 =
2𝑞2𝐷p

𝑉
                                                                (11) 

For reasonable values q = (2÷3), 𝐷p ≈ 10−15 m2.s-1, V
 810  m.s-1, the value of L 12 varies in a 

wide range (0.8÷1.8) m, as was observed in our experiments. 

 

Supplementary Note 3: The layered structure formation, 2
nd

 route: secondary Mg-ACC spinodal 

decomposition  

The crystallization of Mg-depleted ACC gel/liquid matrix can be accompanied by the exclusion of 

redundant Mg atoms and water molecules from the crystallizing calcite to adjacent ACC layer. If the 

concentration of Mg in the Mg-depleted ACC matrix after spinodal decomposition is  𝐶1
L, and in the 

calcite is 𝐶1
S, 𝐶1

S < 𝐶1
L , the crystallization front can be considered as a source of Mg, with approximately 

constant flux of Mg atoms to the ACC matrix: 

                                                           𝐽0 = −𝐷
𝜕𝐶

𝜕𝑥
|cr.front = 𝑉 ⋅ (𝐶1

L − 𝐶1
S)                                           (12) 

The evolution of Mg concentration in the ACC layer ahead of the crystallization front is described by 

diffusion equation: 

                                                             
𝜕𝐶Mg

𝜕𝑡
= 𝐷

𝜕2𝐶Mg

𝜕𝑥2                                                                (13) 

 with initial and boundary conditions:  

                                                   
𝐶Mg = 𝐶1

L, 𝑥 ≥ 0, 𝑡 = 0,
𝜕𝐶Mg

𝜕𝑥
= −𝐽0/𝐷, 𝑥 = 0, 𝑡 ≥ 0.

                                         (14) 

The solution of this problem is the following:10  
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                          𝛥 ≡
(𝐶Mg−𝐶1

L)

(𝐶1
L−𝐶1

S)
=

2𝑉

𝐷
{(

𝐷𝑡

π
)1 2⁄ e−𝑥2/4𝐷𝑡 −

𝑥

2
𝑒𝑟𝑓𝑐(

𝑥

2√𝐷𝑡
)}.                               (15) 

The concentration increases with time. The maximum concentration excess is at the crystallization front 

(x=0): 

                                                    𝛥max ≡
(𝐶Mg |𝑥=0−𝐶1

L)

(𝐶1
L−𝐶1

S)
= 2𝑉(

𝑡

π𝐷
)1 2⁄                                         (16) 

The function (Supplementary Equation 15) is shown in Supplementary Figure 8. As can be seen, the 

relative Mg concentration excess, /max, decreases with the distance from the crystallization front; for 

example, at the distance x Dt / 4  it equals 𝛥 ≈ 0.8𝛥max(that will be used below as a higher 

concentration zone), at x Dt / 2  it equals 𝛥 ≈ 0.6𝛥max max.  06 , and at the distance x Dt

it equals 𝛥 ≈ 0.35𝛥max . 

 

Supplementary Figure 8. Relative increase of Mg concentration ahead of the crystallization front as 

a function of distance from the crystallization front. 

At a certain moment, the concentration in the diffusion zone x Dt / 4may exceed the critical value, 

when the Mg-ACC matrix becomes unstable against spinodal decomposition, and a new secondary 

spinodal decomposition will start in this diffusion zone. It will result in the formation of new Mg-rich 

nanodomains and Mg-ACC matrix with concentration 𝐶1
L. The advancement of the crystallization front 

forms a new calcite layer with higher density of Mg-rich nanodomains and as a result, with increased 
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concentration of Mg. In order to reach the critical Mg concentration ahead of the crystallization front, 

(15÷16)%, the maximum Mg excess should reach the values of several atomic percent, and, if we 

assume reasonable values of (𝐶1
L − 𝐶1

S) ∼ (2 ÷ 4)%, then, max1. Using Supplementary Equation 16, 

one can find the required time: 

                                                                             
D

t
V




24
                                                               (17) 

and the corresponding widths of the layers of lower and higher Mg concentration: 

                                                                  
D

L Vt
V


  12

4
 ,                                                               (18) 

                                                        
LDt D

L
V


   



12
23

4 8 2
                                                 (19) 

Using reasonable values for diffusion coefficient of Mg in gel/liquid ACC, D  10-15m2.s-1 and 

crystallization rate V  0.001 m.s-1, yields L 12 0.78 m, L 23 0.22 m, which are close to the 

observed parameters of layered structure in the brittle stars.  

We would like to note that the two presented models for the formation of the layered structure involve 

crystallization rates of different order of magnitude (0.01 and 0.001 m.s-1, respectively). The latter is 

unknown, the first model would corresponds higher crystallization rate, and the second would 

correspond to lower crystallization rate.   
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