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Supplementary Information for Global ocean methane emissions dominated 

by shallow coastal waters, by Weber et al. 
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Supplementary Figures 

 

 
 

Supplementary Figure 1. Model sensitivity tests. a, Sensitivity of Artificial Neural Network 

(ANN) model skill (quantified as RMSE between observed and mapped transformed ∆CH4) to 

the model complexity, defined as the number of neurons in the model’s hidden layer. Improving 

the fit to the entire dataset, without improving the fit to testing data (not used in training the 

model) is a sign of overfitting. We therefore choose a level of complexity that maximizes model 

skill, while minimizing overfitting (black arrow). b, As a but for Random Regression Forest 

(RRF) method, where model complexity is defined as the maximum number of splits in a 
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regression tree. c, Sensitivity of global diffusive CH4 emissions to the resolution of grid used for 

ANN mapping and flux calculations. d, Same as c but for RRF method. As grid resolution 

improves, the global flux eventually converges. For the results shown in the main text, we 

choose 0.25° resolution to achieve accurate flux estimates while maintaining computational 

efficiency. e,f, Same as c-d but for model ensembles that use chlorophyll-a instead of NPP as a 

predictor variable, which does not significantly impact the predicted fluxes or their dependence 

on grid resolution. In panels c-f, dots and error bars show the mean and standard deviation for 

100 model runs at each grid resolution.  
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Supplementary Figure 2. Observed and modeled ∆CH4 by region. Comparison between 

observed (grey bars and lines) and modeled (ANN=red lines; RRF=blue lines) ∆CH4, after 

Inverse Hyperbolic Sine (IHS) transformation, in four bathymetric regions: (a) Near-shore, 0-

50m; (b) Outer shelf, 50-200m; (c) Slope, 200-2000m; (d) Open ocean, >2000m. The IHS 

transformation is almost identical to a log transform but is defined for negative values of ∆CH4. 

Continuous probability distributions (lines) are obtained by fitting a Generalized Extreme Value 

Distribution to the discrete data. Diamonds show the mean values from observations and the two 

mapping methods. Both methods closely reproduce the mean and spread of the observations in 

each region, and importantly accurately match the frequency of very high ∆CH4 in near-shore 

and shelf environments (a,b), which drive a large portion of the global flux.  
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Supplementary Figure 3. ∆CH4 in the ESAS region. a, Observed distribution of ∆CH4 across 

the East Siberian Arctic Shelf (ESAS), averaged for August and September. b, Mapped August-

September ∆CH4 distribution from ANN method, averaged across all 100,000 ensemble 

members. c, Comparison between observed and ANN-mapped ∆CH4 after IHS transformation. 

d-e, Same as c-d but for RRF method. Both mapping methods accurately reproduce observed 

∆CH4 in this region, including the frequency of very high supersaturations (especially RRF 

method, e). However, neither method predicts the extremely high diffusive emissions that have 

been inferred in this region from flux calculations based simple interpolation of the ∆CH4 data 1 

(Supplementary Table 1). This suggests that CH4 emissions have previously been overestimated 

in this region. 
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Supplementary Figure 4. Sensitivity to measurement error. Potential errors in [CH4] 

measurements were propagated into ensembles of 100 ANN and RRF flux estimates, by 

generating synthetic datasets (see Methods) in which each [CH4] datapoint diverges from the 

reported measured value by up 25% and 50% (Relative Error = 0.25, 0.5 respectively). This does 

not significantly impact the ensemble-mean fluxes (dots), but leads to modest expansion of the 

likely flux range (error bars show 10th-90th percentile range). 
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Supplementary Figure 5. Gas transfer velocity and uncertainty. a, Annual-mean gas transfer 

velocity (k), corrected for sea-ice inhibition, averaged across all permutations of four wind 

climatologies, three sea-ice climatologies, and five empirical algorithms relating k to wind speed 

(60 different estimates). b, Standard deviation in annual-mean k across the 60 different estimates. 

This uncertainty is propagated into our ocean-atmosphere flux calculations using a Monte Carlo 

procedure (see Methods).  
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Supplementary Figure 6. Sources of uncertainty in global diffusive flux. We conducted two 

new suites global flux calculations to compare the contributions of uncertainty ∆CH4 and k to 

uncertainty in global oceanic CH4 emissions. In the first suite (red), 60 different mapped ∆CH4 

climatologies were generated from the ANN and RRF methods, and each was coupled with the 

same k climatology (average across 60 permutations) to isolate the effect of uncertainty in ∆CH4. 

In the second suite (blue), the mean ∆CH4 climatologies from our original ANN and RRF 

ensembles (Fig. 2a,b) were coupled with the 60 different k climatologies, to isolate the effect of 

uncertainty in k. Dots and error bars show the mean and 10th-90th percentile of the global flux in 

these suites. When only ∆CH4 varies between iterations, the global flux was almost as uncertain 

as it was in our full ensemble (grey). In contrast, global flux was considerably (~40%) less 

uncertain when only k varies between iterations. This demonstrates that the ∆CH4 distribution is 

the largest contributor to uncertainty in oceanic CH4 emissions. This means that further 

constraining this flux can only be achieved by expanding the global dataset of ∆CH4. 
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Supplementary Figure 7.  Bubble size distribution at seafloor seeps. Colored lines show 

volume-weighted bubble size distributions observed at four different seep sites using high 

resolution imaging 2. Thick black line represents a characteristic volume-weighted bubble size 

distribution, generated by combining equal numbers of samples from the four sites. This 

characteristic spectrum is used to estimate the transfer efficiency of CH4 from the seafloor to 

ocean surface in rising bubbles (Fig. 5a).  
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Supplementary Figure 8.  Open-ocean pattern of ∆CH4. Color map is the annual mean ∆CH4 

distribution averaged across all ANN and RRF ensemble members (i.e. the average of Fig. 2a-b). 

This distribution is correlated against predictor variables to assess controls on methane 

supersaturation (Supplementary Table 2, see Methods). Furthermore, to assess the large-scale 

latitudinal pattern, we take broad averages across Tropical, Subtropical, Subpolar, and Polar 

regions, separated by the black contour lines. These regions are defined as in ref. 3, and the 

Indian Ocean is separated into Tropics and Subtropics along 15°S. 
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Supplementary Tables 

 

Supplementary Table 1. Ensemble-mean ∆CH4 and flux by ocean basin. Mean ∆CH4 and 

integrated ocean-atmosphere flux were computed from ensemble-mean climatologies for each 

major ocean basin. Properties are further divided into regions shallower than 200m (near-shore 

and outer shelf environments) and those deeper than 200m (continental slope and open ocean 

environments).   

 

Basin Mean ΔCH4  
(nM) 

Ocean-Atmosphere flux 
(Tg yr-1) 

Atlantic 0.86 1.00 
     <200m 7.63 0.77 
     >200m 0.19 0.23 
Pacific 0.76 1.84 
     <200m 10.01 1.19 
     >200m 0.24 0.65 
Indian 0.56 0.48 
     <200m 5.89 0.23 
     >200m 0.23 0.25 
Southern 0.04 0.06 
     <200m 3.81 0.08 
     >200m -0.03 -0.02 
Arctic 6.73 0.48 
     <200m 18.5 0.41 
     >200m 0.88 0.05 
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Supplementary Table 2. Statistical analysis of ∆CH4 distribution. R2 statistic for linear 

regression between ensemble-mean mapped ∆CH4 and each predictor variable for coastal ocean 

(<2000m depth) and open ocean (>2000m depth) environments. The signs in parentheses 

indicate whether there is a positive or negative correlation between the two.  

 

 
Predictor variable 

R2 (direction) 
Coastal ocean (<2000m), 

against log10(ΔCH4) 
Open ocean (>2000m), 

against ΔCH4 
 
Seafloor depth 
 
log10(Seafloor depth) 
 
Net Primary Production (NPP) 
 

 
0.366 (-) 

 
0.548 (-) 

 
0.018 (+) 

 
2×10-5 (-) 

 
5×10-4 (-) 

 
0.295 (+) 

POC export flux 
 

0.108 (+) 0.142 (+) 

[PO4] 
 

0.001 (-) 0.173 (-) 

Temperature 
 

3×10-6 (+) 0.221 (+) 

Salinity 
 

0.104 (-) 0.006 (+) 

Subsurface [O2] 
 

0.077 (+) 0.157 (-) 

Sediment hydrate inventory 
 
Dimethyl sulfide (DMS) 

0.028 (-) 
 

3×10-4 (-) 

0.078 (+) 
 

0.042 (+) 
 

 

  



 13 

References 
 

1 Shakhova, N. et al. Extensive Methane Venting to the Atmosphere from Sediments of the 
East Siberian Arctic Shelf. Science 327, 1246-1250 (2010). 

2 Wang, B., Socolofsky, S. A., Breier, J. A. & Seewald, J. S. Observations of bubbles in 
natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. Journal of 
Geophysical Research: Oceans 121, 2203-2230, doi:10.1002/2015jc011452 (2016). 

3 Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients 
imply large latitudinal variation in particle transfer efficiency. Proceedings of the 
National Academy of Sciences, 201604414 (2016). 

 


