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Supplementary Figure 1 | Characterization of the Ni precursor following
pyrolysis at 800 °C. XRD pattern for Ni-800.

Supplementary Figure 1 confirmed that some Ni clusters were formed when the Ni
precursor was pyrolyzed at 800 °C. Clearly at such temperatures, Ni atoms have
sufficient mobility to aggregate into small clusters and nanoparticles.



Supplementary Figure 2 | Morphology of Cr-SAC. TEM image of Cr-SAC.

Supplementary Figure 3 | Morphology of Mn-SAC. TEM image of Mn-SAC.



Supplementary Figure 5 | Morphology of Co-SAC. TEM image of Co-SAC.



Supplementary Figure 6 | Morphology of Cu-SAC. TEM image of Cu-SAC.

Supplementary Figure 7 | Morphology of Zn-SAC. TEM image of Zn-SAC.



Supplementary Figure 8 | Morphology of Ru-SAC. TEM image of Ru-SAC.

Supplementary Figure 9 | Morphology of Pt-SAC. TEM image of Pt-SAC.

Supplementary Figures 2-9 confirm that all M-SACs possessed the structure of carbon
black. No metal nanoparticles were observed for any of the M-SACs, indicating that
metal atoms in these materials were highly dispersed.
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Supplementary Figure 10 | Characterization of Ni-SAC and carbon black. Raman
spectra for Ni-SAC and carbon black.
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Supplementary Figure 11 | Characterization of a bimetallic SAC. XRD pattern for
Fe/Co-SAC.



Supplementary Figure 12 | Morphology of a bimetallic SAC. HAADF-STEM image
for a Fe/Co-SAC, scale bar: 5 nm.

Supplementary Figure 12 confirms that the Fe and Co were atomically dispersed in
Fe/Co-SAC.
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Supplementary Figure 13 | Characterization of bimetallic SACs. XRD patterns for
Ru/Fe-SAC, Ru/Co-SAC, and Ru/Ni-SAC.
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Supplementary Figure 14 | EXAFS fitting result for Ni-SAC. Ni K-edge EXAFS (R
space plot) for Ni-SAC.

Supplementary Figure 14 confirms that Ni atoms in Ni-SAC were coordinated four fold
by N atoms.
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Supplementary Figure 15 | The oxidation state of Cr in Cr-SAC. Cr K-edge XANES
spectra for Cr-SAC and different chromium reference materials.
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Supplementary Figure 16 | The oxidation state of Mn in Mn-SAC. Mn K-edge
XANES spectra for Mn-SAC and a manganese foil reference.
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Supplementary Figure 17 | The oxidation state of Fe in Fe-SAC. Fe K-edge XANES
spectra for Fe-SAC and different iron reference materials.
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Supplementary Figure 18 | The oxidation state of Co in Co-SAC. Co K-edge
XANES spectra for Co-SAC and a cobalt foil reference.
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Supplementary Figure 19 | The oxidation state of Ni in Ni-SAC. Ni K-edge XANES
spectra for Ni-SAC and different nickel reference materials. Ni-SAC was obtained by
heating the Ni precursor (Ni Pc) at 600 °C for 2 h under an Ar atmosphere.
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Supplementary Figure 20 | The oxidation state of Cu in Cu-SAC. Cu K-edge
XANES spectra for Cu-SAC and a copper foil reference.
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Supplementary Figure 21 | The oxidation state of Zn in Zn-SAC. Zn K-edge
XANES spectra for Zn-SAC and different zinc reference materials.
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Supplementary Figure 22 | The oxidation state of Ru in Ru-SAC. Ru K-edge
XANES spectra for Ru-SAC and different ruthenium reference materials.
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Supplementary Figure 23 | The oxidation state of Pt in Pt-SAC. Pt K-edge XANES
spectra for Pt-SAC and a platinum foil reference.
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Supplementary Figure 24 | The structure of Cr-SAC. Cr K-edge EXAFS (k space
plots) for Cr-SAC and different chromium reference materials.
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Supplementary Figure 25 | The structure of Mn-SAC. Mn K-edge EXAFS (k space
plots) for Mn-SAC and a manganese foil reference.
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Supplementary Figure 26 | The structure of Fe-SAC. Fe K-edge EXAFS (k space
plots) for Fe-SAC and different iron reference materials.
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Supplementary Figure 27 | The structure of Co-SAC. Co K-edge EXAFS (k space
plots) for Co-SAC and a cobalt foil reference.
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Supplementary Figure 28 | The structure of Ni-SAC. Ni K-edge EXAFS (k space
plots) for Ni-SAC and different nickel reference materials
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Supplementary Figure 29 | The structure of Cu-SAC. Cu K-edge EXAFS (k space
plots) for Cu-SAC and a copper foil reference.
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Supplementary Figure 30 | The structure of Zn-SAC. Zn K-edge EXAFS (k space
plots) for Zn-SAC and different zinc reference materials.
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Supplementary Figure 31 | The structure of Ru-SAC. Ru K-edge EXAFS (k space
plots) for Ru-SAC and different ruthenium reference materials.
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Supplementary Figure 32 | The structure of Pt-SAC. Pt K-edge EXAFS (k space
plots) for Pt-SAC and a platinum foil reference.
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Supplementary Figure 33 | XPS spectra for Ni-SAC. a) Ni 2p region; b) C 1s region;
¢) N 1s region.
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Supplementary Figure 34 | XPS spectra for Cr-SAC. a) Cr 2p region; b) C 1s region;
¢) N 1s region.



Q

Intensity (a.u.)

660 655 650 645 640 635
Binding Energy (eV)

C1s

o

Intensity (a.u.)

200 288 286 284 282 280
Binding Energy (eV)

Intensity (a.u.)

404 402 400 398 396
Binding Energy (eV)

Supplementary Figure 35 | XPS spectra for Mn-SAC. a) Mn 2p region; b) C 1s
region; ¢) N 1s region.
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Supplementary Figure 36 | XPS spectra for Fe-SAC. a) Fe 2p region; b) C 1s region;
¢) N 1s region.
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Supplementary Figure 37 | XPS spectra for Co-SAC. a) Co 2p region; b) C 1s region;
¢) N 1s region.
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Supplementary Figure 38 | XPS spectra for Cu-SAC. a) Cu 2p region; b) C 1s region;
¢) N 1s region.
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Supplementary Figure 39 | XPS spectra for Zn-SAC. a) Zn 2p region; b) C 1s region;
¢) N 1s region.
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Supplementary Figure 40 | XPS spectra for Ru-SAC. a) Ru 3d region; b) C 1s region;
c) N 1s region.
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Supplementary Figure 41 | XPS spectra for Pt-SAC. a) Pt 4f region; b) C 1s region;

c) N 1s region.

Supplementary Figure 33c indicates that the binding energy of the Ni 2ps» peak was
855.6 eV, higher than that observed for Ni® (852.8 eV)! and lower than that for Ni?* in
NiO (856.2 eV).? The data suggest the presence of Ni?* in the N-SAC, with the lower
binding energy reflecting Ni?* bonding to less electronegative nitrogen rather than



oxygen. Supplementary Figures 33-41 confirm that all the other M-SACs contain M?*
cations. The C 1s spectra were deconvoluted into neutral carbon (i.e. C-C/C=C) and C-
N species. The N 1s spectra were deconvoluted into pyridinic-N, pyrrolic-N, and
graphitic-N species.



Supplementary Figure 42 | Morphology of Ni-SAC-2.5. TEM image of Ni-SAC-
2.5.

Supplementary Figure 43 | Morphology of Ni-SAC-3.4. TEM image of Ni-SAC-
3.4.



Supplementary Figure 44 | Morphology of Ni-SAC-4.5. TEM image of Ni-SAC-
4.5.

Supplementary Figure 45 | Morphology of Ni-SAC-5.3. TEM image of Ni-SAC-
5.3.
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Supplementary Figure 46 | Characterization of Ni-SACs with different metal
loadings. XRD patterns for Ni-SAC-x at different Ni loadings.
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Supplementary Figure 47 | The structure of Ni-SACs with different metal loadings.

Ni K-edge EXAFS (R space plots) for Ni-SAC-x at different Ni loadings.
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Supplementary Figure 48 | The oxidation state of Ni in Ni-SACs with different
metal loadings. Ni K-edge XANES spectra for Ni-SAC-x with different Ni loadings.
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Supplementary Figure 49 | The structure of Ni-SACs with different metal loadings. Ni K-edge
EXAFS (k space plots) for Ni-SAC-x at different Ni loadings.
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Supplementary Figure 50 | XRD pattern of Ni-SAC synthesized on a large scale.
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Supplementary Figure 51 | Faradaic efficiency of Hz for Ni-SAC-2.5 at different
potentials.
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Supplementary Figure 52 | NMR spectrum of liquid products after CO2RR. No
liquid products were detected.
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Supplementary Figure 53 | The CO2RR performance of Ni-SAC synthesized on a
large scale. CO2RR activity of Ni SACs synthesized on a scale of 70 mg and on a scale
of 1.6 kg.

Supplementary Figure 53 confirms that the Ni-SAC synthesized on a large scale (1.6
kg) had a very similar CO2RR performance as Ni-SAC synthesized on a 70 mg scale,
indicating that the samples were comparable in performance and that the universal M-
SAC synthesis route introduced here was highly scalable.*®



Supplementary Table 1 | Compositional analysis of the different M-SACs. The
metal loading, total N content and N speciation of the different M-SACs is indicated.

Sample Metal Total N PyridinicN  Pyrolic N  Graphitic
loading contentat.% contentat.% content N content
wt.% (ICP) (XPS) at.% at.%
Cr-SAC 3.58 3.34 1.63 1.01 0.70
Mn-SAC 2.30 243 1.14 0.87 0.42
Fe-SAC 1.85 2.32 1.20 0.72 0.40
Co-SAC 2.97 3.26 1.42 1.09 0.75
Ni-SAC 5.32 6.75 3.42 1.93 1.40
Cu-SAC 2.59 3.4 1.71 0.87 0.82
Zn-SAC 3.65 3.55 1.61 1.11 0.83
Ru-SAC 2.67 2.12 1.04 0.61 0.47

Pt-SAC 2.16 1.57 0.93 0.32 0.32




Supplementary Table 2 | Metal loading comparison with other reported Ni-SAC

materials
Sample Metal loading Me;ans;:]eorgent Reference
Ni-SAC@graphene 0.05 at.% ICP 6
Ni-
SAC@commercial 0.27 wt.% ICP 7
carbon
Ni-SAC@MOF 0.31 wt.% ICP 4
Ni-SAC@g-C3N4 1.41 wt.% ICP 8
Ni-SAC@MOF 1.53 wt.% ICP 5
Ni-SAC@graphene ) 11 219 XPS 9
oxide
Ni-SAC@g-C3N4 4.6 wt.% ICP 10
Ni-
SAC@commercial 5.32 wt.% ICP This work

carbon
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