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Overview of the sequencing quality of 3K rice data 1	

The methods of selecting the accessions for sequencing as well as the sequencing 2	

methodology (paired-end sequencing separated by ~450 bp on Illumina HiSeq2000) 3	

were described in detail in the 3,000 Rice Genomes data note1. Updated metadata 4	

information is available in Supplementary Data 1 Table 1. 5	

Regarding data processing, paired-end reads were trimmed to 83 bp, generating 6	

205,084,357,762 paired-end reads for 3,024 genomes. For 287 samples, two or more 7	

DNA libraries were created; whereas, for the other 2,737 samples, a single library was 8	

made. Usually, each sample library was sequenced on several flowcells. Every 9	

flowcell lane/sample library combination resulted in a pair of separate fastq files. The 10	

total number of fastq files was 51,060 (25,530 pairs). Most samples have 12 files (6 11	

pairs sequenced independently). Most flowcell lanes contained 23 different samples 12	

that were separated by index sequences. 13	

The sequencing depths of the 3,024 genomes ranged widely from 4x to 50x, with 14	

a mean of 14.3±6.3x, a median of 13.2x, and adjusted mean sequencing depth of 15	

14.9±6.2x. Of these, 2,461 (81.4%) rice lines have sequencing depths over 10x and 16	

458 (15.1%) have sequencing depths over 20x. 17	

Before we carried out further analyses, we examined the quality of our 18	

sequencing data with the FastQC software (v0.11.2, 19	

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), with results available at 20	

http://oryzasnp.org/3kfastqc/. 21	
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Removal of 14 of the 3,024 accessions 22	

Fourteen accessions were removed from the subsequent analyses. Samples CX400, 23	

CX401, CX402, IRIS_313-11415, and IRIS_313-10729 belong to African cultivated 24	

rice (Oryza glaberrima L.). Samples IRIS_313-8502, IRIS_313-9233, IRIS_313-8444, 25	

IRIS_313-10057, IRIS_313-9184, B014, and IRIS_313-9404 were removed due to 26	

significant contamination, and sample B101 was removed due to a very small 27	

estimated genome size. IRIS_313-8921 was removed because of its extremely low 28	

sequencing depth (~0.3x). 29	

k-mer analysis for genome characters 30	

We used the 17 bp k-mer	analysis with k-mer_count (in-house software, written by Jue 31	

Ruan) to calculate the distribution of k-mer frequency for genome character 32	

estimation (genome size, repeat ratio and GC content) with total reads of each 33	

accession. The calculation is based only on the statistic of k-mers over the first trough 34	

point of the 17 bp k-mer frequency distribution graph; the data before that were 35	

considered to be sequencing errors. The genome size (GS) = total number of k-mers 36	

/peak value of k-mers frequency, repeat ratio = (GS-number of k-mers with different 37	

sequence + number of k-mers before depth of the first trough point)/GS. 38	

Mapping and genotype calling rate 39	

The alignment statistics table (Supplementary Data 2 Table 1) shows that the 40	

highest mapping rate of reads for an accession occurs when the accession and 41	
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reference genome belong to the same variety group (grouping is determined by 42	

population analysis described in subsequent sections), which also indicates that more 43	

genotyping calls are detected when the accession and reference genome belong to the 44	

same variety group. It is also notable that there is no appreciable increase in 45	

genotyping sensitivity from sequencing coverage 30x and beyond (Supplementary 46	

Data 2 Figure 1). 47	

Validation of SNP discovery pipeline 48	

To validate the GATK UnifiedGenotyper (GATK-UG)2 SNP discovery pipeline, we 49	

compared the SNPs discovered by this pipeline against a standard SNP discovery 50	

method on two selected subset accessions. For the standard method, we used the 51	

MUMmer3 pipeline to first discover SNPs between two published reference genomes, 52	

Nipponbare RefSeq (Nipponbare IRGSP 1.0 genome) and IR 64 53	

(os.ir64.cshl.draft.1.0). Reciprocal whole-genome alignment was carried out using 54	

nucmer using default settings. SNPs from this alignment were extracted from each 55	

reciprocal alignment using show-snps with the parameters “-C -l -r -T”. The common 56	

SNPs from each reciprocal alignment (same positions, same allele states) were 57	

extracted and 776,622 high-quality SNPs were discovered between the Nipponbare 58	

and IR64 references (which we call the Nipponbare-IR 64 reference SNPs). 59	

We then selected the two re-sequenced accessions, CX140 (Nipponbare) and 60	

CX403 (IR 64a), from the 3K RG that have the same name but were of different 61	

provenance as the reference/published genomes. SNPs were discovered for these 62	
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accessions for IR 64 ref vs. CX140, and Nipponbare ref vs. CX403, using the 63	

GATK-UG pipeline with high-quality SNPs selected by strict filtering criteria (not 64	

flagged as LowQual, no missing alleles, homozygous only). Of the 689,797 65	

Nipponbare ref:CX403 and 699,429 IR 64 ref:CX140 SNPs that shared common 66	

positions with the Nipponbare-IR 64 reference SNPs, 99.9% of the alternate allele 67	

calls were concordant, indicating that the GATK-UG pipeline performed well in SNP 68	

calling. 69	

Validation of discovered SNPs in 3,010 accessions 70	

The ~27 million biallelic SNPs from 3K RG were also compared with those 71	

discovered by previous projects: (1) the 44k SNP project4, (2) the Rice50 SNPs 72	

project5, (3) SNP-Seek release 16, and (4) dbSNP rice release 1477 73	

(https://www.ncbi.nlm.nih.gov/projects/SNP/index.html ). 74	

Using 44,100 SNPs from the 44k SNP project, most (36,775) of the original 44k 75	

SNPs could be re-mapped to the Nipponbare RefSeq. Of the re-mapped 44k SNPs, 76	

94.5% are in the same position as the 3K RG biallelic SNPs, and in this common set, 77	

99.8% have the same alternate allele calls. 78	

SNPs from the 50 resequenced rice genomes5 (6,496,456 high-quality Rice50 79	

SNPs) were compared for concordance with the 3K RG SNPs. Since the Rice50 SNPs 80	

were anchored to the IRGSP4 Nipponbare genome assembly, these were mapped to 81	

the Nipponbare RefSeq, and the overwhelming majority (>99.9%) of the SNPs 82	

(6,496,018) from Rice50 were anchored to this reference version. The intersection 83	
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with the 3K RG SNPs showed that ~56% of the Rice50 SNPs (3,669,353) mapped to 84	

the same position as the 3K RG SNPs. However, since many of these Rice50 SNPs 85	

had ambiguous or heterozygous alternate allele calls (1,559,842), these were excluded 86	

in the concordance comparison, leaving 2,109,511 common SNP positions having 87	

definite alternate calls. For these common SNP positions, ~2.09 million were 88	

concordant in alternate allele calls (99.1%). 89	

The full 3K RG Nipponbare SNP dataset (~29 million SNPs) was contrasted to 90	

the ~20.3 million SNPs in the first release6 (2015) of SNP-Seek to determine the 91	

effect of earlier software versions of BWA (ALN vs MEM)8 and GATK (2 vs 3)2 on 92	

SNP discovery. Although the majority of the SNPs in the new set are common to 93	

those in the 2015 SNP-Seek release (~17.54 million, 86% of the release 1 set), ~14.5 94	

million SNPs are unique to the new 3K RG SNPs (45.3% of the release 2 set) and 95	

~2.77 million SNPs (13.7% of the release 1 set) are unique to the 2014 SNP-Seek 96	

release, highlighting the effects of using updated software on variant detection. 97	

Therefore, it is worthwhile to update SNP discovery analyses as newer (and better) 98	

SNP calling software becomes available. 99	

We also compared the ~27 million biallelic SNPs from 3K RG with the NCBI 100	

Reference cluster ID (rs#) SNPs from chromosomes 1 to 12 of build 147 of dbSNP - 101	

rice (9,922,318 SNPs and 230,253 small indels of <=50 bp). All rs# SNPs were 102	

re-mapped (using the flanking sequence information) to the current build of the 103	

Nipponbare RefSeq prior to comparison using mega-BLAST of NCBI, and 104	

alignments where the entire flanking sequence aligns with one mismatch on the SNP 105	
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position were selected for the SNP comparison. A total of ~8.5 million rice SNPs in 106	

dbSNP remapped to Nipponbare RefSeq, and 51.5% of the remapped dbSNPs had 107	

common positions with the 3K RG SNPs. Of this common position SNP set, 108	

4,199,667 remapped dbSNPs and 3K RG SNPs had the same alternate allele call (96% 109	

concordance). In all, ~4.3 million remapped rice dbSNPs are unique from the 3K RG 110	

set, and 25.4 million 3K RG SNPs are unique from rice dbSNPs. In comparison with 111	

the newest submitted NCBI Assay ID (ss#) SNPs in dbSNP 147 (Q4 2014 submission 112	

by McCouch et al.9, 700,000 SNPs with ss#), there were relatively higher numbers of 113	

intersecting and concordant SNPs with the 3K RG SNPs (538,887 of 700k 114	

intersecting the 3K RG SNPs at 99% concordance). 115	

Annotation of SNPs in the context of TEs 116	

The repeat content of the Nipponbare RefSeq is 48% of the total genome, with most 117	

of the discovered SNPs occurring in LTR retro-elements and TIR DNA transposon 118	

repeat types, the bulk of repeats in the rice genome. Repeats associated with telomeres 119	

and centromeres, although comprising a very small portion of the genome, exhibit the 120	

highest SNP densities observed (163 and 177 SNPs/kb); however, the number of 121	

SNPs in these repeat types is too low to impact the number of SNPs discovered. The 122	

average genome-wide SNP density (combined repetitive and non-repetitive regions) is 123	

lower (72 SNPs/kb) than the average SNP density in repetitive regions only (103 124	

SNPs/kb) and even lower in the non-repeat portion of the genome (44 SNPs/kb) 125	

(Supplementary Data 2). 126	
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Inbreeding and heterozygous SNPs 127	

Given that (a) rice is a selfing species, (b) accessions were subjected to single seed 128	

descent before sequencing, and (c) there is a high degree of differentiation between 129	

groups of rice varieties, one thus expects the number of heterozygous calls per SNP to 130	

be much lower than postulated by Hardy-Weinberg equilibrium. Indeed, we observe 131	

this systematic deviation from HW equilibrium in the 3K dataset (Extended Data 132	

Fig.1a) as well as in major subpopulations. 133	

To facilitate the discussion, let us introduce the following notation: 134	

Hobs: observed SNP heterozygosity, the proportion of heterozygous calls in all 135	

non-missing calls of a SNP. 136	

Hexp: expected SNP heterozygosity given by Hardy-Weinberg equilibrium, i.e. 137	

“Hexp=2pq”, where p and q are the two allele frequencies. 138	

The ratio Hobs/Hexp is expected to be distributed around 1-F, where F is Wright’s 139	

inbreeding coefficient. We use the distribution of Hobs/Hexp to estimate F and 140	

remove outlier SNPs that might represent alignment errors. 141	

We analyzed Hobs/Hexp distribution in the whole 3K SNP dataset, as well as in 142	

two subsets: XI (1,789 samples) and GJ (772 samples). In all three datasets, the 143	

distribution of Hobs/Hexp is bimodal, with one peak harboring most of the common 144	

SNPs and that corresponds to a higher F (~0.95) and the other peak at around 145	

“Hobs/Hexp=1” caused mostly by rare SNPs with low numbers of homozygous 146	
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alternate calls and an excess of heterozygotes. 147	

There is an excess number of points along the upper left boundary of the 148	

scatterplot (Extended Data Fig. 1a) that corresponds to a maximal value of 149	

“Hobs=2p”, where p is the minor allele frequency, indicating an excess of SNPs with 150	

no or very few homozygous alternate calls. We hypothesize that these SNPs are due to 151	

alignment errors caused by duplications that do not occur in a reference but are 152	

present in certain genotypes. 153	

We estimate the inbreeding coefficient F for XI and GJ datasets, as well as 154	

(effective) inbreeding coefficient in the whole 3K dataset as the median value of 155	

“1-Hobs/Hexp” for SNPs where “Hobs/Hexp <1” and the minor allele frequency 156	

is >5%. Doing so, we ignore the peak near “Hobs/Hexp =1” as it is likely an 157	

alignment artifact where reads map to multiple regions that are duplicates. The 158	

resulting estimates are F=0.954 for the whole 3K, F=0.925 for XI, and F=0.969 for 159	

GJ.  160	

We use the estimates of F to introduce a quality cutoff for number of observed 161	

heterozygotes: 162	

Hobs_max = 10 (1-F) Hexp 163	

That is, a SNP whose heterozygosity is >10x higher than the most likely value for 164	

a given frequency and the dataset’s inbreeding rate will be deemed as having an 165	

excessive number of heterozygotes and will be filtered out. The cutoff values for 166	

different datasets are thus 0.4795082 for 3K, 0.7485704 for XI, and 0.3106786 for GJ 167	

datasets. 168	
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We remove SNPs that violate this quality criterion in the 3K XI and GJ datasets 169	

from the set of biallelic SNPs (Extended Data Fig.1b). We call the resulting set of 170	

16,874,733 SNPs polymorphic in 3010 genomes as the Base SNP set.  171	

Of note is that, although we expect that these might be erroneous calls, the fact 172	

they occur preferentially in the third base of codons and exhibit properties for coarse 173	

classification indicates that there is some biological significance meriting further 174	

investigation. 175	

SNP discovery and projection of undiscovered fractions 176	

Estimated proportion of IRRI Genebank SNPs discovered in 3,010 samples for a 177	

given allele frequency. 178	

For a SNP that has a frequency f in the genebank, the probability that it has been 179	

observed in 3,010 samples can be approximated by 180	

Prob (observed in 3K) = 1 - (1-f) 3010 181	

Note that this approximation is robust due to the large size of the genebank; using the 182	

exact hypergeometric formula gives a probability estimate that differs from this by at 183	

most 0.4% at any point. Note also that this is a conservative estimate, since we treat 184	

each sample as haploid when in reality each is diploid. 185	

Using this function, one can estimate that 3,010 samples capture more than 99.9% 186	

of genebank SNPs of frequency greater than 0.25%, and virtually 100% of SNPs of 187	

frequency >1.1% (Extended Data Fig. 1c). 188	

However, this function alone does not allow estimation of the proportion of the 189	
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total number of SNPs (of all frequencies) captured by the 3K, since the distribution of 190	

SNP frequencies is not known. This distribution depends on past demographic events 191	

and selection. To estimate the total number of undiscovered SNPs, we adopted the 192	

simulation approach outlined below. 193	

Estimation of the total number of Nipponbare RefSeq-based SNPs occurring in 194	

genebank samples 195	

We computed SNP discovery rates based on 6,000 random permutations of samples 196	

from the Base SNP set in the following way. For each permutation of sample order, 197	

we computed the number of new SNPs added by each consecutive sample (i.e. SNPs 198	

not seen in previous samples either as HOM or as HET). We then computed the mean 199	

number of additional SNPs when an Nth sample is added across all permutations and 200	

projected the mean for the range [3,010, 120,000] using regression between 201	

log(mean_new_SNP) and log(sample). 202	

The fitted model is 203	

log(mean_new_SNP) = -0.75*log(sample) + 5.74 204	

with R2 = 0.995. 205	

Then, we estimated the number of SNPs as a sum of the estimated mean added 206	

SNPs at each value from 3,009 to 120,000. 207	

As a result, we find that ~27M new SNPs are estimated to be discovered upon 208	

genotyping the rest of the genebank, leading to ~44M total Nipponbare-based SNPs. 209	

Extended Data Fig. 1d shows the number of SNPs added with each sample, on a 210	

log-log scale, with a linear regression fit. One can also see from this graph, if the 211	
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trend continues as shown, it would be possible to extrapolate the number of SNPs that 212	

may occur in the entire population of O. sativa including those not yet conserved in 213	

genebank(s). This analysis is based on a subset of the Base SNP set consisting of 214	

3,006 samples (in addition to the previously identified problematic samples, we 215	

removed 4 samples that were outliers in terms of many private SNPs and made 216	

extrapolation harder). 217	

Similar analyses were done for XI and GJ separately, estimating 14M and 13M 218	

new SNPs, respectively. However, one needs to model the overlap, and there is some 219	

sharing of even the rarest non-singleton SNPs. Since this makes the modeling unduly 220	

complicated, we report only the analysis based on the whole set. 221	

Utility of 3K RG for GWAS 222	

As a test case, a genome-wide association study (GWAS) was conducted using 223	

historical phenotypic data for grain length (GRLT) and grain width (GRWD) and 224	

newly acquired data for bacterial blight (BLB) resistance, with an LD pruned subset 225	

of the 3K RG. 226	

1. Sample and SNP filtering 227	

We performed quality control measures by filtering low quality samples and markers 228	

for use in GWAS. The samples were filtered to remove those for which missing data 229	

or call rates (CR) were below 80% and with an over- and under-abundance of 230	

heterozygous SNPs in the interquartile range (IQR), calculated as the difference 231	

between the upper and lower quartiles (IQR = Q3 – Q1). We also excluded markers 232	
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with an over-abundance of heterozygous alleles (number of alleles >2), and those 233	

markers with low call rates (CR <0.9) and minor allele frequencies (MAF <0.05). 234	

Further, we pruned the dataset based on LD using the Composite Haplotype Method 235	

(CHM)10 algorithm, with the following parameters: window size of 35 SNPs, window 236	

increment of 15 SNPs, and r2 threshold of 0.5. The LD pruned datasets had 2,012 237	

samples and 223,743 markers for GRLT and GRWD and 381 samples and 148,999 238	

markers for BLB. 239	

2. Phenotypic data  240	

We performed GWAS for source accessions of the sequenced genetic stocks with 241	

historical phenotypic data for grain length (GRLT) and grain width (GRWD) and 242	

newly-quantified bacterial leaf blight (BLB) scores. Trait data for GRLT and GRWD 243	

were collected from unreplicated trials as genebank characterization data over many 244	

seasons of trials; data for the source accession of the sequenced genetic stock were 245	

used as a proxy for those of the derived genetic stock that underwent one or more 246	

cycles of single seed descent from the source accession. BLB resistance was 247	

measured as lesion length after infection with C5 Chinese strain of Xanthomonas 248	

oryzae on the genetic stocks that were used for sequencing. 249	

3. GWAS methods 250	

We implemented an EMMAX (Efficient Mixed-Model Association eXpedited)11 251	

single-locus mixed linear model in SNP & Variation Suite v8.4.0 software 252	

(http://www.goldenhelix.com) for GWAS. EMMAX allows correction for cryptic 253	

relatedness and other fixed effects using a kinship matrix (as random effect) and 254	
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population stratification using the top four principal components (as fixed effect). 255	

Both the kinship matrix and the principal components were generated from the LD 256	

pruned datasets. We used the False Discovery Rate (FDR <0.01) multiple testing 257	

correction to identify significant markers, and generated Manhattan and QQ plots 258	

from the EMMAX output using the qqman package12 in R. 259	

Detection of genomic structural variations (SVs) 260	

We tested BreakDancer13, DELLY14, and novoBreak15 261	

(https://sourceforge.net/projects/novobreak/?source=navbar) for SV calling against 262	

the Nipponbare RefSeq and with several SVs inserted into the Nipponbare genome 263	

(Supplementary Data 3 Tables 5 and 6). novoBreak was found to have the lowest 264	

false positive rate and comparatively good resolution and was therefore selected for 265	

all subsequent SV detection. Briefly, novoBreak employed a k-mer (contiguous 266	

nucleotide sequence of length k) targeted local assembly algorithm to detect structural 267	

variation breakpoints in single base pair resolution. When applied to the 3K RGs for 268	

discovering SVs, novoBreak first constructed a hash table of all the reads of a sample. 269	

Next, any k-mers matching the Nipponbare RefSeq were removed. Then, novoBreak 270	

employed a counting bloom filter to calculate the occurrence of all k-mers. At this 271	

step, low-frequency k-mers reflecting sequencing errors were removed. Next, 272	

high-frequency k-mers and their associated read pairs were clustered by a modified 273	

union-find algorithm, ensuring that each cluster represented a single breakpoint. Then, 274	

for each cluster, an assembler with a greedy algorithm was applied to assemble the 275	

WWW.NATURE.COM/NATURE | 15



	

	

read pairs spanning the breakpoint into optimal and sub-optimal contigs. By 276	

comparing the assembled contigs with the Nipponbare RefSeq, novoBreak inferred 277	

the exact breakpoints of all types of SVs. Finally, novoBreak scored each SV based on 278	

alignment and assembly evidence and a filter was applied to generate a 279	

high-confidence SV list. In novoBreak, the detected translocations were referred to as 280	

‘inter-chromosomal breakpoints’. We detected SVs in the 3,010 accessions. In order 281	

to minimize the probability of false positives, SVs detected in fewer than 6 accessions 282	

(the number of such SVs = 207,879) or in more than 80% (the number of such SVs = 283	

446) of the 3,010 accessions were removed. We analyzed the SVs detected in 453 284	

well-sequenced accessions. Translocations and deletions account for 74.3% and 21.4% 285	

of all SVs, respectively. Inversions and duplications account for only 1.7% and 2.4%, 286	

respectively. The percentage of SVs detected may reflect both the real number of 287	

different type SVs in the genomes and the false positives and negatives in SV 288	

detection. Genes interrupted by SVs or inside SV regions were identified and we also 289	

checked the co-localization between TEs and SVs (Supplementary Data 3 Table 7), 290	

with 1 kb, 5 kb, and 10 kb windows with one breakpoint as the background. TE 291	

annotation was from RGAP 716. 292	

Correlation of presence/absence of SVs with plant heights 293	

This was calculated using ‘cor.test’ (method="spearman") in R. The SV with the 294	

highest correlation was a ~385 bp deletion, located in the sd117 gene 295	

(LOC_Os01g66100) (rho= -0.40, P-value = 2.48E-10). The average height of 296	
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accessions with the deletion was 84.96 cm, while it was 126.50 cm for accessions 297	

without the deletion. 298	

De novo assembly of 3,010 rice genomes 299	

In order to gain better assemblies, we compared the performance of several assembly 300	

tools developed for NGS including SOAPdenovo version r24018, Velvet version 301	

2.2.519 and SPAdes version 3.0.020. Finally, a method with iterative use of 302	

SOAPdenovo was selected for the 3K rice assembly that had better performance than 303	

SPAdes and relatively good speed (~3.94 times running time of default SOAPdenovo). 304	

The key idea of this variant method was to select the best k-mer for each sample. 305	

QUAST version 2.321 was used for evaluation of the assemblies, including 1) 306	

comparison of assemblies among SOAPdenovo, Velvet and SPAdes and 2) 307	

comparison among all rice accessions with our variant method described above with 308	

parameter “-t 16 --min-contig 500 -o output --no-plots -R IRGSP-1.0.fa". The 309	

Nipponbare RefSeq (IRGSP-1.0) genome was used for all the evaluations. The 310	

Nipponbare RefSeq was downloaded from the Rice Annotation Project (RAP)22. 311	

Several important indices, including N50, assembled size, genome fraction (how 312	

much of the Nipponbare RefSeq can be covered with the assembled contigs), and 313	

unaligned contig size, were selected to evaluate the assembly performance. 314	

Evaluation of the quality of de novo assembly 315	

In order to evaluate the quality of de novo assembly, we first developed a pipeline to 316	
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correct/remove the possible misassembled contigs from read mapping. Reads (used 317	

for the assembly) are mapped to the assembled contigs and we broke down the contigs 318	

at positions with no evidence of connections supported by read alignments. 319	

Remaining fragments shorter than 500 bp were removed. 320	

Next, we assessed the assembly results based on accessions CX140 (compared 321	

with the Nipponbare RefSeq), CX133 (compared with the Zhenshan 97 genome23), 322	

and CX145 (compared with the Minghui 63 genome23). For CX140, we first applied 323	

the correction procedure to both raw SOAPdenovo contigs and GapCloser contigs. 324	

For CX145 and CX133, only raw SOAPdenovo contigs were evaluated. The 325	

assemblies were assessed by QUAST with the Nipponbare RefSeq as a gold standard. 326	

Results are shown in Supplementary Data 3 Tables 8 and 9. 327	

The mis-assembly rate of SOAPdenovo is quite low (~0.1%). Obviously, 328	

GapCloser improved the assembly indices dramatically, including total length, N50, 329	

and genome fraction. However, it introduced >20 times the amount of mis-assemblies. 330	

A large part of these mis-assemblies can be corrected, but a significant proportion still 331	

remained. Therefore, we decided to remove the GapCloser step for construction of the 332	

pan-genome sequence. In addition, mis-assemblies in the SOAPdenovo results could 333	

not be removed by the correction procedure, indicating that most of them are reliable 334	

assembled contigs. Hence, we concluded that assembly errors should be very low. 335	

Construction of the pan-genome sequences 336	

We constructed the pan-genome of rice with the Nipponbare RefSeq and 337	

WWW.NATURE.COM/NATURE | 18



	

	

non-redundant novel sequences in the assembly of 3,010 rice accessions. The 338	

Nipponbare RefSeq was selected because (1) this genome has relatively good 339	

annotation and (2) it is widely used for current rice studies, which enables our 340	

pan-genome outcome to be integrated easily with current and historical rice studies 341	

that have employed the same, giving researchers the ability to easily identify 342	

presence/absence of their gene(s) of interest in the rice accessions involved in their 343	

study, as well as the attributes of these genes (core, distributed, or GJ-specific, etc.).  344	

Blast was used to evaluate the pan-genome. The global identity (Giden) of contig C 345	

was calculated as follow: 346	

𝐺"#$%(𝐶) = 𝑤" ∙ 𝑀" ∙ 𝑃"/
/

"01

𝐿3 347	

𝑤" =
1,𝐻𝑆𝑃"	doesn>t	overlap	with	any	of	𝐻𝑆𝑃1, … , 𝐻𝑆𝑃"K1;		
0, 𝐻𝑆𝑃"	overlaps	with	at	least	one	of	𝐻𝑆𝑃1, … , 𝐻𝑆𝑃"K1;

 348	

 349	

where Mi is length of the HSPi; Pi is the percent identity of HSPi; LC is the length of 350	

the contig C; and wi is a weight indicating whether HSPi overlaps with previous HSPs. 351	

Using this method, we can retrieve novel sequences with an identity cutoff at any 352	

value (0.3, 0.5, or 0.7, etc.) in comparison to the Nipponbare RefSeq. Similar methods 353	

were used to remove redundant sequences. Like CD-HIT, we use a 'longest sequence 354	

first' list removal algorithm to remove sequences above a given identity (see CD-HIT 355	

software for details). The difference is that we calculate the global identity of two 356	

contigs (A and B) based on NCBI-blast similar to the above method: 357	

𝐺"#$% 𝐴, 𝐵 = 𝐺"#$%(𝐵, 𝐴) = 𝑤" ∙ 𝑀" ∙ 𝑃"/
/

"01

min	(𝐿Q, 𝐿R) 358	
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𝑤" =
1,𝐻𝑆𝑃"	doesn>t	overlap	with	any	of	𝐻𝑆𝑃1, … , 𝐻𝑆𝑃"K1;		
0, 𝐻𝑆𝑃"	overlaps	with	at	least	one	of	𝐻𝑆𝑃1, … , 𝐻𝑆𝑃"K1;

 359	

 360	

where Mi is length of the HSPi; Pi is the percent identity of HSPi; LA and LB are the 361	

lengths of the contigs A and B; and wi is a weight indicating whether HSPi overlaps 362	

with previous HSPs. The longest contig within each cluster is selected as the 363	

representative. Combining these two steps, we can retrieve non-redundant novel 364	

sequences at any identity cutoff of P (these sequences have global identities below P 365	

in comparison with IRGSP genome sequences, as well as among the sequences 366	

themselves). 367	

Pseudogene detection  368	

The sequences of predicted single-exon genes from the novel sequences were 369	

extracted and aligned to all other gene sequences using NCBI-blastn with E-value = 370	

1e-5. A novel single-exon gene with >90% of its full length similar to another gene (a 371	

multi-exon novel gene or a Nipponbare gene) is defined as a candidate pseudogene. 372	

As a result, 1,030 of the 12,465 genes might be candidate pseudogenes. 373	

Length distribution of novel genes  374	

We checked the gene length differences of the novel genes by comparing them with 375	

Minghui 63 (MH63)/Zhenshan 97 (ZS97) genes23.	The MH63 or ZS97 protein 376	

sequences (for only the longest ORF of a gene with alternative transcripts removed) 377	

were first aligned to all pan-genome proteins; then, each MH63 or ZS97 protein with 378	
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its best hit (measured by E-value and global identity defined as 379	

“2*aligned_length/(query_length+target_length)”) was considered as a pair. Those 380	

pairs with the pan-genome proteins in multiple pairs were further removed, forming a 381	

“single-copy” gene pair set. This set includes 2,474 MH63 genes and 2,441 ZS97 382	

genes, each of which formed a pair with its corresponding novel gene; then, the length 383	

ratio was calculated and the density was plotted using a log2 scale (Extended Data 384	

Fig. 5). Generally, the distribution should be	symmetric: ratio >0 means the novel 385	

gene is longer while a ratio <0 means the novel gene is shorter.  386	

Read mapping to the pan-genome 387	

Mapping raw reads of all rice accessions to the pan-genome sequences is an essential 388	

step in our pan-genome analysis. With the mapping results, we can (1) evaluate the 389	

sequencing quality based on the percentage of mapped reads and the comparison of 390	

sequencing and mapping depths; (2) determine presence/absence of pan-genome 391	

contigs in each rice accession; and (3) determine presence/absence of each gene in 392	

each rice accession. 393	

We compared several mapping tools including SOAP version 2.2124, Bowtie2 394	

version 2.2.325, and BWA version 0.7.108 (both ‘bwa aln’ usage and ‘bwa mem’ usage) 395	

based on simulating reads from the 93-11 genome 396	

(http://rice.genomics.org.cn/rice2/link/download.jsp) and mapping reads to the 397	

Nipponbare RefSeq. A gold standard of alignments of the 93-11 genome and 398	

Nipponbare RefSeq was built with MUMmer3. Finally, ‘bwa mem’ was selected for 399	
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all genomic mapping tasks in our pan-genome analysis. The mapping depth and 400	

mapping coverage for the Nipponbare RefSeq of each rice line were calculated with 401	

Qualimap version 2.026 and bamUtil (https://github.com/statgen/bamUtil), 402	

respectively. 403	

Evaluation of gene presence/absence detection 404	

Gene presence/absence detection is a necessary step in high-resolution pan-genome 405	

analyses. Previous pan-genome studies in bacteria and rice assembled and annotated 406	

each individual genome separately. Here, we compared our method to a recent rice 407	

pan-genome study with three representative rice accessions, including the Nipponbare 408	

RefSeq27. In their study, they assembled the genomes from deep sequencing and 409	

multiple sequencing libraries. They were able to assemble 81.3~82.5% of non-N 410	

bases of each genome (81.8% for Nipponbare). This number increased to 88.5~91.4% 411	

(91.4% for Nipponbare) if Ns are considered, and they predicted 39,083 genes for the 412	

Nipponbare genome. Therefore, the total gene number should be 42,852~47,779 if the 413	

entire genomes are assembled and the gene density remains the same (actually, there 414	

should be fewer genes in the remaining sequences, which are mostly composed of 415	

repetitive and low-complexity sequences). Nevertheless, we can estimate the 416	

sensitivity and specificity of gene presence-absence detection approximately. The 417	

gold standard annotation for the Nipponbare RefSeq has 35,633 annotated genes. 418	

Assuming that all genes on the assembled sequences are correctly predicted (as we 419	

also used reference annotations directly in our analyses), the sensitivity can be 420	
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estimated (as the assembled fraction of the genome) to be about 81.3% or 91.4%. If 421	

all the reference genes can be predicted, the specificity should be 422	

35,633/(>39,083/0.914) = 83.1%. 423	

We then evaluated the accuracy of our method based on the result of CX140 (an 424	

independent accession of Nipponbare with sequencing depth at 19x). We detected 425	

41,039 genes present in the CX140 de novo assembly, including 34,759 reference 426	

genes and 6,280 novel genes. The sensitivity is 34,759/35,633=97.5%. The mapping 427	

coverage of the CX140 genome is 98.4%; therefore, we think we can capture almost 428	

all genes for which mapping evidence exists. The specificity can be estimated as 429	

34,759/41,039=84.7%, which is higher than with traditional pan-genome methods27.  430	

However, there are still a significant number of falsely discovered genes. In-depth 431	

studies suggest that all of these gene regions show high similarity (>90%) to the 432	

reference genome, indicating that these corresponding regions in the reference 433	

genome contained no genes, but that we are able to predict genes on similar sequences. 434	

Such gene calls might be the false positives from gene predictions, as in the previous 435	

work27 in which 39,083 genes were predicted on the incomplete sequences, ~3,000 436	

genes more than the RAP annotation22. Alternatively, this might be partially attributed 437	

to gene loss in the reference due to SNPs and small indels. This might be a 438	

short-coming of our mapping-based pan-genome study. Nevertheless, these false 439	

positives are still based on gene sequences and are not random, and sequences of the 440	

genes are indeed present in the genome. We therefore concluded that our 441	

mapping-based method has relatively good accuracy with very high sensitivity and 442	
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reasonable specificity. 443	

Estimating size of the rice pan-genome 444	

The sizes of the pan-genome, core gene families, and candidate core gene families 445	

were estimated based on simulations. We randomized the order of the 453 rice 446	

accessions for 500 times. Each time, we counted the number of core gene families and 447	

pan-genome for the first i accessions (i = 1, 2, …, 453) based on the predefined order. 448	

Fig. 4c shows the simulation results. The lighter lines stand for the results from 500 449	

times randomization and the dark lines stand for the mean values. This showed that 450	

the total number of gene families of the rice pan-genome stabilized when the number 451	

of accessions was larger than 100. 452	

The average gene/ gene family difference between two accessions 453	

The average gene / gene family difference between two accessions (Fig. 4e and 454	

Extended Data Fig.7e) were calculated as the average of all combinations of each 2 455	

of 453 accessions. The average proportions were calculated as the number of such 456	

differentiating gene families adjusted by the average gene / gene family numbers held 457	

in common by the two major groups. 458	

 459	

Phylogenetic analysis based on gene (or gene family) PAV 460	

The core genes (or gene families) present in all rice accessions by definition provide 461	

no variation. Only the distributed genes (or gene families) were used for the 462	
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phylogenetic study. The gene (or gene family) presence/absence information of the 463	

453 rice accessions was arranged as a 0-1 matrix with each line representing a gene 464	

(or gene family) and each column representing a rice accession. The PARS program 465	

within PHYLIP (http://evolution.genetics.washington.edu/phylip.html) was used to 466	

infer the phylogenetic relationship from the presence/absence matrix. The 467	

phylogenetic tree was subsequently plotted with the APE28 package in R. 468	

Inferring gene and gene family age with 446 wild rice genomes 469	

Most of the more than 10,000 novel genes were assigned an age of PS13. It is unlikely 470	

that such a large number of genes arose within less than the 10,000 years of rice 471	

domestication. We therefore inferred that these genes already existed in the wild 472	

progenitors of rice; to check this point, we interrogated the whole-genome sequencing 473	

data of 446 wild rice accessions29. In Huang et al.’s paper29, 446 wild accessions were 474	

previously classified into three groups: Or-I (OR-XL), Or-II (OR-Int), and Or-III 475	

(OR-GL). We used the “map-to-pan” strategy30 to study if O. sativa genes exist in 476	

Or-Int, Or-XL, and Or-GL. To overcome the shortcoming of insufficient sequencing 477	

depth of each accession, sequencing data of the same group (Or-Int, Or-XL and 478	

Or-GL) were merged and then mapped to the pan-genome sequences of O. sativa L., 479	

and genes with both gene body coverage >0.95 and CDS coverage >0.95 were 480	

considered as present. As a result, we found that 98.95% of O. sativa genes could be 481	

detected in wild rice, including >99.9% of the core genes and 96.9% of the distributed 482	

genes. Moreover, 437 of the 528 XI-private genes, 110 of the 132 GJ-private genes, 483	
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56 of the 61 cA-private genes, and 41 of the 48 cB-private genes could be detected in 484	

wild rice. Genes found in wild rice that were previously labeled as PS13 were 485	

assigned an age of PS12. 486	

 487	
	488	
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