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Supplementary Discussion for “Multi’omics Detail 
the Gut Microbial Ecosystem in Inflammatory 
Bowel Disease” 

Genetic associations in the IBDMDB 

While this cohort was not designed for genetic association discovery and is not powered for 
this task, exome sequencing of 92 subjects provides the opportunity to integrate with larger 
populations in the future. To validate these data, we examined the influence of 5 known IBD-
related loci on the microbiome (MST1, NKX2-3, FUT2, IRGM and PTGER41-3). As expected, 
no associations between these loci and metagenomic species abundances were significant 
after multiple hypothesis correction (linear mixed effect regression with Wald test, FDR 
p<0.05, Supplementary Table S34, Methods). However, the strongest association found 
(nominal p=0.002) was between Parabacteroides distasonis, an obligate anaerobe that is 
reduced in dysbiotic CD, and a NKX2-3 locus, reported to control intestinal epithelial cells 
differentiation and lymphocyte migration4,5 (Extended Data Fig. 6C). As a positive control for 
robustness of the genetic data for future use, we further replicated the association between 
the rs1042712 SNP at the LCT locus6 and self-reported dietary recall (accompanying 
biweekly stool samples) of milk intake (p=0.028; Extended Data Fig. 6D). 

“Unadjusted” network analysis 
We identified associations among features in the microbiome that did take dysbiosis into 
account, resulting in a second network using the same methodology but without adjusting for 
dysbiosis (“unadjusted”). This network included fewer associations and features compared to 
the adjusted network, totaling 44,159 edges among 3,001 nodes (Extended Data Fig. 9, 
Supplementary Table S36), though it contained additional connections especially with 
biopsy-derived host gene expression (Extended Data Fig. 7B). This component was highly 
associated with metagenomic functional profiles: human transcripts correlated with 27 
metagenomic ECs, in addition to 4 taxonomic abundances. Highly-connected host genes 
included interleukin 8 (IL8), a key mediator associated with inflammation, and OSM and 
SPP1, both of which are involved in the regulation of other interleukins (specifically, IL6 and 
IL12)7. As these networks regress out as many confounding effects as we have access to, 
their associations are arguably much closer to “mechanistic” relationships than a typical non-
interventional study, particularly given that longitudinal sampling means these associations 
must exist over time within-subject. Hub features thus represent an additional prioritization of 
features to target to either correct IBD-associated dysbiosis, or to at least alleviate 
symptoms. 
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