In the format provided by the authors and unedited.

Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation

Jinhui Chen ^{1,11*}, Zhaodong Hao ^{1,11}, Xuanmin Guang^{2,11}, Chenxi Zhao^{2,11}, Pengkai Wang¹, Liangjiao Xue ^{1,3}, Qihui Zhu⁴, Linfeng Yang², Yu Sheng¹, Yanwei Zhou¹, Haibin Xu⁵, Hongqing Xie², Xiaofei Long¹, Jin Zhang⁶, Zhangrong Wang¹, Mingming Shi², Ye Lu¹, Siqin Liu¹, Lanhua Guan⁷, Qianhua Zhu², Liming Yang⁵, Song Ge⁸, Tielong Cheng⁵, Thomas Laux ⁹, Qiang Gao², Ye Peng⁵, Na Liu ^{2*}, Sihai Yang ^{10*} and Jisen Shi ^{1*}

¹Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China. ²BGI Genomics, BGI-Shenzhen, Shenzhen, China. ³Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA. ⁴The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. ⁵College of Biology and the Environment, Nanjing Forestry University, Nanjing, China. ⁶Department of Surgical and Radiological Sciences, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, USA. ⁷General Station of Forest Seedlings of Hubei Provincial Forestry Department, Wuhan, China. ⁸Institute of Botany, Chinese Academy of Sciences, Beijing, China. ⁹BIOSS Centre for Biological Signalling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany. ¹⁰State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China. ¹¹These authors contributed equally: Jinhui Chen, Zhaodong Hao, Xuanmin Guang, Chenxi Zhao. *e-mail: chenjh@njfu.edu.cn; naliu@bgi.com; sihaiyang@nju.edu.cn; jshi@njfu.edu.cn

1 Supplementary Note

2 1. Genome sequencing and assembly

3

1.1 Plant materials and DNA preparation

An adult plant *L. chinense* grown in Lushan located in Jiangxi province of China was
used for genome sequencing. For Illumina sequencing, fresh leaves were harvested and
frozen immediately in liquid nitrogen for extracting genomic DNA by using a modified
CTAB protocol¹. We ran a DNA quality check on gel electrophoresis using agarose gels
(0.3% agarose) for 24h at 30V. In addition, DNA purity was verified by NanoDropTM
Spectrophotometers ND-2000 (Thermo Fisher Scientific, Waltham, MA, USA). For
Pacbio sequencing, DNA was extracted following the Mayjonade pipeline².

11

12 **1.2 Whole genome sequencing**

13 Whole genome sequencing for the L. chinense de novo genome was generated at 14 Beijing Genome Institute, Shenzhen (BGI-Shenzhen, China). For Illumina sequencing, 15 four paired-end libraries with insert sizes of 170, 250, 500 and 800 bp were constructed 16 and sequenced (Supplementary Table 1). All libraries were constructed according to the 17 manufacturer's instructions (Illumina). The quality of each library was validated using 18 Qubit®, AGE. A total of 367.41 Gb raw data were generated using Illumina platforms, 19 i.e., HiSeq 2000 (Supplementary Table 1). In addition, the Liriodendron genome was 20 sequenced using 33 SMRT Cells with P6/C4 chemistry, resulting in a total of 147.89 21 Gb raw data with minimum subread length > 2kb (Supplementary Table 2). And, we 22 also generated a total of 315.41Gb Bionano optical maps for further improvement of the contiguity of the *Liriodendron* genome assembly (Supplementary Table 3). All
sequence data have been deposited in the NCBI Sequence Read Archive under project
PRJNA418360.

- 26
- 27 **1.3 Raw data processing in Illumina data**

Low quality reads were filtered out and potential sequencing errors were removed or corrected by *k*-mer frequency methodology. The following filtering criteria were applied to reduce effects of sequencing errors on the assembly, thereby ensuring high quality reads.

- 32 1) Reads with ambiguous bases (represented by the letter N) or poly-A structures.
- 33 2) Reads with ≥40% low-quality bases (base quality ≤7) in small insert size
 34 libraries (170, 250, 500, and 800 bp).
- 35 3) Reads with adapter contamination: reads with ≥10 bp aligned to the adapter
 36 sequence (≤3 bp mismatch allowed) were filtered out.
- 37 4) Small insert size reads in which read1 and read2 overlapped by ≥10 bp (10%
 38 mismatch allowed).
- 39 5) PCR duplications (reads were considered duplicates when read1 and read2 of
 40 the two paired-end reads were identical).
- Low quality and duplicated reads were filtered out, 327.11 Gb of the L. chinense
- 42 genome was retained for the coming assembly (Supplementary Table 1).
- 43
- 44 **1.4 Genome size and heterozygosity estimation**

45	A k-mer refers to an artificial sequence division of K nucleotides iteratively from
46	sequencing reads. A raw sequence read with L bp contains $(L - K + 1) k$ -mers, if the
47	length of each k-mer is K bp. The frequency of each k-mer can be calculated from
48	genome sequence reads. Frequencies of a k-mer along the sequence depth gradient
49	follow a Poisson distribution in a given dataset, except for a higher representation of
50	low frequencies due to sequencing errors, as sequencing errors affect the number of k -
51	mers that may be orphan among all splitting k -mers. The genome size (G) is defined as
52	$G = K_num/K_depth$, where the K_num is the total number of <i>k</i> -mers, and K_depth is
53	the frequency occurring more frequently than other frequencies. In this research, we
54	used K = 17 to estimate genomes size and a K_num value of $4,210,050,595$. By plotting
55	the occurrence of k -mers against the percentage of corresponding k -mers, we found that
56	the peak depth was 24. Our results suggested that the L. chinense genome was
57	approximately 1,750 Mbp (Supplementary Table 4).

58 In addition to the primary peak observed from the distribution of *k*-mer occurrence, we also noted that there was a secondary peak at approximately half of the major depth. 59 60 This secondary peak reflected heterozygous regions of the Liriodendron genome, since 61 k-mers of two separate alleles in heterozygous regions are not identical. As a 62 consequence, k-mers mapping to the secondary peak are expected to have just half of 63 the average sequencing depth of the primary peak. This secondary peak corresponds to 64 a peak depth of 12 and simulated results show a 1.3% heterozygosity (Supplementary 65 Fig. 1).

1.5 Genome size estimation using flow cytometry

For genome size estimation using flow cytometry, 'Two-step' Method with 'Cystain PI 68 69 absolute P' buffer from sysmex Partec (art. Nr.: 05-5502) was used. In short, yong 70 leaves of this L. chinense individual used for the whole genome sequencing together 71 with young leaves of *Vinca major* were first "chopped" with a sharp razor blade in 72 500ul Extraction Buffer (ice-cold), in a plastic petri disc. After 30-60 seconds of 73 incubation, 2.0 ml Staining Buffer is added. This buffer contains Propidium Iodide (PI) 74 as fluorescent dye and RNA-se. To the buffer is also added 0,1% DTT (Dithiothreitol) 75 and 1% Polyvinylpyrolidone. The copped solution, containing cell constituents and large tissue remnants, is passed through a nylon filter of 50 µm mesh size. After 76 77 incubation of at least 30 minutes at room temperature, the filtered solution with stained nuclei is send through the flow cytometer CyFlow (Sysmex Partec GmbH). At least 78 79 3000 nuclei of the sample and the internal standard (Vinca major) were measured. The 80 fluorescence of the stained nuclei, passing through the focus of the light beam of a 50 81 mW, 532 nm green laser, is measured by a photomultiplier and converted into voltage 82 pulses. These voltage pulses are electronically processed to yield integral and peak 83 signals and have been processed by a computer. Finally, the DNA content of this L. 84 chinense individual used in genome sequencing is 3.7 pg/2c, which means that the genome size of this individual plant is estimated to be $\sim 1,809 \text{ Mb}^3$. 85

86

87 **1.6** *De novo* genome assembly

88 The Liriodendron genome was de novo assembled using FALCON

89 (https://github.com/PacificBiosciences/FALCON) based on PacBio long reads (only 90 reads longer than 10 kb were corrected and assembled, the daligner's option: -D24 -t30 91 -h480 -e.75 -w8 -l3000 -s1000 -k18). Errors in the PacBio reads were corrected within 92 the FALCON pipeline. The assembled genome was firstly polished by Arrow which is 93 from SMRT Link v5.0.0 based on raw PacBio data (--minConfidence 40 -minCoverage 5) and then paired-end Illumina reads of short-insert libraries (170bp, 250 94 95 bp, 500 bp and 800bp) were aligned to the assembly by BWA-mem v0.7.17 for a Pilon v1.21 correction⁴ to improve assembly with these aligned results. Hybrid scaffolds with 96 97 assembled contigs and optical genome maps were created by Bionano Access pipeline (https://bionanogenomics.com/support-page/bionano-access/) using merge P-value of 98 1×10^{-10} and alignment length of 60 bp. Based on the super-scaffolds, we utilized 99 PBJelly v15.8.24⁵ to do gap filling with the PacBio reads which corrected by Falcon 100 before with the option '<blasr>-minMatch 8 -minPctIdentity 75 -bestn 1 -nCandidates 101 102 20 -maxScore -500 -nproc 4 -noSplitSubreads</blasr>' for protocol file. This Whole Genome Shotgun project has also been deposited under the same BioProject with an 103 104 accession number PRJNA418360.

105

106 **1.7 Linkage map construction**

107 A total of 150 F1 seedlings, segregating from a single cross using the parents 'Lushan' 108 and 'NK', was used to construct the linkage map. These two parent individuals are 109 planted in the Xiashu Tree Farm, Jiangsu, China, and the female parent 'Lushan' 110 originated from Lushan, Jiangxi, China and the male parent 'NK' originated from South

111 California, USA. These 150 F1 seedlings are planted in Hubei, China. Linkage analysis was implemented by using JoinMap 4.0^6 . In the first step, RAD-based SNP markers 112 113 were selected according to the expected segregation ratio, such as two heterozygous 114 SNP markers between two parents were expected to segregate at a 1:2:1 ratio, and one 115 heterozygous and one homozygous SNP allele between two parents were expected to segregate at a 1:1 ratio. Subsequently, Distorted markers (Po0.01) were filtered to 116 117 construct a genetic map by using a chi-square test. Finally, the candidate markers were divided into 19 linkage groups (Supplementary Fig. 2). Then, reads that contained SNP 118 119 markers were aligned to the scaffolds. All these SNP markers were used to construct the linkage map with the CP population model in JoinMap (Supplementary Table 6). 120

121

122 **1.8 Construction of BAC libraries**

Nuclei were isolated from 200 grams of etiolated young leaves as described as by 123 Peterson *et al.*⁷ and Zhang *et al.*⁸. High molecular weight (HMW) DNA was released 124 125 from nuclei by proteinase K in lysis buffer (0.1 mg/mL Proteinase K dissolved in 0.5M EDTA, PH = 9.1) at 50 °C for 48 hours. Lysis buffer was exchanged after 24 hours 126 127 during a 48-hour period. Plugs (usually containing 5-6 µg undigested HMW DNA) 128 were partially digested with BamHI or HindIII. After digestion, size selection was first 129 carried out by PFGE separation for 16 h with a setting of 6 V/cm, pulse time 1-40 s, 12.5 °C, angle 120 °, then for 16 h with a setting of 6 V/cm, pulse time 3-5 s, 12.5 °C, 130 angle 120 ° in 0.25× TBE buffer. We harvested agarose gels, containing DNA 131 132 fragments with a size range of 200 to 400 kb, and performed DNA elution with 350133 450 μl 1× TAE buffer using a Bio-Rad model 422 Electro-Eluter (Bio-Rad, USA).

134 Eluted DNA was ligated into pIndigoBAC-5 vectors (Epicentre, USA). The mol ratio of vector to insert DNA was 10:1. The ligation products were introduced into 135 136 ElectroMAXTM DH10BTM cells (Invitrogen, USA) via the Gene Pulser XcellTM 137 Total System (Bio-Rad, USA) at 1.7 kV/cm, 200 Ω with a 0.1 cm cuvette (Bio-Rad, USA). Transformed cells were spread on LB Petri plates containing 12.5 µg·mL-1 138 chloramphenicol, 0.55 M IPTG and 80 µg X-GAL/ml⁹. White clones were picked with 139 sterile toothpicks manually and arranged in 384-well plates, which were then filled with 140 141 80 μl ice-cold LB media containing 12.5 μg·mL-1 chloramphenicol. All 384-well plates were incubated at 37 °C overnight until the media became muddy cloudy. Clones in 142 143 384-well plates were kept in -80 °C.

144

145 **1.9 Genome assembly assessment**

146 We used a 500-bp sliding window to calculate GC content and average sequencing depth using the L. chinense genome assembly as a reference. Usually, genomic regions 147 148 with high or low GC content will possess a low sequencing depth compared to a median 149 GC content region. Our results indicated there were no obvious sequence biases or contaminations. To access the integrity of the L. chinense assembly, we aligned about 150 151 $70\times$ (i.e. ~119 Gb) paired-end reads from the 170 bp genomic libraries onto the L. chinense assembly using SOAPdenovo v2.04 with the parameters set to "-m 127 -x 190 152 -v 5 -l 32 -s 40", resulting in a mapping rates of 88.78%. 153

We also assessed the genome assembly by using BAC sequencing. Those 89 BAC sequences were mapped back to the assembled reference genome by BLASTN with an E-value of 1e-5. Subsequently, solar was utilized to conjoin fragmental alignments for each BAC alignment result. We found that 99.75% of the BAC sequences were covered without any obvious misassemblies (Supplementary Fig. 4).

A total of 14 Mb PE RNA-Seq reads from Hiseq 2000 sequencing libraries, 159 160 representing expressed sequences from 4 different L. chinense tissues (i.e., sepal, bud, stamen and stigma), was assembled with Trinity v2.4.0¹⁰. All assembled unigenes were 161 162 further used for evaluating the completeness of the L. chinense genome assembly based on BLAT v35 with default parameters. These results showed that the assembly covered 163 164 99.78% of the 66,934 unigenes and 91.89% of these unigenes could be mapped to the assembly with >90% sequence in one scaffold (Supplementary Table 8). 165 The 1440 conserved plant genes from the BUSCOs¹¹ database were also mapped back 166

to the genome assembly by BLAT to calculate the gene region; 1,300 (90.28%)
conserved plant genes could be found in the assembled genome. (Supplementary Table
9).

170

171 **1. Genome annotation**

172 **1.1 Repeat annotation**

Genome annotation was performed based on the genome version PVNU01000000. We
identified tandem repeats and transposable elements (TEs) separately. Tandem repeats
were predicted using Tandem Repeats Finder 4.04¹² with the following parameters:

176 "Match = 2, Mismatch = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50, and MaxPeriod
177 = 2000".

178 TEs were identified in the genome using a combination of homology-based and de novo 179 approaches. For the homology based approach, we first identified known TEs using RepeatMasker against the Repbase 16.10^{13} database of known repeat sequences, and 180 then used RepeatProteinMask, implemented in RepeatMasker, to identify TEs by 181 182 aligning the genome sequence to the TE protein database. For the de novo approach, we constructed a repeat library generated by RepeatModeler v1.0.11¹⁴ with default 183 184 parameters, obtaining consensus sequences and classification information for each repeat family. Then RepeatMasker was run on the genome sequences, using the 185 186 RepeatModeler consensus sequence as the library.

187 Finally, all repeat sequences identified by the different methods were combined into the188 final repeat annotation (Supplementary Tables 10-12).

189

190 **1.2 Gene prediction**

191 Gene model prediction was conducted by the MAKER pipeline (version 2.31.10)¹⁵, 192 integrating *ab initio* prediction with *de novo* assembled transcripts from short-read 193 mRNA sequencing, isoform-sequencing full-length transcripts, and protein homology 194 data. A high-confidence gene model was conducted by further removing transposons 195 and low-confidence predictions.

196

197 **1.3 Gene annotation**

198	Gene functionality was predicted based on the best match derived from alignments to
199	proteins annotated in SwissProt and TrEMBL databases ¹⁶ using blastp v2.3.0 ¹⁷ (E-value
200	\leq 10-5). Motifs and domains were annotated using InterProScan ¹⁸ by searching against
201	publicly available protein databases, including Pfam ¹⁹ , PRINTS ²⁰ , PROSITE ²¹ ,
202	ProDom ²² , and SMART ²³ . Descriptions of gene products, i.e., Gene Ontology (GO)
203	terms, were retrieved from the corresponding InterPro entries. We also mapped the
204	Liriodendron reference genes to KEGG ²⁴ pathway maps by searching KEGG databases
205	and finding the best hit for each gene. Finally, 29,482 genes (83.59% of all predicted
206	genes) were functionally annotated and the remaining 5,787 genes, with no functional
207	annotation, were labeled "hypothetical proteins" (Supplementary Table 7).

209 **1.4 ncRNA annotation**

A non-coding RNA (ncRNA) is any RNA molecule that is not translated into a protein. 210 Here, four types of non-coding RNAs (ncRNAs), including micro RNAs (miRNAs), 211 transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and small nuclear RNAs (snRNAs), 212 were annotated. tRNA genes were predicted based on tRNAscan-SE v1.3.125 with 213 214 parameters chosen for eukaryotes. If more than 80% of the length of a tRNA gene was covered by SINE TEs, then it was defined as SINE masked. rRNA fragments were 215 identified by aligning human's rRNA sequences to the *Liriodendron* genome by using 216 BLASTN¹⁷ with a parameter of E value $\leq 1e-5$, identity $\geq 85\%$ and matched length 217 ≥50bp. miRNA and snRNA genes were detected by using INFERNAL²⁶ software 218

(version 1.1.2) against the Rfam database²⁷ (Release 9.1), with Rfam's family-specific
"gathering" cutoff.

221

222 **2.** Genome evolution

223

2.1 Whole genome duplication

To identify syntenic blocks, protein sequences from L. chinense and grape were first 224 blasted against themselves using BLASTP¹⁷. Then these results were subjected to 225 MCscan v0.8²⁸ to determine syntenic blocks, defining five genes as being required to 226 227 define a synteny block. We then calculated the 4DTv (fourfold degenerate synonymous sites of the third codon) for syntenic segments from the concatenated alignments, 228 229 constructed by fourfold degenerate sites of all gene pairs found in each segment, and plotted the distribution of the 4DTv values. One peak around 0.25 was observed in the 230 L. chinense genome (Supplementary Fig. 8). An all-against-all comparison based on 231 protein sequences was performed on L. chinense using BLASTP 2.2.29¹⁷ with an E 232 233 value of 10-5. Then alignments were further filtered to retain pairs for which the shorter sequence was at least 50% of the longer sequence, and the alignment was at least 50% 234 235 of the shorter sequence. If one sequence had multiple matches meeting the cut-offs, these were grouped into a paralogue group, including any other genes that were 236 associated with these matches. Next, all possible pairs of protein sequences within each 237 group were aligned using MUSCLE 3.8.31²⁹ with default parameters. A nucleotide 238 alignment was generated from the protein alignment using a Python script. 239 Synonymous substitutions were estimated using the codeml program from PAML 4.8^{30} . 240

241	The <i>Ks</i> scores within each group were then corrected to remove redundant values; only
242	those representing duplication events within the group were retained (in a group of n
243	genes, there are $n - 1$ possible duplication events) using the method described in
244	previous studies ^{31,32} . Moreover, another K_s method which was development by Maere
245	et al. ³³ was used to interpret the results. Based on the previously obtained blast results,
246	some pairs were filter based on an E value cutoff of e-10, after which gene families
247	were built with the OrthoMCL version 5^{34} . Each gene family was aligned by PRANK ³⁵ ,
248	and K_s were estimated for all pairwise comparisons within a gene family by the
249	CODEML program of the PAML package ³⁰ . Gene families were then subdivided into
250	subfamilies for which K_s estimates between members did not exceed a value of 5. To
251	correct for the redundancy of Ks values (a gene family of n members produces $n(n-$
252	1)/2 pairwise Ks estimates for $n-1$ retained duplication events), for each subfamily a
253	phylogenetic tree was constructed using PhyML 3.0 ³⁶ under default settings.
254	Subsequently, each tree was rooted by treebest. For each duplication node in the
255	resulting phylogenetic tree, all $m K_s$ estimates between the two child clades were added
256	to the K_s distribution with a weight of $1/m$, so that the weights of all K_s estimates for a
257	single duplication event sum up to one. The K_s -based relative age distributions were
258	constructed for both of the genome (Fig 1a) and transcriptome (Fig 1b).

2.2 LTR insertion

Based on the repeat annotation, we counted the content and distribution of TEs in the *Liriodendron* genome using R program. Among the TEs, long terminal repeats (LTRs)

263	were the most abundant and occupied 56.25% of the genome, while DNA transposons
264	occupied 5.81% and long interspersed nuclear elements (LINEs) occupied 1.70%
265	(Supplementary Table 11). Within LTRs, the Gypsy superfamily was more abundant
266	than the Copia superfamily (Supplementary Table 12 and Supplementary Fig. 9). In
267	addition, TEs within the Liriodendron genome are located in four regions: the
268	intergenic regions (84.71%), gene regions (13.93%), Proximal promoter (with less than
269	3,000 bp from its adjacent gene 5' end, 0.73%) and Proximal 3' end (with less than
270	3,000 bp from its adjacent gene 3' end, 0.64%) (Supplementary Fig. 10).
271	As the genome size of L. chinense is about 1.7G, we investigated the effect of
272	genome expansion on LTR presence (Supplementary Fig. 13). All the LTRs sequences
273	were identified with complete 5'LTR and 3'LTR by the LTR-STRUC program under
274	the default p. Each of the 5' LTR flank sequences and 3' flank sequences were aligned
275	by MUSCLE ²⁹ . Then, the distance of the alignment sequences was calculated by the
276	disMat. The insert time was calculated using the following formula: $T=K/2r$. Assuming
277	an intergenic nucleotide substitution rate that was roughly twice as slow in genic
278	regions, a substitution rate of 1.51×10^{-9} per site per year was used to convert LTR
279	sequence divergence values into the estimated insertion time.

- **3. Genome phylogeny**
- **3.1 orthologue identification**

Ortholog groups (OGs) were constructed using 17 other land plants: six eudicots
(Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Coffea canephora, Ipomoea

285	nil and Fraxinus excelsior); six monocots (Brachypodium distachyon, Xerophyta
286	viscosa, Asparagus officinalis, Musa acuminata, Ananas comosus and Oryza sativa);
287	three magnoliids (Magnolia Grandiflora, Michelia alba and Persea americana); one
288	basal angiosperm (Amborella trichopoda); and one gymnosperm (Gnetum montanum)
289	by using the software OrthoFinder v2.2.3 ³⁷ . Most of these plant species have genome
290	data except for three magnoliids plants in which transcriptome data were used in this
291	study. Among these three magnoliids, Magnolia Grandiflora, Michelia alba and Persea
292	americana, the first two were sequenced in this study and the last one was available in
293	Ibarra-Laclette et al. ³⁸ . To obtain as many genes as possible, we sequenced the mixed
294	tissues comprised of flowers, stems and leaves in both two Magnoliaceae plants and
295	the resting Lauraceae plant we selected was also sequenced based on mixed tissues
296	comprised of seeds, roots, stems, leaves, aerial buds and flowers ³⁸ . The final numbers
297	of available protein sequences of these three magnoliids, Magnolia Grandiflora,
298	Michelia alba and Persea americana, were 33,943, 34,672 and 46,351, respectively.
299	First, we performed OG construction using OrthoFinder ³⁷ . Then, we selected low-copy
300	OGs with the number of putative orthologues less than two in each species and putative
301	orthologues were found in at least four eudicots, four monocots, three magnnliids, one
302	basal angiosperm and one gymnosperm.
203	After that a total of 1 163 low-conv OGs were separately aligned using Clustal Omega

303 After that, a total of 1,163 low-copy OGs were separately aligned using Clustal Omega 304 $v1.2.4^{39}$ and all alignments were further trimmed by using TrimAl 1.2^{40} . Next, we 305 constructed 1,163 single-gene trees by using RAxML v8.2.11⁴¹ with the 306 PROTCATWAG mode. Finally, we rooted each OG tree using *Gnetum montanum* and

307 compared these single-gene trees with the species tree (Supplementary Fig. 14) after 308 masking all magnoliids. Due to the limited number of informative sites in one gene, it 309 was hard to use a single-gene tree to resolve the relationship among the low-level 310 taxonomic hierarchies. Therefore, we selected the OGs with genes that, as they should, 311 formed a monophyletic gene clade within species of a monophyletic organismal group 312 (that is, eudicots and monocots) and the only one basal angiosperm, Amborella, was 313 sister to the clade of monocots and eudicots. After that, we unmasked all magnoliids plants and excluded OGs with different magnoliids plants clustered with different 314 315 clades, that is eudicots, monocots and the clade of monocots and eudicots. In other words, we only selected OGs with all magnoliids plants clustered with the same clade 316 317 (see examples in Supplementary Fig. 15), ultimately resulting in 502 low-copy OGs. Finally, we classified these OGs according to which clade the magnoliids clustered with 318 into a sister group, ultimately resulting in three alternative topologies. 319

320

321

3.2 Phylogenetic signal quantification

We calculated phylogenetic signal as described in Sheng *et al.*⁴². Simply, we first calculated the site-wise log-likelihood scores for the ML tree constrained to three alternative topologies. Then, we calculated the difference in site-wise log-likelihood scores (Δ SLS) between these three alternative topologies for every site. Next, by summing the Δ SLS scores of all sites, we could obtain the difference in gene-wise loglikelihood scores (Δ GLS) between three alternative topological hypotheses. After that, we could quantify the distribution of phylogenetic signal for these three alternative 329 phylogenetic topologies at the gene level, that is, we could count the number of genes 330 supporting for each alternative topology. Among the 506 low-copy OGs, 166 supported the topology I, 167 supported the topology II and the final 169 OGs supported the 331 332 topology III with no statistically significant difference (Supplementary Fig. 16). 333 In addition, we also excluded the OGs with Δ GLS values being outlier. The outlier Δ GLS values were well defined³¹ and we calculated the upper whisker and the lower 334 335 whisker and excluded the OGs with absolute Δ GLS values greater than the upper whisker or smaller than the lower whisker, resulting in 481 low-copy OGs with 157 336 337 OGs supporting topology I, 159 OGs supporting topology II and the final 165 OGs supporting topology III (Fig. 2b), showing an equal distribution of phylogenetic signal 338 339 for each topology at gene level. 340

341 **3.3 Species tree estimation**

We estimated the phylogenetic tree based on these 502-OG gene trees and 481-OG gene trees using ASTRAL 5.6.1⁴³ (Supplementary Fig. 17). In addition, we also extracted and concatenated 78 genes from chloroplast genomes of 24 species for phylogenetic analysis (Supplementary Fig. 18).

- 346
- **347 3.4 Divergence time estimation**

348 CDS sequences of 235 single-copy OGs constructed using 11 land plant: *A. thaliana*,
349 *P. trichocarpa, Eucalyptus grandis, V. vinifera, B. distachyon, Elaeis guineensis,*

350 *Phalaenopsis equestris* and *Spirodela polyrhiza*, *A. trichopoda* and the outgroup *Picea*

351	abies, were used for divergence time estimation based on the phylogenetic tree. The
352	PAML MCMCTREE ³⁰ performs Bayesian estimation of species divergence times using
353	soft fossil constraints ⁴⁴ under various molecular clock models. We incorporated three
354	fossil constraints, i.e., A. thaliana - P. trichocarpa divergence (97-109 Mya), E. grandis
355	- V. vinifera divergence (105-115 Mya) and Eudicots - monocots divergence (130-200
356	Mya) ⁴⁵ . The program needs input files including a sequence alignment (nucleotide or
357	protein), a phylogenetic tree with fossil calibrations, and a control file (usually called
358	mcmctree.ctl) that contains the instructions for the program. The Markov chain Monte
359	Carlo (MCMC) process of the PAML mcmctree was set to sample 1,000,000 times,
360	with the sample frequency set to 50, after a burn-in of 5,000,000 iterations. Parameters
361	of "finetune" were set at "0.004, 0.016, 0.01, 0.10, 0.58". Other parameters were set at
362	default values.

364 **3.5 Eudicot- and monocot-specific gene families**

We achieved 114 eudicot- and 93 monocot-specific gene families from Monocot 365 PLAZA 3.0⁴⁶ (Supplementary Fig. 19) and identified homologous genes present in 366 Amborella and Liriodendron using BLASTP¹⁷ with parameters set to: E value $\leq 1e-5$, 367 identify $\geq 40\%$ and coverage $\geq 60\%$. We then counted the number of eudicot- and 368 monocot-specific gene families contained in the Amborella (29 and 16 respectively) 369 370 and Liriodendron (52 and 31 respectively) genomes. Furthermore, we performed a chi-371 square test to check the difference between the ratio of eudicot- versus monocot-372 specific gene families in *Liriodendron* (52/31) and that in *Amborella* (29/16), resulting in a χ^2 of 0.1166 (p-value = 0.7328), showing no significant difference. We also performed this analysis on a monocot plant *Spirodella polyrhiza* (a ratio of 15/25) and a eudicot plant *Macleaya cordata* (a ratio of 78/19) which resulted in a χ^2 of 15.691 (pvalue = 0.0003708) and χ^2 of 10.7940 (p-value = 0.0010), both showing a significant bias (Fig. 2c).

378

379 **3.7 Gene family expansion and contraction**

We used Café v4.0.147, a random birth and death model proposed to study gene gain 380 381 and loss in gene families across a user-specified phylogenetic tree, to identify gene families that had undergone expansion or contraction across the ML tree that was 382 383 constructed based on the 235-gene data set. Usually, a global parameter λ (lambda), which describes both gene birth (λ) and death (μ , equal to - λ) rate across all branches 384 385 in the tree for all gene families is estimated using maximum likelihood. Then, a 386 conditional *p*-value is calculated for each gene family, and families with a conditional 387 *p*-value less than the threshold (0.05) will be considered as having an accelerated rate of gain and loss. Also, branches responsible for a low overall *p*-value of significant 388 389 families will be identified.

390

391 **4. Resequencing**

392 **4.1 Plant materials used for resequencing**

393 To evaluate a broader range of genetic diversity between the two *Liriodendron* species
394 and to compare their respective population structures, resequencing was conducted in

395 20 accessions covering a wide range of genetically and phylogenetically diverse 396 materials. DNA from 14 L. chinense and six L. tulipifera adult plants was extracted using a modified CTAB protocol¹. Paired-end libraries with insert sizes of 100-150 bp 397 398 were constructed according to the manufacturer's instruction (Illumina, San Diego, CA, 399 USA) and sequenced by Illumina sequencing technology at Illumina technology at Beijing Genome Institute, Shenzhen (BGI-Shenzhen, China). Whole genome 400 401 resequencing of 20 Liriodendron plants generated from 15.14 Gbp to 72.6 Gbp nucleotides of sequence with an average depth of 39.4× (Supplementary Table 15). 402 403 Sequences have been deposited in the NCBI Sequence Read Archive under project PRJNA418361. In addition, natural distribution maps of *L. chinense*⁴⁸ and *L. tulipifera* 404 were plotted in R using the package ggmap⁴⁹ (Supplementary Fig. 20). 405

406

407 **4.2 SNP calling**

Paired-end reads (100bp or 150bp) obtained from sequencing were mapped to the *de* 408 *novo* genome with BWA⁵⁰. After the alignment, results in the SAM file format were 409 converted to bam format using SAMtools v1.3.1⁵¹. These bam files were sorted and 410 411 duplicated reads were marked by Picard pack tools. SNP detection was carried out by the Genome Analysis Toolkit (GATK, version 3.2.2)⁵². As there is a low-quality 412 413 alignment around an indel region, two steps of realignment were implemented in GATK: the RealignerTargetCreator package was used to identify regions which need 414 realignment in the first step. Then the IndelRealigner performed realignment of regions 415 416 found in the first step. SNP calling was performed with UnifiedGenotyper and Samtools

417	mpileup, then SelectVariants was used to combine the raw vcf files as dbSNP, which
418	was created by SAMtools and UnifiedGenotyper, filtering raw SNPs with "QD ≤ 20.0
419	or ReadPosRankSum <-8.0 or FS >10.0 or QUAL <meanqual". after="" base-quality<="" td="" that,=""></meanqual".>
420	score recalibration was performed with BaseRecalibrator and the realigned bam file
421	was reduced by PrintReads and ReduceReads. In the next step CombineVariants was
422	used to combine the individual Gvcf files into a combind population of vcf files as a
423	dbSNP. Based on the dbSNP data and the BaseRecalibrator BAM files, GATK was used
424	to call raw SNPs and indels using parameters from UnifiedGenotyper. After obtaining
425	the raw result, VQSR, then VariantFiltration were used to filter some low-quality SNPs
426	with "QD <2.0, MQ <40. 0, ReadPosRankSum <-8.0, FS >60.0, HaplotypeScore >13.0
427	and MQRankSum <-12.5". Missing SNP sites were filtered and then used for analysis
428	in the next step. SNPs were annotated by SNPEFF ⁵³ and summarized by a customized
429	Perl script. The annotation for the complete SNPs set was used for subsequent positive
430	selection analysis.

431

432 **4.3 Phylogenetic and population structure analysis**

433 SNPs were used to construct a phylogenetic tree, based on the neighbor-join method by 434 TreeBeST v1.9.2⁵⁴ (Fig. 3b) and the Maximum likelihood method by RAxML⁵⁵ 435 (Supplementary Fig. 23). The resulting phylogenetic trees inferred by these two methods 436 are about the same, excepting the position of the DBS provenance. In the NJ tree, all *L*. 437 *chinense* individuals from China West clustered together (the CW group) and the rest 438 of the *L. chinense* collected from China East clustered into the second group (the CE

439 group). LY came from a provenance geographically located in the transition region between western and eastern China and did not cluster into any group. The third group 440 441 (the NA group) was comprised of all L. tulipifera individuals collected from North 442 America. In the ML tree, DBS did not cluster into the east group of China and was 443 positioned the same as LY. Intriguingly, DBS is geographically close to LY. In general, both NJ and ML trees clustered these Liriodendron individuals into three main 444 445 geographical groups. In addition, ped files were created as input for PLINK version 1.07 with parameters "--ped ped file --recode12 --geno 0.5 --map output map". Then 446 the program FRAPPE v1.1⁵⁶ was utilized to infer population structure and ancestry 447 information. The analysis was based on 13.3M SNP sites and we did not assume any 448 449 prior information about their ancestry. We ran 10,000 iterations and pre-defined the number of clusters, K, from 2 to 5. ADMIXTURE v1.3.0⁵⁷ was used to find the best K 450 value based on a cross-validation test. We performed a PCA following the procedure as 451 452 reported. The eigenvector decomposition of the transformed genotype data was performed using the R function eigen, and the significance of the eigenvectors was 453 454 determined with a Tracey-Widom test, implemented in the program twstats, provided by EIGENSOFT 3.2⁵⁸. 455

Nucleotide diversity $(\pi)^{59}$ and the Watterson estimator $(\theta_w)^{60}$ were used to measure the degree of variability within a population or species⁶¹. F_{st} was used to measure the population differentiation and genetic distance, based on genetic polymorphism data. π , θ_w and F_{st} were calculated on the basis of the genotype of each line at each SNP position using BioPerl.

462 **4.4 PSMC analysis**

The PSMC model, originally applied to human genomes⁶², after which it was also 463 applied to plant genomes^{63,64}, was used to study the effective population size (N_e) of the 464 465 two Liriodendron species over time. PSMC inferred the local time since the most recent common ancestor on the basis of the local density of heterozygotes by use of a hidden 466 Markov model in which the observation is a single diploid sequence⁶². PSMC utilizes 467 sequence reads that are mapped to a reference genome to estimate historical fluctuations 468 in N_e . To scale PSMC results to real time, we assumed 6 years per Liriodendron 469 generation (g) and a per-generation mutation rate (μ) of 7 × 10⁻⁹. PSMC was otherwise 470 471 conducted using default parameters.

For all L. chinense, the first bottleneck occurred about 0.9 million years ago (Fig. 4), 472 during the Xixiabangma Glaciation, around 1.17-0.8 million years ago⁶⁵. The high mass 473 accumulation rate (MAR) of Chinense loess⁶⁶ during that time indicates a cold and dry 474 475 climatic period. Then, the L. chinense population started to expand until to its peak about 0.3-0.4 million years ago, just during an interglacial stage with warm weather as 476 477 evidenced by low MAR. Then, along with the beginning of the Guxiang Glaciation (i.e., Penultimate Glaciation, 0.3-0.13 million years ago)⁶⁵, the L. chinense population 478 declined rapidly and arrived at its next bottleneck around the time the Baiyu (the Last) 479 Glaciation occured $(0.07-0.01 \text{ million years ago})^{65}$. The *L* chinense population always 480 remained at a very low estimated N_e in this bottleneck, either during the warm Greatest 481 482 Lake Period (30,000-40,000 years ago) or after retreat of the Quaternary glaciation

483	(after 20,000 years ago), indicating that L chinense might have migrated and beer
484	restricted to its glacial refugia, widely scattered in eastern Asia.

- 485 For *L. tulipifera*, there was a sustained decrease of population since the Late Miocene
- 486 (Fig. 4). The population bottleneck occurred approximately 0.2 million years ago,
- 487 around the time of Penultimate Glaciation. Then, the population of L. tulipifera
- 488 experienced a period of explosive growth and achieved its peak during the warm
- 489 Greatest Lake Period (30,000-40,000 years ago), after which it stayed stable.
- 490

491 **References**

- 492 1. Murray, M.G. & Thompson, W.F. Rapid isolation of high molecular weight
 493 plant DNA. *Nucleic Acids Res* 8, 4321-5 (1980).
- 494 2. Mayjonade, B. *et al.* Extraction of high-molecular-weight genomic DNA for
 495 long-read sequencing of single molecules. *Biotechniques* 61, 203-205
 496 (2016).
- 497 3. Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content
 498 and genome size of trout and human. *Cytometry A* **51**, 127-128 (2003).
- 499 4. Walker, B.J. *et al.* Pilon: an integrated tool for comprehensive microbial
 500 variant detection and genome assembly improvement. *PLoS One* 9,
 501 e112963 (2014).
- 502 5. English, A.C. *et al.* Mind the gap: upgrading genomes with Pacific
 503 Biosciences RS long-read sequencing technology. *PLoS One* 7, e47768
 504 (2012).
- 505 6. Van Ooijen, J.W. JoinMap 4: Software for the Calculation of Genetic Linkage
 506 Maps in Experimental Populations, (Kyazma, 2006).
- Peterson, D.G., Tomkins, J.P., Frisch, D.A., Wing, R.A. & Paterson, A.H.
 Construction of plant bacterial artificial chromosome (BAC) libraries: an
 illustrated guide. *Journal of Agricultural genomics* 5, 1-100 (2000).
- 510 8. Zhang, H.B., Zhao, X., Ding, X., Paterson, A.H. & Wing, R.A. Preparation of
 511 megabase-size DNA from plant nuclei. *The Plant Journal* 7, 175-184 (1995).
- 512 9. Sambrook, J., Fritsch, E.F. & Maniatis, T. *Molecular cloning: a laboratory*513 *manual*, (Cold spring harbor laboratory press, 1989).
- 514 10. Grabherr, M.G. *et al.* Full-length transcriptome assembly from RNA-Seq
 515 data without a reference genome. *Nat Biotechnol* 29, 644-52 (2011).
- 516 11. Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov,
 517 E.M. BUSCO: assessing genome assembly and annotation completeness
 518 with single-copy orthologs. *Bioinformatics* **31**, 3210-3212 (2015).
- 519 12. Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
 520 *Nucleic Acids Res* 27, 573-80 (1999).
- 521 13. Jurka, J. *et al.* Repbase Update, a database of eukaryotic repetitive
 522 elements. *Cytogenet Genome Res* **110**, 462-7 (2005).

523	14.	Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat
524		families in large genomes. <i>Bioinformatics</i> 21 Suppl 1 , i351-8 (2005).
525	15.	Cantarel, B.L. et al. MAKER: an easy-to-use annotation pipeline designed
526		for emerging model organism genomes. Genome research 18, 188-196
527		(2008).
528	16.	Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database
529		and its supplement TrEMBL in 2000. <i>Nucleic Acids Res</i> 28 , 45-48 (2000).
530	17.	Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local
531		alignment search tool. <i>J Mol Biol</i> 215 , 403-10 (1990).
532	18.	Zdobnov, E.M. & Apweiler, R. InterProScanan integration platform for
533		the signature-recognition methods in InterPro. <i>Bioinformatics</i> 17 , 847-848
534		(2001).
535	19.	Finn, R.D. et al. The Pfam protein families database: towards a more
536		sustainable future. <i>Nucleic Acids Res</i> 44, D279-285 (2016).
537	20.	Attwood, T.K. et al. The PRINTS database: a fine-grained protein sequence
538		annotation and analysis resourceits status in 2012. Database (Oxford)
539		2012 , bas019 (2012).
540	21.	Sigrist, C.J. et al. PROSITE, a protein domain database for functional
541		characterization and annotation. Nucleic Acids Res 38, D161-166 (2010).
542	22.	Bru, C. et al. The ProDom database of protein domain families: more
543		emphasis on 3D. <i>Nucleic Acids Res</i> 33 , D212-215 (2005).
544	23.	Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments
545		and status in 2015. <i>Nucleic Acids Res</i> 43 , D257-260 (2015).
546	24.	Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes.
547		Nucleic Acids Res 28, 27-30 (2000).
548	25.	Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection
549		of transfer RNA genes in genomic sequence. <i>Nucleic Acids Res</i> 25 , 955-64
550		(1997).
551	26.	Nawrocki, E.P., Kolbe, D.L. & Eddy, S.R. Infernal 1.0: inference of RNA
552		alignments. <i>Bioinformatics</i> 25 , 1335-7 (2009).
553	27.	Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete
554		genomes. <i>Nucleic Acids Res</i> 33 , D121-4 (2005).
555	28.	Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis

556		of gene synteny and collinearity. <i>Nucleic Acids Res</i> 40, e49 (2012).
557	29.	Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and
558		high throughput. Nucleic Acids Res 32 , 1792-7 (2004).
559	30.	Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol
560		<i>Evol</i> 24 , 1586-91 (2007).
561	31.	Maere, S. et al. Modeling gene and genome duplications in eukaryotes.
562		<i>Proc Natl Acad Sci U S A</i> 102 , 5454-9 (2005).
563	32.	Blanc, G. & Wolfe, K.H. Widespread paleopolyploidy in model plant species
564		inferred from age distributions of duplicate genes. <i>Plant Cell</i> 16, 1667-78
565		(2004).
566	33.	Maere, S. et al. Modeling gene and genome duplications in eukaryotes.
567		<i>Proc Natl Acad Sci U S A</i> 102 , 5454-5459 (2005).
568	34.	Li, L., Stoeckert, C.J., Jr. & Roos, D.S. OrthoMCL: identification of ortholog
569		groups for eukaryotic genomes. <i>Genome Res</i> 13 , 2178-89 (2003).
570	35.	Loytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol Biol
571		1079 , 155-70 (2014).
572	36.	Guindon, S. et al. New algorithms and methods to estimate maximum-
573		likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol
574		59 , 307-21 (2010).
575	37.	Emms, D.M. & Kelly, S. OrthoFinder: solving fundamental biases in whole
576		genome comparisons dramatically improves orthogroup inference
577		accuracy. <i>Genome Biol</i> 16 , 157 (2015).
578	38.	Ibarra-Laclette, E. et al. Deep sequencing of the Mexican avocado
579		transcriptome, an ancient angiosperm with a high content of fatty acids.
580		<i>BMC Genomics</i> 16 , 599 (2015).
581	39.	Sievers, F. & Higgins, D.G. Clustal Omega for making accurate alignments
582		of many protein sequences. <i>Protein Sci</i> 27, 135-145 (2018).
583	40.	Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. TrimAl: a tool for
584		automated alignment trimming in large-scale phylogenetic analyses.
585		<i>Bioinformatics</i> 25 , 1972-3 (2009).
586	41.	Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
587		analyses with thousands of taxa and mixed models. <i>Bioinformatics</i> 22,
588		2688-90 (2006).

- 589 42. Shen, X.X., Hittinger, C.T. & Rokas, A. Contentious relationships in
 590 phylogenomic studies can be driven by a handful of genes. *Nat Ecol Evol*591 1, 126 (2017).
- 592 43. Zhang, C., Sayyari, E. & Mirarab, S. ASTRAL-III: Increased Scalability and
 593 Impacts of Contracting Low Support Branches. 53-75 (2017).
- 594 44. Yang, Z. & Rannala, B. Bayesian estimation of species divergence times
 595 under a molecular clock using multiple fossil calibrations with soft bounds.
 596 *Molecular Biology and Evolution* 23, 212-226 (2006).
- Kumar, S., Stecher, G., Suleski, M. & Hedges, S.B. TimeTree: A Resource for
 Timelines, Timetrees, and Divergence Times. *Mol Biol Evol* 34, 1812-1819
 (2017).
- 600 46. Proost, S. *et al.* PLAZA 3.0: an access point for plant comparative genomics.
 601 *Nucleic Acids Res* 43, D974-81 (2015).
- 602 47. De Bie, T., Cristianini, N., Demuth, J.P. & Hahn, M.W. CAFE: a computational
 603 tool for the study of gene family evolution. *Bioinformatics* 22, 1269-71
 604 (2006).
- Hao, R., He, S., Tang, S. & S., W. Geographical distribution of Liriodendron
 chinense in China and its significance. *Journal of Plant Resources and Environment (China)* 4, 1-6 (1995).
- Kahle, D. & Wickham, H. ggmap: Spatial Visualization with ggplot2. *R Journal* 5, 144-161 (2016).
- 50. Li, H. & Durbin, R. Fast and accurate short read alignment with BurrowsWheeler transform. *Bioinformatics* 25, 1754-60 (2009).
- 612 51. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools.
 613 *Bioinformatics* 25, 2078-9 (2009).
- 614 52. DePristo, M.A. *et al.* A framework for variation discovery and genotyping
 615 using next-generation DNA sequencing data. *Nat Genet* 43, 491-8 (2011).
- 616 53. Cingolani, P. *et al.* A program for annotating and predicting the effects of
 617 single nucleotide polymorphisms, SnpEff: SNPs in the genome of
 618 Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly (Austin)* 6, 80-92
 619 (2012).
- 54. Vilella, A.J. *et al.* EnsemblCompara GeneTrees: Complete, duplicationaware phylogenetic trees in vertebrates. *Genome Res* 19, 327-35 (2009).

622	55.	Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
623		analyses with thousands of taxa and mixed models. Bioinformatics 22,
624		2688-2690 (2006).
625	56.	Tang, H., Peng, J., Wang, P. & Risch, N.J. Estimation of individual admixture:
626		analytical and study design considerations. Genet Epidemiol 28, 289-301
627		(2005).
628	57.	Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of
629		ancestry in unrelated individuals. <i>Genome Res</i> 19 , 1655-64 (2009).
630	58.	Price, A.L. et al. Principal components analysis corrects for stratification in
631		genome-wide association studies. Nat Genet 38 , 904-9 (2006).
632	59.	Nei, M. & Li, W.H. Mathematical model for studying genetic variation in
633		terms of restriction endonucleases. Proc Natl Acad Sci U S A 76, 5269-73
634		(1979).
635	60.	Watterson, G.A. On the number of segregating sites in genetical models
636		without recombination. <i>Theor Popul Biol</i> 7 , 256-76 (1975).
637	61.	Tajima, F. Evolutionary relationship of DNA sequences in finite populations.
638		<i>Genetics</i> 105 , 437-60 (1983).
639	62.	Li, H. & Durbin, R. Inference of human population history from individual
640		whole-genome sequences. <i>Nature</i> 475 , 493-496 (2011).
641	63.	Ibarra-Laclette, E. et al. Architecture and evolution of a minute plant
642		genome. <i>Nature</i> 498 , 94-8 (2013).
643	64.	Amborella Genome, P. The Amborella genome and the evolution of
644		flowering plants. <i>Science</i> 342 , 1241089 (2013).
645	65.	Zheng, B.X., Xu, Q.Q. & Shen, Y.P. The relationship between climate change
646		and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and
647		speculation. Quaternary International 97, 93-101 (2002).
648	66.	Sun, Y.B. & An, Z.S. Late Pliocene-Pleistocene changes in mass
649		accumulation rates of eolian deposits on the central Chinese Loess Plateau.
650		Journal of Geophysical Research Atmospheres 110 , D23101 (2005).
651		

Supplementary Tables

Paired-end Libraries	Insert Size	Average Read Length (bp)	Total Clean /Raw Data (Gb)	Sequencing Depth (×) ^a	Physical Depth (×)
	170 bp	100	118.98/130.82	67.83/74.58	57.66/63.39
	250 bp	150	45.83/53.39	26.13/30.44	21.78/25.37
Solexa Reads	500 bp	100	83.98/94.38	47.88/53.81	119.70/134.53
	800 bp	100	78.32/88.82	44.66/50.64	178.64/202.56
	Total		327.11/367.41	186.5/209.47	377.78/425.85

Supplementary Table 1. Summary of library construction and sequencing of Illumina data.

^a: We estimate the sequencing coverage by assuming the genome size to be 1.75 Gb.

Reads	Size (bp)	Number	Depth
subreads >= 2k	147,893,889,877	12,381,613	87
subreads >= 5k	139,096,142,067	9,817,481	81.82
subreads >= 10k	114,919,709,311	6,546,414	67.60
subreads >= 12k	101,694,888,173	5,344,942	59.82
subreads >= 15k	80,162,479,742	3,742,966	47.15
subreads >= 16k	72,869,462,837	3,272,275	42.86
subreads >= 20k	46,478,797,744	1,792,900	27.34
subreads >= 25k	24,351,603,157	795,790	14.32
subreads >= 30k	11,919,374,791	338,169	7.01
subreads >= 35k	5,412,158,385	135,834	3.18
subreads >= 40k	2,228,225,395	50,081	1.31

Supplementary Table 2. Statistics of corrected PB reads.

Supplementary Table 3. Statistics of Bionano optical maps.

	Number	Length (bp)
Total data		315,411,275,361
Total label	20,474,808	
Total molecule	1,546,266	
Molecule (label number > 6)	1,189,663	
Average label per molecule	13.24	
Density of label per 100kb	6.49	
Molecule length > 100kb	1,546,266	315,411,275,361
Molecule length > 150kb	893,335	235,559,291,832

Supplementary	Table 4. Estimation	of the L. chinense	genome size based	on 17 K-mer statistics.

k-mer	k-mer no.	Peak depth	Genome size	Used bases	Used reads	Depth
17	4,210,050,595	24	1,754,187,748	52,625,632,420	657,820,404	30

	Contig		Scaffold	
	Size (bp)	Number	Size (bp)	Number
N90 ^a	190,349	1,500	276,287	638
N80	483,159	953	1,192,516	37:
N70	786,779	674	1,988,182	26
N60	1,090,133	487	2,855,213	192
N50	1,434,331	347	3,525,943	13
Longest	9,960,025		19,271,491	
Total Size	1,742,411,609		1,742,423,874	
Total Number		4,624		3,71
(>=1kb)				
Total Number		4,242		3,32
(>=10kb)				

Supplementary Table 5. Summary of the *L. chinense* genome assembly.

^a: Nxx length is the maximum length L such that xx% of all nucleotides lie in contigs (or scaffolds) of size at least L.

Linkage group	Anchoring markers (no.)	cM	Scaffolds (no.)	Size (bp)
1	142	178.5	33	96,007,009
2	133	190.6	33	99,473,975
3	111	198	36	96,689,308
4	97	149.17	38	76,263,199
5	93	126.4	21	63,449,182
6	96	154.04	29	65,192,789
7	104	200.3	26	87,369,336
8	75	119.15	25	64,408,360
9	79	134.36	17	58,375,695
10	85	118.1	24	68,352,314
11	71	108.4	21	70,397,449
12	66	93.16	30	69,840,316
13	67	112.55	32	75,054,824
14	67	118.5	38	74,942,525
15	72	127.4	41	56,984,379
16	49	44.6	27	67,893,758
17	54	97.7	19	54,703,317
18	63	115.3	17	63,323,318
19	52	95.3	22	57,223,572

Supplementary Table 6. Summary of linkage map construction.

	Number	Percent (%)
Total	35,269	100.00
Annotated	29,482	83.59
SwissProt	22,530	63.88
TrEMBL	29,089	82.48
InterPro	28,080	79.62
KEGG	22,123	62.73
Unannotated	5,787	16.41

Supplementary Table 7. Gene annotation in the *L. chinense* genome.

Dataset	Number	Total Length	Bases Covered by	Sequences Covered by	With > Sequence Scafi	e in one	With > Sequenc Scafi	e in one
		(bp)	Assembly (%)	Assembly (%)	Number	Percent (%)	Number	Percent (%)
All	66,934	51,960,045	97.80	99.78	61,508	91.89	66,578	99.47
>200bp	66,934	51,960,045	97.80	99.78	61,508	91.89	66,578	99.47
>500bp	28,940	40,497,573	97.64	99.85	26,074	90.10	28,772	99.42
>1000bp	16,537	31,698,287	97.50	99.90	14,684	88.79	16,443	99.43

Supplementary Table 8. Assessment of the *L. chinense* genome assembly using RNA-seq data.

Types of BUSCOs	Count	Ratio
Complete BUSCOs	1,300	90.28%
Complete and single-copy BUSCOs	1,190	82.64%
Complete and duplicated BUSCOs	110	7.64%
Fragmented BUSCOs	47	3.26%
Missing BUSCOs	93	6.46%

Supplementary Table 9. Assessment of the *L. chinense* genome assembly and annotation completeness using BUSCO.

Туре	Repeat Size (bp)	% of Genome
RepeatProteinMask ^a	258,445,113	14.83
RepeatMasker ^b	236,234,135	13.56
TRF ^c	79,438,868	4.56
De novo ^d	1,039,699,474	59.67
Total ^e	1,111,834,359	63.81

Supplementary Table 10. Prediction of repetitive sequences in the *L. chinense* genome.

^a and ^b: RepeatProteinMask and RepeatMasker were used to identify repeats in the genome according to homology to identified repeat elements in Repbase.

^c: TRF was used to predict tandem repeats.

^d: RepeatMasker was used to identify *de novo* repeat elements in the genome according to results from Piler-DF, RepeatScout and LTR-FINDER.

^e: Total repeat regions were identified after combining all repeats identified and removing redundancy.

	RepBase TEs		TE P	roteins	De	novo	Combined TEs ^a		
	Length	% in	Length	% in	Length	% in	Length	% in	
	(Mbp)	Genome	(Mbp)	Genome	(Mbp)	Genome	(Mbp)	Genome	
DNA	16.73	0.96	3.16	0.18	88.78	5.10	101.22	5.81	
LINE	12.89	0.74	2.45	0.14	18.12	1.04	29.59	1.70	
SINE	0.06	0	0	0	0.32	0.02	0.38	0.02	
LTR	208.76	11.98	252.84	14.51	940.91	54.00	980.11	56.25	
Other	0.002	0	0	0	0	0	0.002	0	
Unknown	0	0	0	0	6.64	0.38	6.64	0.38	
Total ^a	236.23	13.56	258.45	14.83	1,025.30	58.84	1,074.11	61.64	

Supplementary Table 11. Categories of TEs predicted in the *L. chinense* genome.

^a: the total number of TEs was identified by combining all repeats identified through different methods. As there are some overlaps between different methods, the combined number of TEs is less than the sum of repeats identified by all methods.

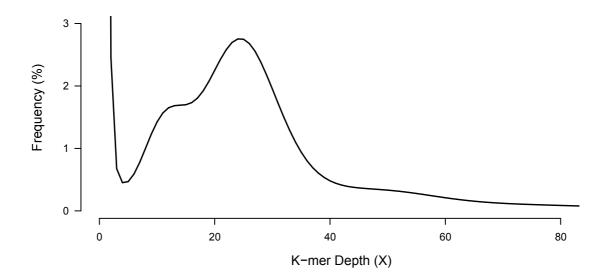
Classification		L. chinens	e		
Order	Superfamily	Length (Mb)	% of genome		
Class I Retro	transposon	·			
LTR	Gypsy	704.67	40.45		
	Copia	227.86	13.08		
	ERV	3.05	0.18		
	Caulimovirus	2.08	0.12		
	other	42.45	2.44		
LINE	RTE	8.14	0.47		
	Ll	19.57	1.12		
	L2	0.41	0.02		
	other	1.47	0.08		
SINE	tRNA	0.16	0.01		
	5 <i>S</i>	1.12E-04	6.43E-06		
	other	0.22	0.01		
Unclassified		1.58E-03	8.84E-06		
Class II DNA	transposon				
TIR	PIF	2.95	0.1		
	hAT	22.18	1.27		
	TcMar	0.71	0.04		
	EnSpm	51.00	2.93		
	MuDR	2.14	0.12		
	other	19.09	1.09		
Crypton	Crypton	0.32	0.02		
Helitron	Helitron	2.05	0.12		
Maverick	Maverick	0.78	0.04		
Unclassified		4.20E-04	1.56E-04		
Unknown		6.64	0.38		
	Total TEs	1074.11	61.64		

Supplementary Table 12. Subcategories of TEs predicted in the *L. chinense* genome.

	Сор	via	Gyp	sy	LINE/L1			
	Observed values	Predicted values	Observed values	Predicted values	Observed values	Predicted values		
Gene	146,796	148,284.30	171,039	264,487.90	25,453	11,542.90		
Proximal Promoter	3,714	38,502.40	7,026	68,674.95	204	2,997.14		
Proximal 3' End	2,884	38,502.40	5,787	68,674.95	130	2,997.14		
Intergenic	562,264	490,440.40	1,092,634	874,775.90	29,922	38,177.38		

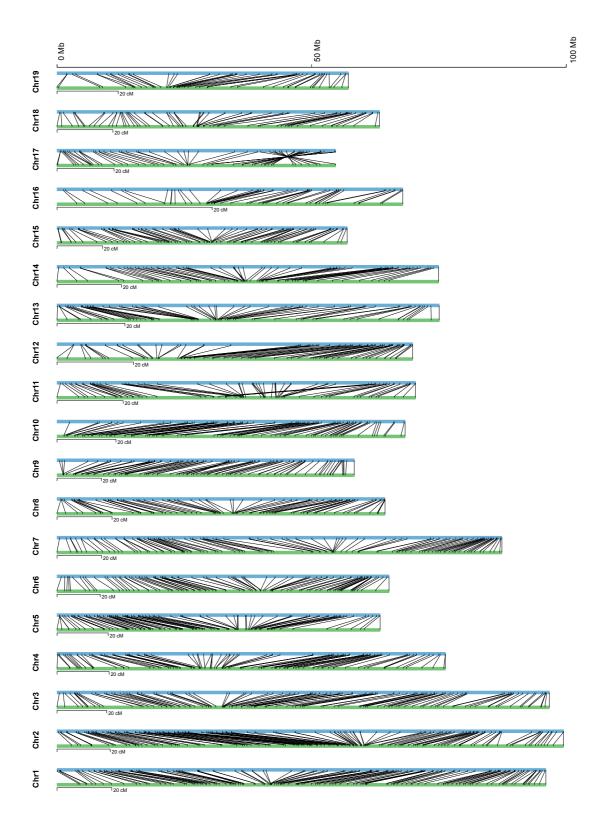
Supplementary Table 13. Statistical analysis of the distribution of three TE superfamilies in four *Liriodendron* genome regions.

All these three TE superfamilies, i.e., *Copia*, *Gypsy*, *LINE/L1*, showed an uneven distribution throughout the *Liriodendron* genome with χ^2 values of 74,924, 200,220 and 23,896, respectively, and all p-values of zero. The blue colour indicates that the predicted value is bigger than the observed value, and the red colour indicates that the predicted value.

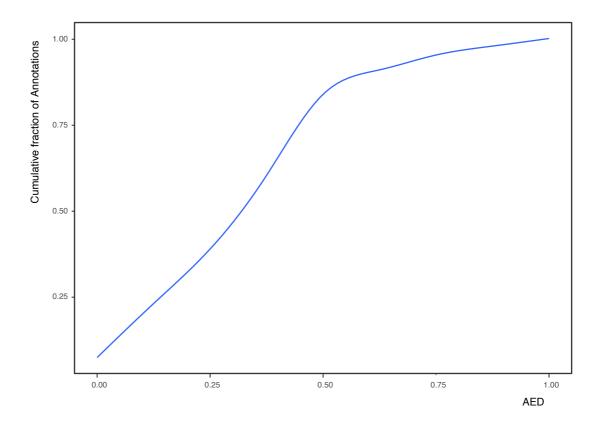

Supplementary Table 14. A summary of research on the phylogentic relationships among magnoliids, eudicots and monocots.

Author	thor Year Journal		Article		Gene		Non-coding	Morphological characters	Species	Gene	Method	Software	Simplified topology	Classification	n DOI
				nucleus	plastid	mitochondrion	sequence	characters	number	number					
Mathews & Donoghue	1999 Science		The Root of Angiosperm Phylogeny Inferred from Duplicate Phytochrome Genes	PHYA, PHYC	-		-	-	26	2	concatenated, MP	PAUP+ 4.0	((magnoliids, (monocots, eudicots):<50):86, basal angiosperm)	=	10.1126/science.286.5441.947
Soltis et al.	1999 Nature		Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology	18S rDNA	atpB, rbcL	-	-	-	567	3	concatenated, MP	PAUP+ 4.0	((eudicots, (monocots, magnoliids):56):71, basal angiosperm)	11	10.1038/46528
Qiu et al.	1999 Nature		The earliest angiosperms: evidence frommitochondrial, plastid and nuclear genomes	18S rDNA	atpB, rbcL	atp1, matR	-	-	105	5	concatenated, MP	PAUP+4.0b2	((monocots, (eudicots, magnoliids):<50):<50, basal angiosperm)	1	10.1038/46536
Barkman et al.	2000 PNAS		Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny	18S rDNA	atpB, rbcL	atpA, matR, coxl	-	-	35	6	concatenated, NJ	PAUP+4.0b3	((monocots, (eudicots, magnoliids):<50):99, basal angiosperm)	1	10.1073/pnas.220427497
Graham & Olmstead	2000 American Journ	al of Botany	Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms	-	√	-	-	-	19	17	concatenated, MP	PAUP*	((magnoliids, (monocots, eudicots):25):76, basal angiosperm)		10.2307/2656749
Soltis et al.	2000 Botanical Journ	al of the Linnean Soiety	Angiosperm phylogeny inferred &om 18s rDNA, rbcL, and atpB sequences	18S rDNA	atpB, rbcL	-	-	-	567	3	concatenated, MP	RATCHET	((eudicots, (monocots, magnoliids)), basal angiosperm)	11	10.1m/b0j1.2000.0380
Qiu et al.	2000 International Jo	urnal of Plant Sciences	Phylogeny of Basal Angiosperms: Analyses of Five Genes from Three Genomes	18S rDNA	atpB, rbcL	atp1, matR	-	-	105	5	concatenated, MP	PAUP+4.0b2	((monocots, (eudicots, magnoliids):<50):<50, basal angiosperm)	1	10.1086/317584
Doyle & Endress	2000 International Jo	urnal of Plant Sciences	Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data	18S rDNA	atpB, rbcL	-	-	108	52	-	concatenated, MP	PAUP 3.1.1	((eudicots, (monocots, magnoliids):<50):63, basal angiosperm)	11	10.1086/317578
Sun et al.	2002 Science		Archaefructaceae, a New Basal Angiosperm Family	18S rDNA	atpB, rbcL		-	17	174	-	MP	-	((eudicots, (monocots, magnoliids)), basal angiosperm)	11	10.1126/science.1069439
Borsch et al.	2003 Journal of Evolu	itionary Biology	Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms	-	-	-	trnT-trnF	-	38	-	MP	PAUP+4.0b6	((monocots, (eudicots, magnoliids):<50):100, basal angiosperm)	1	10.1046/j.1420-9101.2003.00577.x
Oiu et el	2005 International In	unel of Direct Colonna	Next and the set of th	18S rDNA, 26S rDNA	atpB, matK, rbcL	atp1, matR, mtSSU, mtLSU	L =	-	100	9	concatenated, MP	PAUP+4.0b2	((magnoliids, (monocots, eudicots):<50):<50, basal angiosperm)		10.1086/431800
Qiu et al.	2005 International Jo	umar or Planc Sciences	Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes	-	atpB, matK, rbcL	atp1, matR,	-	-	100	5	concatenated, MP	PAUP+4.0b2	((monocots, (eudicots, magnoliids):<50):98, basal angiosperm)	1	10.1060/431600
	2007 Nature				,				00		concatenated, MP	PAUP+4.0b10	((magnoliids, (monocots, eudicots):93):100, basal angiosperm)		40.40007 . 05040
Saarela et al.	2007 Nature		Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree	-	v	-	v	-	29	-	concatenated, ML	PHYML 2.4.4	((magnoliids, (monocots, eudicots):95):100, basal angiosperm)		10.1038/nature05612
Jansen et al.	2007 PNAS		Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns	-	√	-	-	-	64	81	concatenated, ML	GARLI 0.942	((magnoliids, (monocots, eudicots):96):100, basal angiosperm)		10.1073/pnas.0709121104
Moore et al.	2007 PNAS		Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms		√		-	-	45	61	concatenated, ML	GARLI	((magnoliids, (monocots, eudicots):88):100, basal angiosperm)		10.1073/pnas.0708072104
	0000 0140 5 1 .:	e: 1	and the second	18S rDNA	atpB, rbcL		-	-	567	3	concatenated, ML	GARLI 0.951	((monocots, (eudicots, magnoliids):39):100, basal angiosperm)	1	10 11 00 11 171 01 10 0 01
Burleigh et al.	. 2009 BMC Evolutionary Biology Infe		Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms	18S rDNA, 26S rDNA	atpB, matK, rbcL		-	-	567	5	concatenated, ML	GARLI 0.951	((monocots, (eudicots, magnoliids):33):100, basal angiosperm)	1	10.1186/1471-2148-9-61
Soltis et al.	2009 American Journ	al of Botany	FLORAL VARIATION AND FLORAL GENETICS IN BASAL ANGIOSPERMS	-	-	-	IR region of the plastid genome	-	39	-	ML	-	((magnoliids, (monocots, eudicots)), basal angiosperm)		10.3732/ajb.0800182
Bell et al.	2010 American Journ	al of Botany	The age and diversification of the angiosperms re-revisited	18S rDNA	atpB, rbcL		-	-	567	3	concatenated, Bavesiar	BEAST 1.4.8	((monocots, (eudicots, magnoliids)), basal angiosperm)	1	10.3732/aib.0900346
Moore et al.	2010 PNAS		Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots	-	1		-	-	86	83	concatenated, ML	RAxML	((magnoliids, (monocots, eudicots):85):100, basal angiosperm)		10.1073/pnas.0907801107
Qiu et al.	2010 Journal of Syste	matics and Evolution	Angiosperm phylogeny inferred from sequences of four mitochondrial genes		-	atp1, matR, nad5, rps3	-	-	356	4	concatenated. ML	RAxML 7.0.4	((magnoliids, (monocots, eudicots):15):12, basal angiosperm)		10.1111/j.1759-6831.2010.00097.x
Soltis et al.	2011 American Journ		ANGIOSPERM PHYLOGENY: 17 GENES, 640 TAXA	18S rDNA, 26S rDNA	atpB, matK, ndhF, psbB, psbT, psbN, psbH, rbcL, rpoC2, rps16, rps4	atp1, matR, nad5, rps3	-	-	640	17	concatenated, ML	RAxML	((magnoliids, (monocots, eudicots):68):100, basal angiosperm)	Ш	10.3732/ajb.1000404
Moore et al.	2011 International Jo	urnal of Plant Sciences	Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region	-	1	-	√	-	244	-	concatenated, ML	RAxML 7.2.6	((monocots, (eudicots, magnoliids):55):100, basal angiosperm)	1	10.1086/658923
Zhang et al.	2012 New Phytologis	t	Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms	SMC1, SMC2, MSH1, MLH1 MCM5	L _	-	-	-	91	5	concatenated, ML	RAxML	((eudicots, (monocots, magnoliids):92):100, basal angiosperm)	Ш	10.1111/j.1469-8137.2012.04212.x
Xiet al.	2014 Systematic Biol	- AND	Coalescent versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies	√	-	-	-	-	45	310	coalescent	STAR	((monocots, (eudicots, magnoliids):88):100, basal angiosperm)	1	10.1093/sysbio/syu055
10 00 01	2021 030000000	-23		-	√	-	-	-	45	45	concatenated, ML	RAxML	((magnoliids, (monocots, eudicots):54):82, basal angiosperm)		10.1000 0/0010 0/0000
Wickett et al.	2014 PNAS		Phylotranscriptomic analysis of the origin and early diversification of land plants	1					92	674	concatenated, ML	RAxML	((monocots, (eudicots, magnoliids):100):100, basal angiosperm)	1	10.1073/pnas.1323926111
WICKOLL OL DI.	2014 11040		Thy dual scriptomic analysis of the origin and early oversmouth of land plants						92	424	coalescent	ASTRAL	((monocots, (eudicots, magnoliids):100):100, basal angiosperm)	1	10.1073/piles 1323320111
7+ -l	2014 Nature Commu		Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times	√	-	-	-	-	61	59	concatenated, ML	RAxML	((monocots, (eudicots, magnoliids):94):100, basal angiosperm)	1	10.1038/ncomms5956
Zeng et al.	2014 Nature Commu	meauons	Resolution of deep anglosperm phylogeny using conserved nuclear genes and estimates or early divergence times	-	√	-	-	-	86	112	concatenated, ML	RAxML	((magnoliids, (monocots, eudicots):73):100, basal angiosperm)		T0.T0.29/00000023320
Ruhfel et al.	2014 BMC Evolutiona	iry Biology	From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes	-	√	-	-	-	360	78	concatenated, ML	RAxML 7.3.0	((magnoliids, (monocots, eudicots):63):100, basal angiosperm)		10.1186/1471-2148-14-23
Wu et al.	2014 BMC Plant Biolo	ygy	A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms; insight into the plastid evolution of basal eudicots	-	√	-	-	-	133	79	concatenated, ML	RAxML 7.2.8	((magnoliids, (monocots, eudicots):100):100, basal angiosperm)		10.1186/s12870-014-0289-0
				-	√	-	-	-	82	78			((magnoliids, (monocots, eudicots):72):100, basal angiosperm)		
Sun et al.	2015 Molecular Phylo	genetics and Evolution	Deep phylogenetic incongruence in the angiosperm clade Rosidae	√	-	-	-	-	92	5	concatenated, ML	RAxML 7.2.8	((eudicots, (monocots, magnoliids):63):100, basal angiosperm)	11	10.1016/j.ympev.2014.11.003
					-	√	-	-	79	4			((eudicots, (monocots, magnoliids):54):100, basal angiosperm)	11	
Magallon et al.	2015 New Phytologis	t	A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity	18S rDNA, 26S rDNA	atpB, rbcL, matK	-	-	-	792	5	concatenated, ML	RAxML 7.2.8			10.1111/nph.13264
Sun et al.	2015 Molecular Phylo	genetics and Evolution	Phylogenomic and structural analyses of 18 complete plastomes across all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution	-	~	-	-	-	97	79	concatenated, ML	RAxML 7.4.2	((magnoliids, (monocots, eudicots):65):100, basal angiosperm)		10.1016/j.ympev.2015.12.006

Class	Province /	¥7 I NI.	Resource	Insert	Donth	Size	SNP		
Class	State	Voucher No.	type	size (bp)	Depth	(Gb)	homozygous	heterozygou	
. chinense	Meng La (ML)	Li.ch-ML-001	Illumina, PE	150	46.00	28.22	9,212,964	1,575,766	
. chinense	Xu Yong (XY)	Li.ch-XY-001	Illumina, PE	500	26.43	16.21	6,576,024	5,813,650	
. chinense	Li Ping (LP)	Li.ch-LP-001	Illumina, PE	150	41.19	25.26	6,549,559	6,673,61	
. chinense	Sui Ning (SN)	Li.ch-SN-001	Illumina, PE	150	42.40	26.01	6,161,793	6,952,082	
. chinense	Song Tao (ST)	Li.ch-ST-001	Illumina, PE	500	26.34	16.15	6,104,629	5,992,41	
. chinense	E Xi (EX)	Li.ch-EX-001	Illumina, PE	500	27.22	16.69	6,326,851	4,742,86	
. chinense	Sang Zhi (SZ)	Li.ch-SZ-001	Illumina, PE	150	46.98	28.82	5,870,353	6,964,61	
. chinense	Liu Yang (LY)	Li.ch-LY-001	Illumina, PE	150	42.29	25.95	5,913,839	4,304,40	
. chinense	Dabie Shan (DBS)	Li.ch-DBS-001	Illumina, PE	500	34.07	20.90	5,721,144	3,320,13	
. chinense	Song Yang (SY)	Li.ch-SY-001	Illumina, PE	150	42.38	26.00	2,837,702	6,165,35	
. chinense	Huang Shan (HS)	Li.ch-HS-001	Illumina, PE	500	24.68	15.14	3,334,715	5,308,88	
. chinense	Lu Shan_1 (LS_1)	Li.ch-LS-001	Illumina, PE	500	26.16	16.04	3,048,443	5,192,74	
. chinense	Lu Shan_2 (LS_2)	Li.ch-LS-002	Illumina, PE	500	27.27	16.73	3,459,852	6,019,02	
. chinense	Wuyi Shan (WYS)	Li.ch-WYS-001	Illumina, PE	500	27.87	17.09	3,286,118	5,992,41	
. tulipifera	North Carolina (NC)	Li.tu-NC-001	Illumina, PE	500	53.72	32.95	69,018	12,01	
. tulipifera	Missouri (MO)	Li.tu-MO-001	Illumina, PE	500	53.2	32.63	69,785	10,02	
. tulipifera	Tennessee (TN)	Li.tu-TN-001	Illumina, PE	500	52.51	32.21	54,388	9,30	
. tulipifera	Georgia (GA)	Li.tu-GA-001	Illumina, PE	500	49.05	30.09	53,708	8,58	
. tulipifera	Louisiana (LA)	Li.tu-LA-001	Illumina, PE	500	57.35	35.18	86,073	16,23	

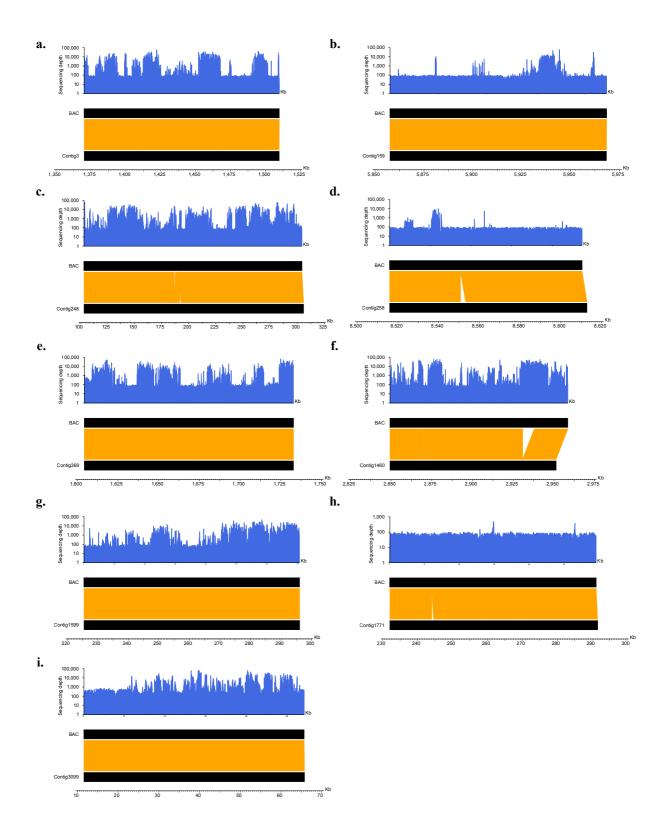

Supplementary Table 15. Summary of resequencing analysis.

I tulinifara	Ontario	Lity ON 001	Illumina, Li.tu-ON-001		40.9	72.6	291.180	47 110
L. iutipijera	(ON)	L1.10-011-001	PE	350	40.9	72.0	291,180	47,119

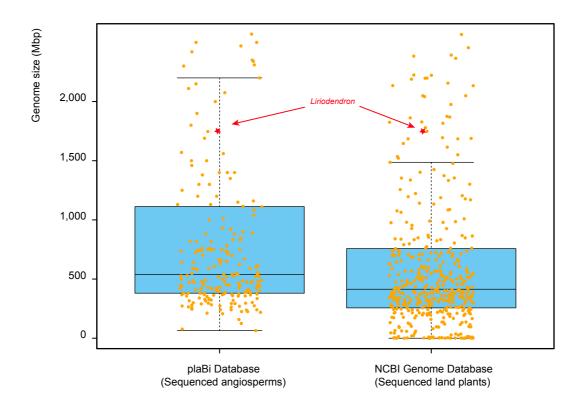


Supplementary Figure 1. k-mer frequency distribution.

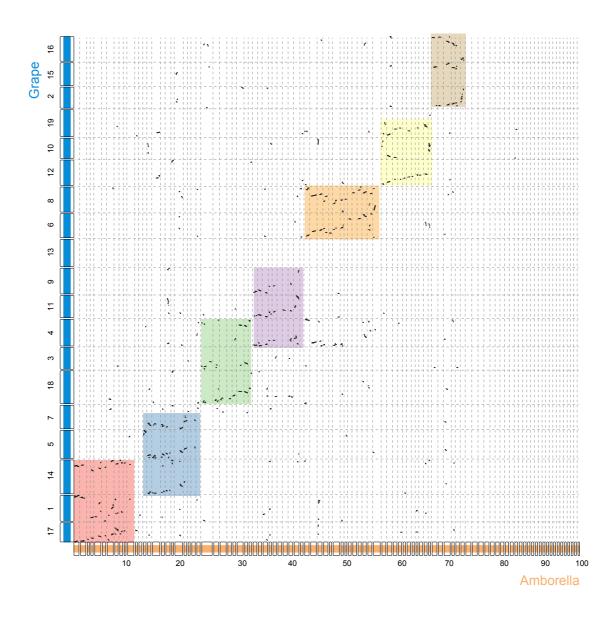
The frequency and sequencing depth of 17 k-mer were plotted. Genome size was estimated using the primary peak depth and the heterozygous rate was estimated according to the second peak.



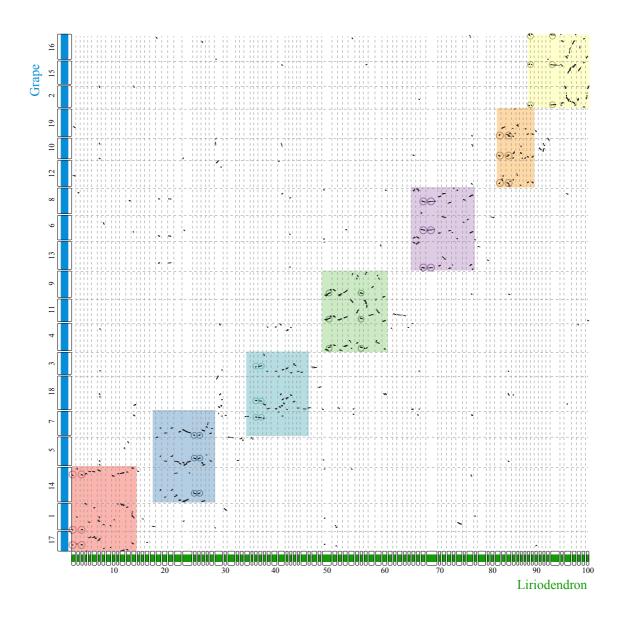
Supplementary Figure 2. Linkage map of 19 *Liriodendron* **pseudo-chromosomes.** The linkage map of *Liriodendron* was constructed using RAD-based SNP makers identified from 150 F1 seedlings. The green bar indicates the genetic distance with a scale of 20 cM beneath each bar, and blue bar indicates the genome sequence with a corresponding scale on the top.


Supplementary Figure 3. Cumulative AED distributions for the *Liriodendron* genome.

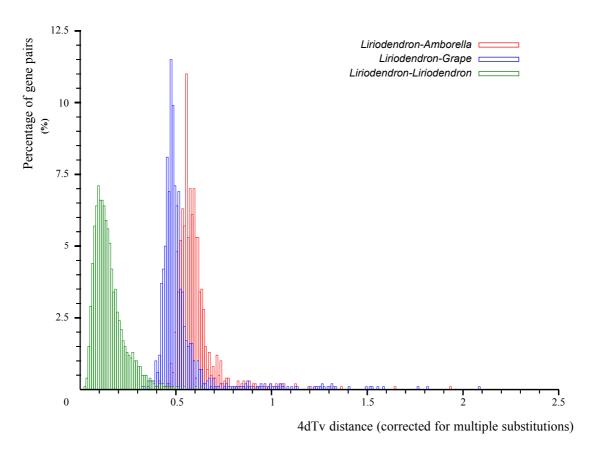
Annotation Edit Distance (AED) provides a measurement for how well an annotation agrees with overlapping aligned ESTs, mRNA-seq and protein homology data. AED values range from 0 and 1, with 0 denoting perfect agreement of the annotation to aligned evidence, and 1 denoting no evidence support for the annotation.


Supplementary Figure 4. Assembly quality control by assembled pooled BACs.

We assembled 89 BAC sequences and mapped these BACs back to the genome assembly. Nine random alignments that indicate a low error rate are shown here. Most of the BAC sequences were covered and fewer gaps were observed in these BAC sequences than in the genome assembly.

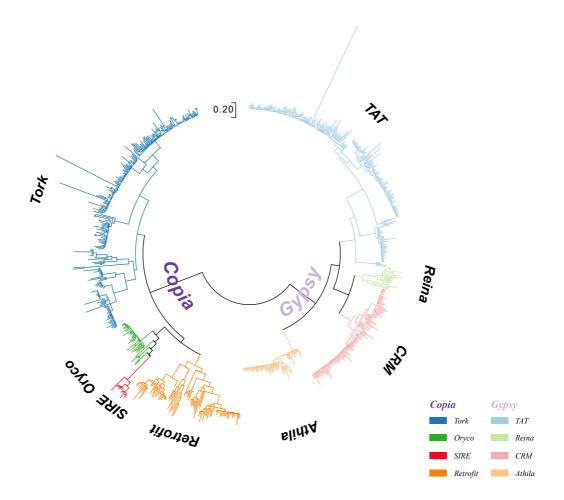

Supplementary Figure 5. Comparison of the genome size of *Liriodendron* with other sequenced plants.

The size of *Liriodendron* genome was estimated to be 1.75 Gb. Genome sizes of all sequenced angiosperms and all sequenced land plants were separately extracted from the plaBi Database (http://plabipd.de/index.ep) and the NCBI Genome Database (https://www.ncbi.nlm.nih.gov/home/genomes/). The genome size ranged from 64 Mb to 17,000 Mb with a mean value of 1,075.78 Mb in the plaBi Database and from 0.02 Mb to 27,602 Mb with a mean value of 1,060.38 Mb in the NCBI Genome Database. The genome size of *Liriodendron* was greater than those of 193 (84.65%) sequenced angiosperms and 403 (88.18%) sequenced land plants in these two databases, respectively.!

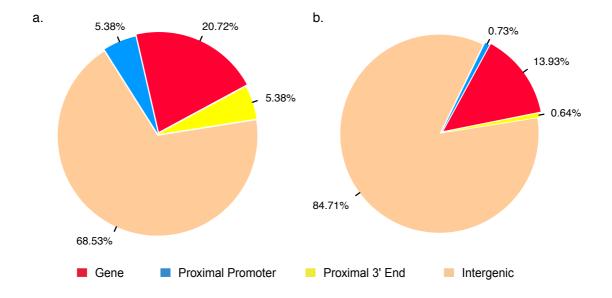


Supplementary Figure 6. Syntenic path dotplot of Amborella versus Vitis.

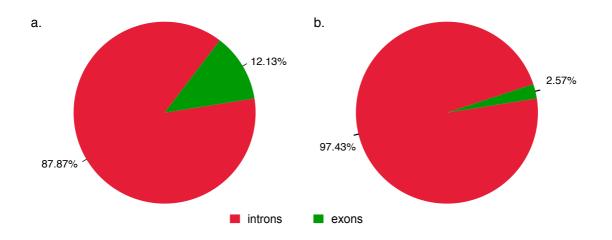
The y-axis represents the 19 *Vitis* chromosomes, the x-axis represents the *Amborella* scaffolds. Only the one hundred longest scaffolds were used. The *Vitis* chromosomes and *Amborella* scaffolds have been separately reordered to illustrate the 3:1 syntenic depth relationship in the comparison of *Vitis* to *Amborella* as much as possible.



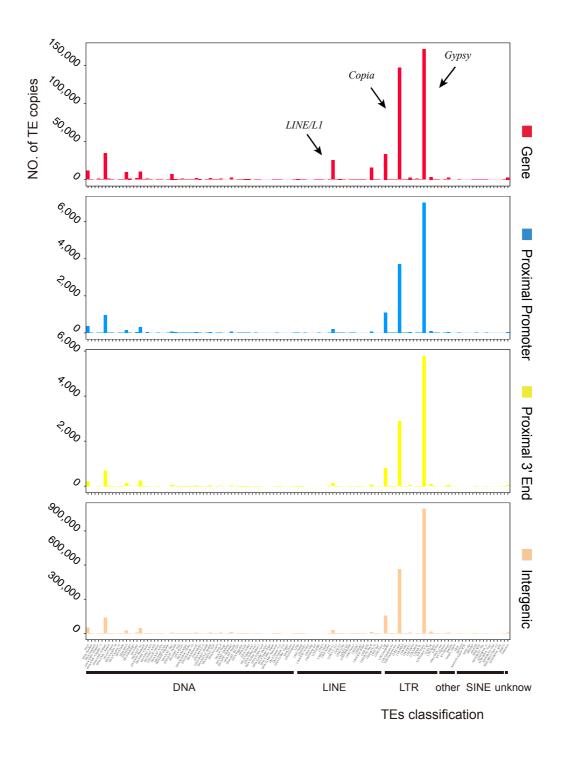
Supplementary Figure 7. Syntenic path dotplot of *Liriodendron* **versus** *Vitis.* The y-axis represents the 19 *Vitis* chromosomes, the x-axis represents the one hundred longest scaffolds of *Liriodendron*. The *Vitis* and *Liriodendron* scaffolds have been separately reordered to illustrate the 3:2 syntenic depth relationship in the comparison of *Vitis* to *Liriodendron* as much as possible.


Supplementary Figure 8. 4DTV-based age distribution in *Liriodendron-Liriodendron, Liriodendron-Amborella* and *Liriodendron-Vitis*.

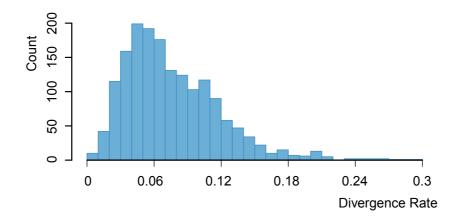
The X-axis shows the 4DTV values (with a bin of 0.05), while the Y-axis shows the number of paralogous gene pairs. The peak in *Liriodendron-Liriodendron* is 0.25 corresponding to $75\sim77$ Mya referring to the splitting time between *Liriodendron* and *Amborella* (~180 Mya with a peak of 0.6) and grape (~154 Mya with a peak of 0.5).


Supplementary Figure 9. Phylogenetic analysis of *Liriodendron* LTR retrotransposons.

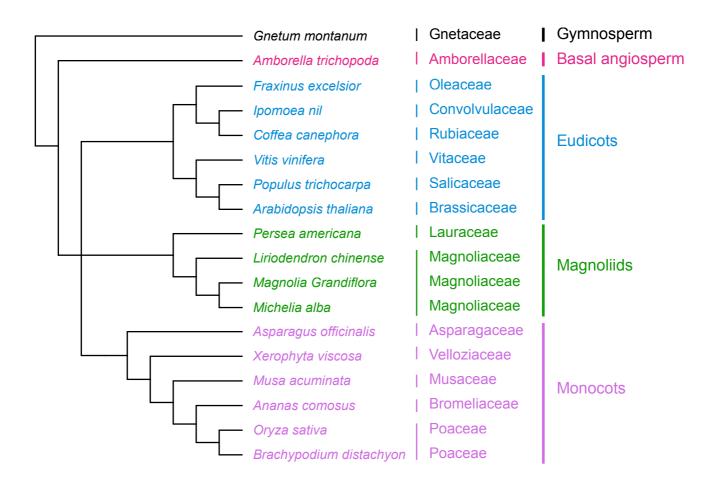
The unrooted phylogenetic tree of *Gypsy* and *Copia* elements was constructed on the basis of the reverse-transcriptase domain sequences. The scale on the top indicates 0.2 substitution per site.


Supplementary Figure 10. An uneven TE distribution across the *Liriodendron* genome.

The pie graph demonstrates four separate *Liriodendron* genomic regions, i.e., gene (red), proximal promoter (blue), proximal 3' end (yellow) and intergenic regions (orange) accounted for the proportion of the *Liriodendron* genome (a) and TEs present in these four regions accounted for the proportion of total TEs (b). Among the TEs present in *Liriodendron* genome, 84.71% (2,834,477) located in intergenic regions, 0.73% (24,426) located in proximal promoter, 13.93% (466,111) located in genic regions and the rest 0.63% (21,081) located in proximal 3' end. If TEs are randomly distributed in *Liriodendron* genome, then the expected TE proportion of these four regions in the *Liriodendron* genome, i.e., 68.52% (2,292,744), 5.38% (180,020), 20.72% (693,311) and 5.38% (180,020). Anyway, the chi-square test between the observed and expected TEs ($\chi^2 = 477,260$, p-value = 0) showed an obvious difference.

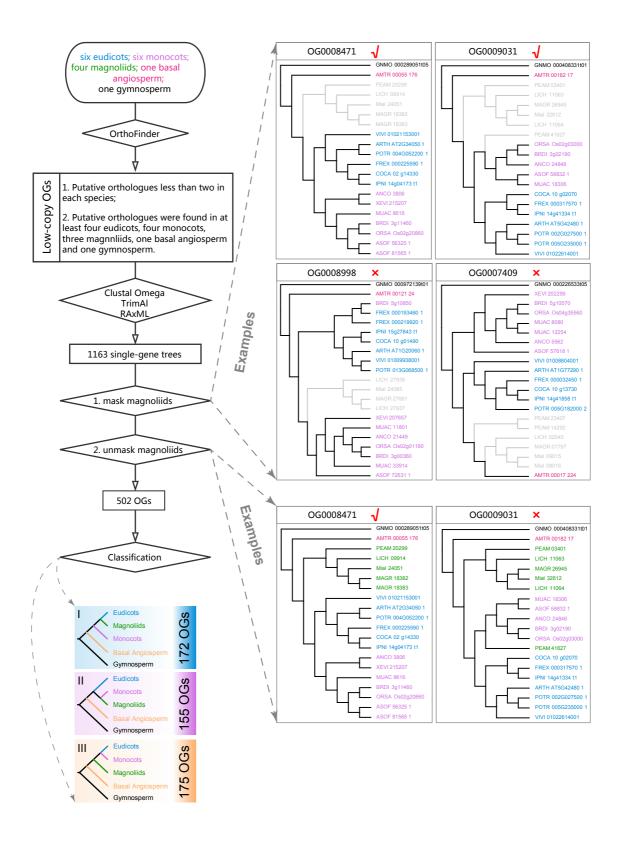

Supplementary Figure 11. TE distribution in genic regions.

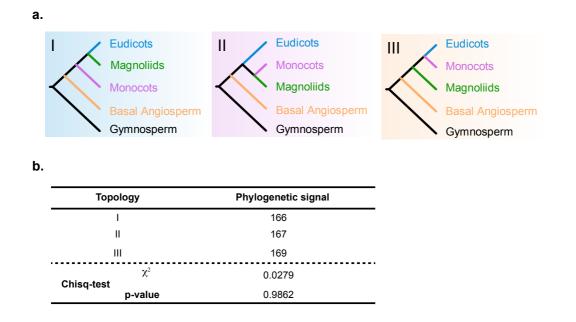
The pie graph demonstrates two separate *Liriodendron* genic regions, i.e., introns (red) and exons (green) accounted for the proportion of the *Liriodendron* genic regions (a) and TEs present in these two regions accounted for the proportion of total TEs contained in genic regions (b). Among the TEs present in genic regions (with a total number of 466,111), 2.57% (11,994) located in exons and 97.43% (454,117) located in introns. If TEs are randomly distributed in genic regions, then the expected number of TEs contained in exons and introns should be 56,539.30 and 409,571.7 due to the proportion accounted for by these two regions in the *Liriodendron* genic regions. Anyway, the chi-square test between the observed and expected number ($\chi^2 = 39,940$, p-value = 0) showed an obvious difference. The observed number of TEs located in exons is smaller than the expected number, and by contrast, the observed number of TEs located in introns is bigger than the expected number.


Supplementary Figure 12. TE family distribution in different *Liriodendron* genomic regions.

Within four *Liriodendron* genomic regions, TE copies of different families were separately counted and plotted. Arrows point to three TE families, which are *LINE/L1*, *Copia* and *Gypsy* from left to right.

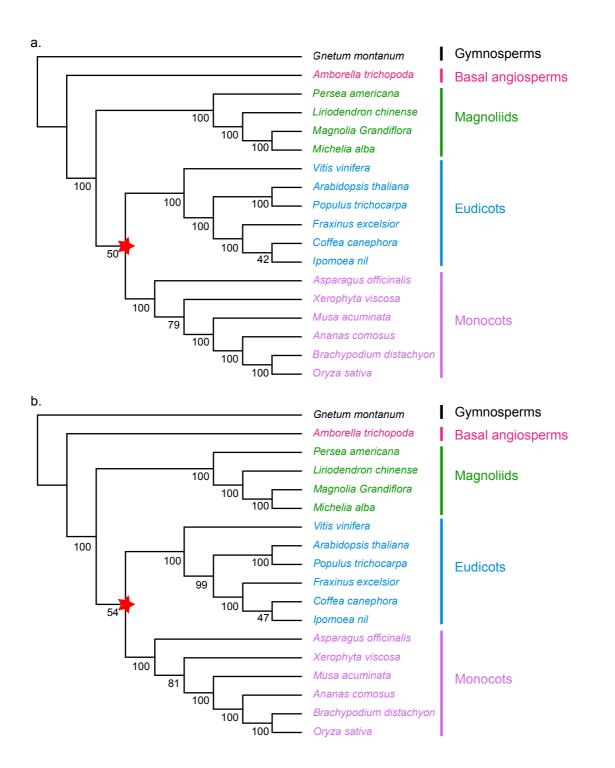
Supplementary Figure 13. LTR insertion time estimation.


Ks distributions of the complete LTR in the L. chinense genome are plotted by a window of 0.01.


Supplementary Figure 14. A cladogram depicting established relationships of 18

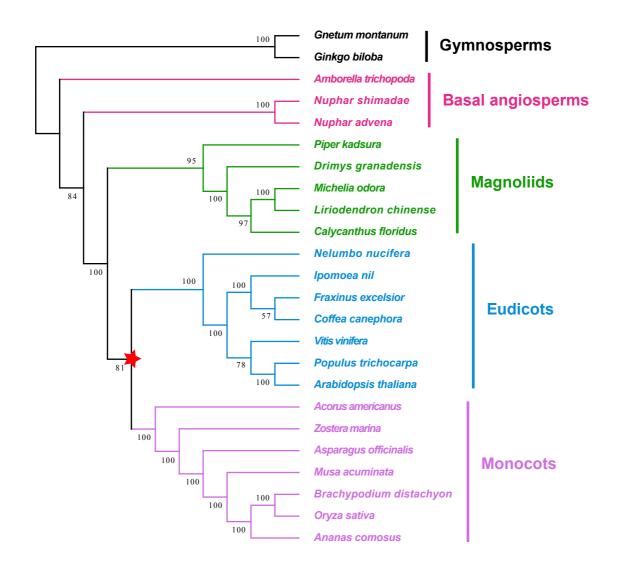
representative species.

This tree was used as the reference for selecting suitable nuclear gene markers, with uncertain relationships collapsed.


Supplementary Figure 15. The schematic flow of phylogenetic analysis and examples of single-gene trees selection.

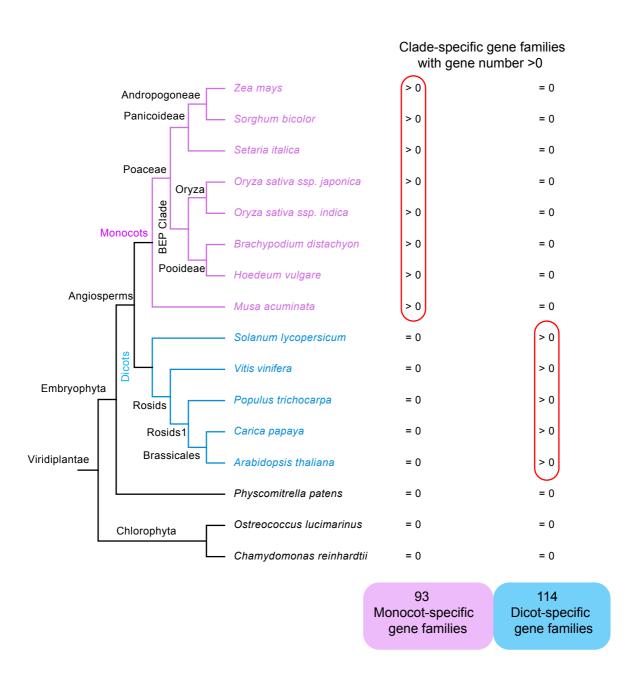
Supplementary Figure 16. The distribution of phylogenetic signal for three

alternative topological hypotheses on the angiosperm lineage.

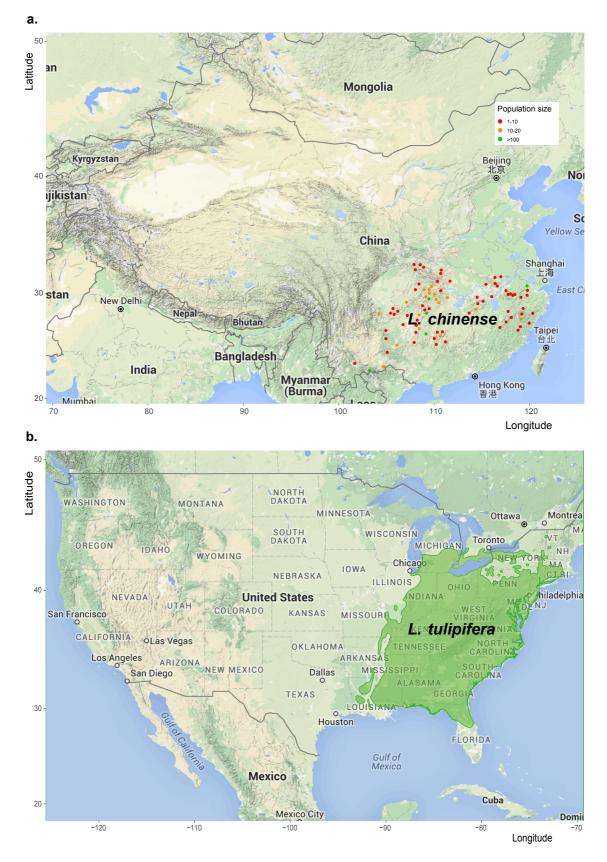

(a) Three alternative topologies are: a clade of magnoliids and eudicots as the sister group to monocots; a clade of magnoliids and monocots as the sister group to eudicots; magnoliids as the sister group to the clade of eudicots and monocots. (b) Distribution of genes supporting each of three alternative hypotheses for the 502 low-copy OG dataset.

Supplementary Figure 17. Phylogenetic trees based on the 502-OG and 481-OG

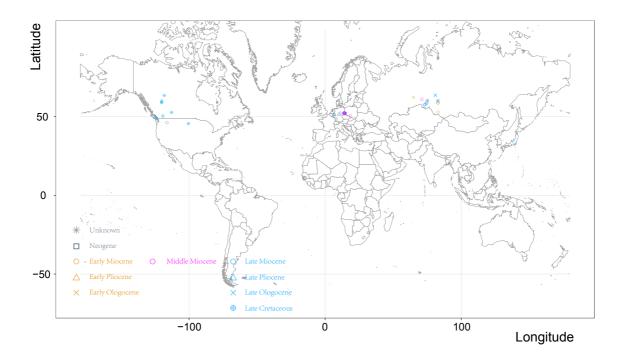
datasets of 18 land plant species.


(a) Protein sequences of 502 low-copy OGs were separately aligned, trimmed and used to infer single-gene phylogenies. Then, only the orthologue gene with the shortest branch length in each species was retained in each OGs for following species tree estimation using ASTRAL. (b) OGs with outlier Δ GLS values were excluded and the remaining 481 OGs were used to estimate the species tree using ASTRAL. Numbers associated with nodes are bootstrap values.

Supplementary Figure 18. The phylogenetic tree based on 78 chloroplast genes

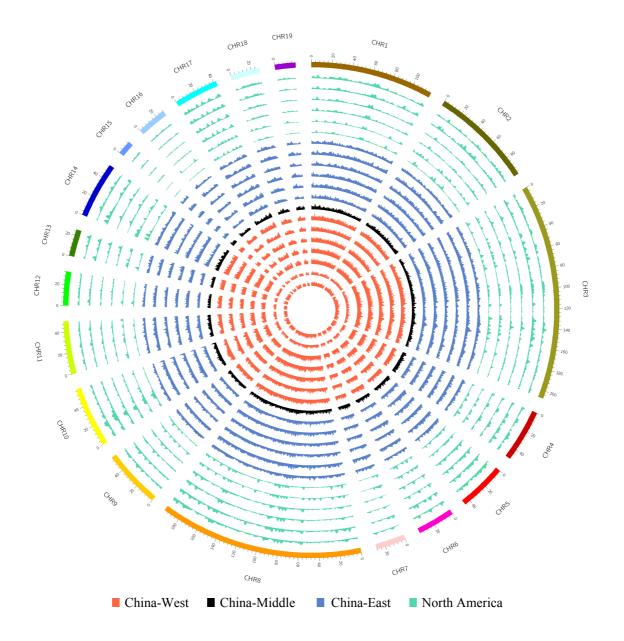

from 24 species.

The phylogenetic tree was constructed from 78 concatenated chloroplast gene sequences that were shared among 24 plant species using the ML method. Numbers associated with nodes are bootstrap values.


Supplementary Figure 19. Monocot- and dicot-specific gene family selection.

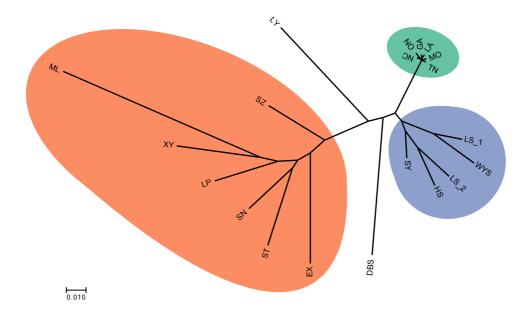
We found monocot- and dicot-specific gene families based on phylogenetic profiles in the Monocots PLAZA 3.0 database. We manually selected all the species that came from the target clade, i.e., monocots or dicots, for identifying clade-specific gene families with all species included and setting the gene number =0 within nontarget clade species. Finally, we separately obtained 93 monocot- and 114 dicot-specific gene families.

Supplementary Figure 20. Natural distribution of the two Liriodendron species.

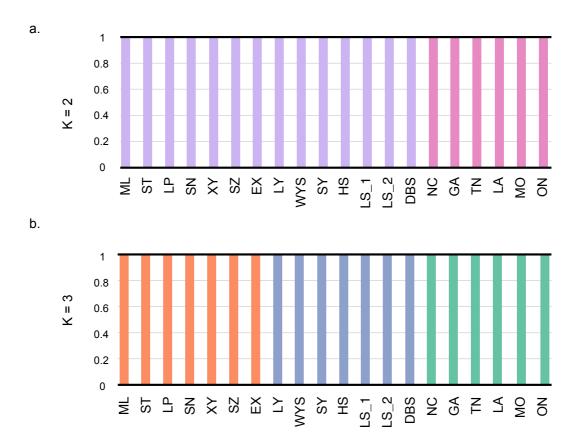

The natural distribution maps of *L. chinense* (a) and *L. tulipfera* (b) were separately plotted. The *L. chinense* natural distribution data was obtained from Hao *et al.* (1995) and the *L. tuplifera* natural distribution data were downloaded from the Geosciences and Environmental Change Science Center (GECSE; http://esp.cr.usgs.gov/) database.

Supplementary Figure 21. Distribution of extinct *Liriodendron* species in high-

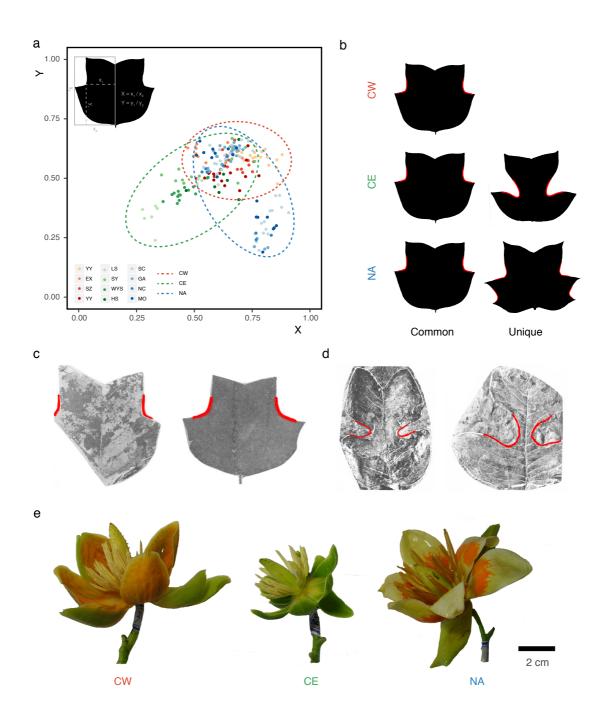
latitude regions before the Late Tertiary.


Different colors and shape symbols represented different geological ages which were inferred from the fossils. The data were downloaded from the Fossilworks database.

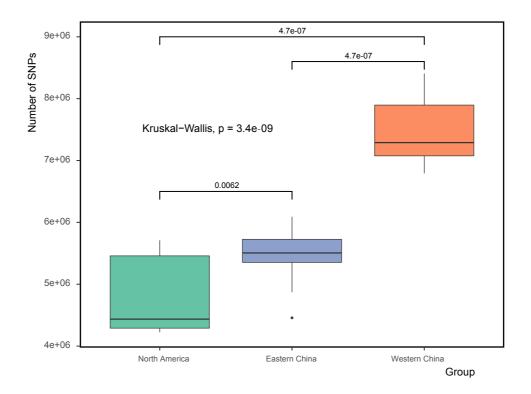
Supplementary Figure 22. Overview of SNP distribution among 20 resequenced


individuals.

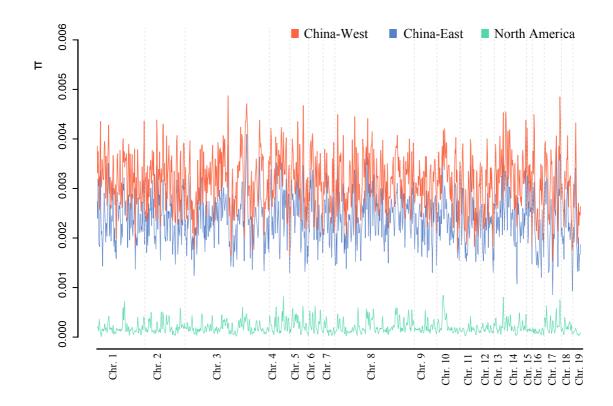
The 20 inner tracks depict SNP frequency distributions for 1-Mb non-overlapping windows in the seven *L. chinense* that came from Western China, one *L. chinense* that came from Central China, six *L. chinense* that came from Eastern China, and six *L. tuplifera* that came from North America.


Supplementary Figure 23. A SNP tree reconstructed using RAxML.

The ML tree of all accessions constructed from whole-genome SNPs. Accessions coming from the same geographic areas are grouped together and colored corresponding to colors used in Figure 3.


Supplementary Figure 24. Population structure analysis.

Varying the number of presumed ancestral populations (K) showed that 20 *Liriodendron* resequenced individuals were divided into two groups, *L. chinense* and *L. tulipifera*, when K = 2, and three distinct groups when K = 3 (b).


Supplementary Figure 25. Phenotypic Analysis.

(a) The relative positions of the lateral sinus located in the left half of the leaf were plotted. The X-axis represents the ratio of the vertical distance from the lateral sinus to the primary vein (x_1) to the vertical distance from the lateral lobe to the primary vein (x_2) . The Y-axis represents the ratio of the vertical distance from the lateral sinus to the leaf blade base (y_1) to the vertical distance from the apical lobe to the leaf blade base (y_2) . (b) The representative leaf shapes of three groups were plotted respectively. (c) and (d) were the leaf shapes of two extinct *Liriodendron* species, *L. hesperia* and *L. giganteum*, respectively. (e) The representative mature floral organs of three *Liriodendron* groups. The experiment was repeated independently at least three times with similar results.

Supplementary Figure 26. Individual differences within three *Liriodendron* groups.

The X-axis represents the three *Liriodendron* groups supported by the SNP tree, PCA and structure analysis. Six, six, and seven individuals were separately included within these three group from left to right. The Y-axis represents inter-individual SNPs within three groups. The number of inter-individual SNP ranged from 4,224,002 to 5,710,354 with a mean value of 4,766,498 in the North America group, from 4,456,851 to 6,091,489 with a mean value of 5,485,145 in the Eastern China group, and from 6,793,165 to 8,407,025 with a mean value of 7,446,489 in the Western China group.

Supplementary Figure 27. Distribution of π along 20 *Liriodendron* chromosomes. Distributions of π along 20 *Liriodendron* chromosomes among CW, CE and NA groups, respectively are plotted. These values are calculated in a 2-Mb sliding window with a 1-Mb step.