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Supplementary Figure 1: Schematic of modelling procedure for mapping present and future 
environmental suitability for dengue. 
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Supplementary Figure 2: (a) locations of the 13,604 occurrence locations used in the Boosted Regression 
Tree modelling procedure; (b) number of unique dengue occurrence locations per year according to world 
region.
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Supplementary Figure 3: Effect plots for covariates entered into the ensemble of Boosted 
Regression Tree models, including (a) environmental suitability for Aedes aegypti (ranging 0-1); (b) 
environmental suitability for Ae. albopictus (ranging 0-1); (c) Gross Domestic Product per 5km x 5km 
gridded cell (USD); (d) probability of urban habitat type (ranging 0-1); (e) minimum relative humidity 
(proportion saturation humidity ranging 0-1,000) (f) annual cumulative precipitation (mm); (g) 
temperature suitability for dengue transmission (ranging 0-1). Shaded areas indicate the 95% 
confidence interval around predictions for the ensemble of 100 models run.  
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Supplementary Figure 4: 5 x 5km covariate maps for layers entered into the ensemble of Boosted 
Regression Tree models for 2015. (a) environmental suitability for Aedes aegypti; (b) environmental 
suitability for Ae. albopictus; (c) Gross Domestic Product per cell in $USD millions; (d) annual 
cumulative precipitation in mm; (e) minimum relative humidity; (f) temperature suitability for 
dengue transmission; (g) urban habitat probability. 
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Supplementary Figure 5: Maps of uncertainty in suitability estimates, shaded according to 
suitability estimates and uncertainty. Areas in white have low uncertainty and low suitability, 
while areas in purple have high uncertainty and high suitability. Pink areas have low 
uncertainty and high suitability, while blue areas have low suitability and high uncertainty.  
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Supplementary Figure 6: Predicted Temperature Suitability Index (TSI) at different fixed 
temperatures as determined by the model from Brady et al. The optimal temperatures for dengue 
transmission are predicted to be 34.0˚C and 30.6˚C for Ae. aegypti and Ae. albopictus respectively 

which fall in the middle-to-upper range within previous temperature- based dengue transmission 
models. 
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Supplementary Table 1: Global Climate Models used for projection of climate variables. 
 

 

Model 
 

Institution 
 

Resolution, 

Lat x Long 

 

Reference (see supplementary references for full 

citation) 

 

1 
 

BCC-CSM 1.1 
 

Beijing Climate Center, China 

Meteorological Administration 

 

2.8125 x 2.8125 
 

Wu T (2012 

 

2 
 

BCC-CSM 1.1(m) 
 

Beijing Climate Center, China 

Meteorological Administration 

 

2.8125 x 2.8125 
 

Wu T (2012 

 

3 
 

CSIRO-Mk3.6.0 
 

Commonwealth Scientific and 

Industrial Research Organisation 

and the Queensland Climate 

Change Centre of Excellence 

 

1.875 x 1.875 
 

Collier MA et al. (2011) 

 

4 
 

FIO-ESM 
 

The First Institute of 

Oceanography, SOA, China 

 

2.812 x 2.812 
 

Song Z, Qiao F, Song Y (2012) 

 

5 
 

GFDL-CM3 
 

Geophysical Fluid Dynamics 

Laboratory 

 

2.0 x 2.5 
 

Donner LJ et al. (2011 

 

6 
 

GFDL-ESM2G 
 

Geophysical Fluid Dynamics 

Laboratory 

 

2.0 x 2.5 
 

Dunne JP et al. (2012) 

 

7 
 

GFDL-ESM2M 
 

Geophysical Fluid Dynamics 

Laboratory 

 

2.0 x 2.5 
 

Dunne JP et al. (2012) 

 

8 
 

GISS-E2-H 
 

NASA Goddard Institute for 

Space Studies 

 

2.0 x 2.5 
 

Schmidt GA et al. (2006) 

 

9 
 

GISS-E2-R 
 

NASA Goddard Institute for 

Space Studies 

 

2.0 x 2.5 
 

Schmidt GA et al. (2006) 

 

10 
 

HadGEM2-ES 
 

Met Office Hadley Centre 
 

1.2414 x 1.875 
 

Collins WJ et al. (2011) 
 

11 
 

IPSL-CM5A-LR 
 

Institut Pierre-Simon Laplace 
 

1.875 x 3.75 
 

Dufresne JL et al. (2013) 
 

12 
 

IPSL-CM5A-MR 
 

Institut Pierre-Simon Laplace 
 

1.2587 x 2.5 
 

Dufresne JL et al. (2013) 
 

13 
 

MIROC-ESM 
 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology 

 

2.8125 x 2.8125 
 

Watanabe S et al. (2011) 

 

14 
 

MIROC-ESM-CHEM 
 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology 

 

2.8125 x 2.8125 
 

Watanabe S et al. (2011) 

 

15 
 

MIROC5 
 

Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

 

1.4063 x 1.4063 
 

Watanabe M et al. (2010) 

 

16 
 

MRI-CGCM3 
 

Meteorological Research Institute 
 

1.125 x 1.125 
 

Yukimoto S (2012) 
 

17 
 

NorESM1-M 
 

Norwegian Climate Centre 
 

1.875 x 2.5 
 

Kirkevag A, et al. (2008) 

Seland O, et al. (2008) 
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