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SUPPLEMENTRAY NOTES 

Supplementary Note 1. Characterization of bacterial taxonomic and genetic capacity  

In months 3-7, 71% of samples were from infants receiving exclusive breast milk, exclusive 

formula, or a combination of breast milk and formula (Extended Data Figure 1a). From months 4-

10, solid foods were introduced alongside breast milk and/or formula and only 9% of samples were 

from infants still not receiving solids at the time of sample collection. By 8.3 months, all samples 

were from infants receiving solid foods and by month 18, 88% of samples were from infants with a 

solids only diet (Extended Data Figure 1a). Bacterial richness (number of operational taxonomic 

units; OTUs) and diversity (Shannon index) increased rapidly over the first year of life, before 

stabilizing and increasing only marginally thereafter (Extended Data Figure 1b). Months 3 to 12 

were characterised by declining Actinobacteria (average relative abundance of 53% at month 3 to 

27% at month 12) and Proteobacteria (15% to 6%), coupled to increased Firmicutes (26% to 55%) 

(Extended Data Figure 1c). Bifidobacteria accounted for 97% of all Actinobacteria, with B. 

longum, B. bifidum, and B. breve predominantly accounting for the reduced temporal relative 

abundance within this phylum. From 20 months of life and onward, Actinobacteria (~21% relative 

abundance), Proteobacteria (~4%), and Firmicutes (~61%) remained stable. The abundance of 

Bacteroidetes and Verrucomicrobia increased gradually from month 3-40 of life to ~10% and ~3% 

relative abundance, respectively. Despite the dynamic nature of bacterial taxa, the metabolic 

capacity remained relatively consistent throughout sampling, especially after month 20 (Extended 

Data Figure 1d). ATP-binding cassette (ABC) transporters and two-component system (TCS) 

showed the greatest change, with both pathways showing comparable decreases in relative 

abundance from 3 to 20 months of life and remaining stable thereafter. ABC-transporter and TCS 

are involved in detection and signalling, such as detoxification peptide antibiotics produced by 

other resident bacteria in the gut microbiome 1. ABC transporter gene expression is also regulated 

by a TCS in response to sensing a signal and the simultaneous decline in these pathways suggests 

that microbial sensing may be most important during early life, when the gut microbiome is at its 



most dynamic. The stable metabolic capacity after the month 20 of life is comparable to data from 

adult populations 2. This suggests that metabolic functions in declining species are replaced by other 

species in the microbiome.  

 

Supplementary Note 2. Dirichlet multinomial mixtures (DMM) clustering of metagenomic 

sequencing data 

The DMM modelling was also performed on the metagenomic sequencing data. Running 

DMM modelling on this dataset found microbiome profiles formed 18 unique clusters (based on 

lowest Laplace approximation) (Extended Data Figure 2a-b). The metagenomic sequencing 

analysis validated the three microbiome phases as described based on 16S rRNA gene sequencing 

data (Extended Data Figure 2c). In both datasets, Bifidobacterium dominated clusters in the 

developmental phase, Tyzzerella and Eggerthella dominated clusters in the transitional phase, and 

Faecalibacterium and Ruminococcus dominated clusters in the stable phase. The exact age when 

the infant microbiome reaches maturity has not been determined, but has been suggested to 

transition toward an adult-like profile between 1-3 years of life 3,4. While the exact age is likely to 

vary between individuals, in the TEDDY population the infant microbiome was increasingly 

personalized and mature over the first year of life. After year one of life, individuals had a more 

specific and consistent microbiome signature, with notable dominance of taxa within 

Ruminococcaceae, Lachnospiraceae, Bacteroidaceae, and Verrucomicrobiaceae. The increased 

stability and specific abundant bacteria observed after month 31 of life is more comparable to data 

from adult populations 4. 

 

 

Supplementary Note 3. Additional analysis of significant covariates association with the 

microbiome in early life  



 We performed analysis of covariates associated with modifying the development of the gut 

microbiome from 3 to 40 months of age, employing 16S rRNA gene sequencing (at the genus level) 

and whole genome shotgun metagenomics (at the species and functional level). In general, sporadic 

but statistically significant associations with a number of covariates including maternal, perinatal, 

gender, diet, supplements, environmental, and clinical factors were observed during different 

developmental stages. While each of these factors was not necessarily consistent in their 

significance of association by EnvFit when projected by genus, species, or functional metagenomes, 

they bear further mention nonetheless. Consistent with the companion manuscript by Vatanen et al., 

at the functional level only breast milk feeding retained significance by EnvFit modelling (Figure 

2c). 

Breast-feeding was the most significant variable associated with gut microbiome 

development and is discussed in detail in the main manuscript text.  Here, we perform additional 

analysis of all covariates that were significant at multiple time points and/or consistently significant 

by 16S rRNA gene sequencing and metagenomics. This corresponded to birth mode, geographical 

location, living with furry pets, living with siblings, and infant probiotic use. As infant probiotic use 

is analysed in the companion Vatanen et al. manuscript, we focus here on the other key variables. 

 

Birth mode shaped the development of the microbiome through the first year of life, driven by 

Bacteroides sp. 

Birth mode was significantly associated with the gut microbiome over the first year of life 

(Supplementary Table 1). Despite the high rate of maternal T1D (7%) and gestational diabetes 

(6%), this covariate was not associated with offspring microbiome profiles at any time point. 

Bacteroides and Parabacteroides showed higher relative abundance in vaginally delivered infants, 

whereas Enterococcus and Clostridium were higher in caesarian delivered infants (Supplementary 

Table 2 and Extended Data Figure 5a). A total of 29 species were significantly different between 

caesarian and vaginal delivery between 3 to 14 months of life, of which 18 Bacteroides spp. and 6 



Parabacteroides spp. were higher in vaginally delivery infants (full list of significant taxa and 

associated P values presented in Supplementary Table 2). B. vulgatus, B. fragilis, B. 

thetaiotaomicron, B. xylanisolvens, B. ovatus, and B. uniformis were the most abundant Bacteroides 

spp. and were all significantly higher in vaginal infants throughout the first year of life. B. fragilis 

showed especially stark delayed establishment in caesarian infants from 3 to 10 months of life 

(Extended Data Figure 5b). 

It has been suggested that ~20% of vaginally delivered infants lack Bacteroides and are thus 

more comparable to caesarian infants over the first year of life 5. We extended the birth mode 

analysis further to explore this and classified samples as positive (any Bacteroides reads) or 

negative (no Bacteroides reads). At months 3-6, 29% of vaginal infants were positive for 

Bacteroides, compared to 54% of caesarian infants (P <0.001). Samples within vaginal and 

caesarian groups clustered distinctly, with samples increasingly clustering by Bacteroides status 

through the early time points, regardless of birth mode (Extended Data Figure 5c). Furthermore, 

the presence of Bacteroides drove microbiome development, with Bacteroides positive samples 

associated with increased temporal richness and diversity, regardless of vaginal or caesarian birth 

(Extended Data Figure 5d). Specifically, the temporal richness (developmental phase P = 0.539, 

transitional phase P = 0.606, and stable phase P = 0.470) and diversity (developmental phase P = 

0.894, transitional phase P = 0.962, and stable phase P = 0.730) was not significantly different 

between birth modes. However, Bacteroides positive samples had significantly increased richness 

in the developmental phase only (developmental phase P <0.001, transitional phase P = 0.129, and 

stable phase P = 0.063) and significantly higher diversity in all phases (developmental phase P = 

0.004, transitional phase P = 0.009, and stable phase P = 0.002), compared to that in samples 

without Bacteroides (Extended Data Figure 5d). Thus, while vaginally delivered infants are more 

likely to be colonised by Bacteroides, if an infant born by caesarian has detectable Bacteroides, 

they will show comparable microbiome development to the Bacteroides positive vaginal infants. By 

the start of the transitional phase at months 15-18, the majority of samples were Bacteroides 



positive and comparable between birth mode groups, where 91% of vaginal and 87% of caesarian 

infants had detectable Bacteroides. By the start of the stable phase at month 31, 94% of vaginal and 

97% of caesarian infants had detectable Bacteroides.  

For microbiota age and MAZ, caesarean infants had significantly increased maturation in 

the developmental phase (microbiota age P = 0.003 and MAZ P = 0.002) and no significance was 

found in the transitional phase (P = 0.200 and P = 0.146) (Extended Data Figure 5e). Despite the 

initial delayed microbiome maturation, vaginal infants had significantly increased maturation 

during the stable phase when compared to caesarean infants (P <0.001 for both microbiota age and 

MAZ). Detectable Bacteroides was also associated with increased microbiome maturation 

throughout sampling, reaching significance in the developmental phase (microbiota age P = 0.031 

and MAZ P = 0.013; Extended Data Figure 5e). 

No covariate explained why some vaginal infants had detectable Bacteroides and others did 

not. For instance, the detection of Bacteroides in vaginal infants was not explained by breast milk 

status (Extended Data Figure 6a). Infants who never received breast milk had elevated 

Bacteroides, but low numbers of infants (n = 17, 9 vaginal and 8 caesarian) precluded robust 

statistical comparisons of this group. The changes in relative abundance of the six most dominant 

Bacteroides spp. were consistent between each geographical location (Extended data Figure 6b) 

and none of the dominant Bacteroides spp. were significantly associated geographical location at 

any of the time windows (Supplementary Table 2). However, while the increase in Bacteroides 

relative abundance existed across 5/6 geographical locations, opposing trends were found in infants 

from Washington (Extended data Figure 6c). This is in line with published data from single 

locations, with existing studies primarily supporting overall increased Bacteroides in vaginally 

delivered infants 5–10, but some studies (and hence locations) finding no associations 11,12. Thus, the 

location of single geographical cohorts may account for why some studies fail to find the 

Bacteroides association, underscoring the importance of multi-geographical cohorts.  



The abundance of Bacteroides in the cohort is also likely to have important consequences 

when comparing birth mode. While we adjusted for maternal and post-natal factors that may 

influence Bacteroides abundance, it is possible that the differences observed within the caesarian 

population reflect unavailable metadata, such as the underlying clinical indication for caesarian or a 

laboured birth 11,12. In line with the findings in the current study, existing work has shown that 

maternal Bacteroidia strains are only transmitted in vaginal deliveries, whereas caesarian infants 

gradually acquire maternal Bacteroidia strains over the first year of life 13. Thus, direct transmission 

of Bacteroides from the mother at birth during vaginal delivery may account for the overall 

increased Bacteroides spp. over the first year of life. 

 

Geographical location and household exposures contribute to microbiome development in 

early life  

TEDDY recruitment locations are all typical of Western populations (e.g., comparable 

clinical practice, sanitation, culture, etc.) and 62% of known ethnicity reported as non-Hispanic 

white (Extended Data Table 1). It has been suggested that US and European populations show 

comparable microbiome structure, but developing nations are distinct from Western populations 14. 

In the current cohort, differences between specific geographical locations occurred from 3-22 

months of life (Supplementary Table 1). Species associated with geographical location were found 

sporadically across time points (Supplementary Table 2) and diversity, microbiota age, and MAZ 

had comparable trajectories across each geographical location (Extended Data Figure 7a-c). The 

prevalence of bacterial genera, also termed the core microbiome (genera present in >90% of 

samples), was comparable between geographical locations through each of the three phases 

(Supplementary Table 4). With the exception of Washington in the developmental phase, 

Bifidobacterium was a found in the core microbiome in all locations at all phases. As well as 

Bifidobacterium, Ruminococcus gnavus group and Erysipelatoclostridium were core genera in all 

six locations during the transitional phase (Supplementary Table 4). These genera were also core 



in all locations during the stable phase, along with Bacteroides, Anaerostipes, Blautia, 

Lachnospiraceae UCG-008, and Intestinibacter (Supplementary Table 4). 

The impact of household exposures (e.g., siblings and pets) on infant microbiome 

development has received growing interest over recent years, owing to the potential influence of 

these factors in developing allergic diseases and asthma 15–18. In the current study, 57% of infants 

were living with at least one sibling (Extended Data Table 1) and this covariate was significantly 

associated with microbiome profiles from month 3 to 18 of life (Figure 2). While the temporal 

longitudinal bacterial diversity was comparable (Extended Data Figure 7d), months 15-30 (i.e., 

the transitional phase) accounted for the vast majority of significantly altered bacterial taxa 

(Supplementary Table 2). During this period, in months 15-18, F. prausnitzii (P = 0.001), B. 

adolescentis (P = 0.001), Eubacterium siraeum (P <0.001) and Dorea formicigenerans (P = 0.001) 

were most significantly associated with infants with living siblings (Supplementary Table 2). 

These taxa were highest in the latter months and infants’ living with sibling showed accelerated 

microbiome maturation, however, this maturation did not reach significance (P = 0.073; Extended 

Data Figure 7e-f). While the concurrent sampling of siblings and homes was not performed in the 

current study, existing data has demonstrated that cohabiting family members can share microbiota 

with each other 19, providing a likely mechanism for the reported difference. 

Living with furry pets also influenced the gut microbiome up to month 10 of life, similar to 

recent works, including the CHILD cohort (Canadian infants) 20,21. In the current study, cohabiting 

with furry pets, represented primarily by a cat and/or dog (90% of all furry positive samples), was 

significantly associated with the microbiome by 16S rRNA gene sequencing at months 3-6 

(Supplementary Table 2). Bifidobacterium was the most significantly altered taxa and was 

reduced in infants with furry pets, supporting existing data 21. Accordingly, Bifidobacterium was 

abundant in early life samples and during the developmental phase living with furry pets was 

associated with significantly increased diversity (P = 0.021), microbiota age (P <0.001), and MAZ 

(P <0.001). Furthermore, living with furry pets was not found to significantly alter the diversity, 



microbiota age, or MAZ in either the transitional or stable phases (P > 0.05; Extended Data Figure 

7g-i). Given the stochasticity of the infant exposures during development and the highly individual 

nature of the microbiome between humans and animals, it is intriguing that influences of household 

exposures (e.g., sibling and pets) are reproducibly found across studies (and thus different 

populations). 
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