
Letter
https://doi.org/10.1038/s41586-019-1310-4

Genetic analyses of diverse populations improves 
discovery for complex traits
Genevieve L. Wojcik1,35, Mariaelisa Graff2,35, Katherine K. Nishimura3,35, Ran Tao4,5,35, Jeffrey Haessler3,35,  
Christopher R. Gignoux1,6,35, Heather M. Highland2,35, Yesha M. Patel7,35, Elena P. Sorokin1, Christy L. Avery2,  
Gillian M. Belbin8,9, Stephanie A. Bien3, Iona Cheng10, Sinead Cullina8,9, Chani J. Hodonsky2, Yao Hu3, Laura M. Huckins11,  
Janina Jeff8,9, Anne E. Justice2, Jonathan M. Kocarnik3, Unhee Lim12, Bridget M. Lin2, Yingchang Lu9, Sarah C. Nelson13,  
Sung-Shim L. Park7, Hannah Poisner8,9, Michael H. Preuss9, Melissa A. Richard14, Claudia Schurmann9,15,16,  
Veronica W. Setiawan7, Alexandra Sockell1, Karan Vahi17, Marie Verbanck9, Abhishek Vishnu9, Ryan W. Walker9,  
Kristin L. Young2, Niha Zubair3, Victor Acuña-Alonso18, Jose Luis Ambite17, Kathleen C. Barnes6, Eric Boerwinkle19,  
Erwin P. Bottinger9,15,16, Carlos D. Bustamante1, Christian Caberto12, Samuel Canizales-Quinteros20, Matthew P. Conomos13,  
Ewa Deelman17, Ron Do9,11, Kimberly Doheny21, Lindsay Fernández-Rhodes2,22, Myriam Fornage14, Benyam Hailu23,  
Gerardo Heiss2, Brenna M. Henn24, Lucia A. Hindorff25, Rebecca D. Jackson26, Cecelia A. Laurie13, Cathy C. Laurie13,  
Yuqing Li10,27, Dan-Yu Lin2, Andres Moreno-Estrada28, Girish Nadkarni9, Paul J. Norman6, Loreall C. Pooler7,  
Alexander P. Reiner13, Jane Romm21, Chiara Sabatti1, Karla Sandoval28, Xin Sheng7, Eli A. Stahl11, Daniel O. Stram7,  
Timothy A. Thornton13, Christina L. Wassel29, Lynne R. Wilkens12, Cheryl A. Winkler30, Sachi Yoneyama2, Steven Buyske31,36, 
Christopher A. Haiman32,36, Charles Kooperberg3,36, Loic Le Marchand12,36, Ruth J. F. Loos9,11,36, Tara C. Matise33,36,  
Kari E. North2,36, Ulrike Peters3,36, Eimear E. Kenny8,9,11,34,36* & Christopher S. Carlson3,36*

1Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. 2Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 3Division of 
Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 4Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA. 5Vanderbilt Genetics 
Institute, Vanderbilt University Medical Center, Nashville, TN, USA. 6Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 7Department 
of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. 8The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, 
NY, USA. 9The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 10Department of Epidemiology and Biostatistics, University 
of California San Francisco, San Francisco, CA, USA. 11Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 12Epidemiology Program, 
University of Hawaii Cancer Center, Honolulu, HI, USA. 13Department of Biostatistics, University of Washington, Seattle, WA, USA. 14Brown Foundation Institute for Molecular Medicine, The 
University of Texas Health Science Center, Houston, TX, USA. 15Hasso-Plattner-Institute for Digital Engineering, Digital Health Center, Potsdam, Germany. 16Hasso-Plattner-Institute for Digital Health 
at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 17Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA. 18Escuela Nacional de 
Antropologia e Historia, Mexico City, Mexico. 19Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA. 20Instituto Nacional de Medicina 
Genómica, Mexico City, Mexico. 21Center for Inherited Disease Research, Johns Hopkins University, Baltimore, MD, USA. 22Department of Biobehavioral Health, The Pennsylvania State University, 
University Park, PA, USA. 23NIH National Institute on Minority Health and Health Disparities, Bethesda, MD, USA. 24Department of Anthropology, University of California Davis, Davis, CA, USA. 25NIH 
National Human Genome Research Institute, Bethesda, MD, USA. 26Center for Clinical and Translational Science, Ohio State Medical Center, Columbus, OH, USA. 27Cancer Prevention Institute 
of California, Fremont, CA, USA. 28National Laboratory of Genomics for Biodiversity (UGA-LANGEBIO), Irapuato, Mexico. 29College of Medicine, University of Vermont, Burlington, VT, USA. 30Basic 
Science Program, Frederick National Laboratory, Frederick, MD, USA. 31Department of Statistics, Rutgers University, New Brunswick, NJ, USA. 32Center for Genetic Epidemiology, Keck School of 
Medicine, University of Southern California, Los Angeles, CA, USA. 33Department of Genetics, Rutgers University, New Brunswick, NJ, USA. 34Department of Medicine, Icahn School of Medicine at 
Mount Sinai, New York, NY, USA. 35These authors contributed equally: Genevieve L. Wojcik, Mariaelisa Graff, Katherine K. Nishimura, Ran Tao, Jeffrey Haessler, Christopher R. Gignoux, Heather M. 
Highland, Yesha M. Patel. 36These authors jointly supervised this work: Steven Buyske, Christopher A. Haiman, Charles Kooperberg, Loic Le Marchand, Ruth J. F. Loos, Tara C. Matise, Kari E. North, 
Ulrike Peters, Eimear E. Kenny, Christopher S. Carlson. *e-mail: eimear.kenny@mssm.edu; ccarlson@fredhutch.org

N A T U R E | www.nature.com/nature

SUPPLEMENTARY INFORMATION
https://doi.org/10.1038/s41586-019-1310-4

In the format provided by the authors and unedited.

https://doi.org/10.1038/s41586-019-1310-4
mailto:eimear.kenny@mssm.edu
mailto:ccarlson@fredhutch.org
https://doi.org/10.1038/s41586-019-1310-4


 
Supplementary Information for Wojcik et al. “Genetic Diversity Improves Our Understanding of Complex Trait Architecture” 

1 

Supplementary Information 1 

 2 

1. Detailed PAGE Study Descriptions 3 3 

2. Phenotype Harmonization and Modeling 4 4 

3. Genotyping and Imputation 8 5 

Supplementary Figure 1: Average info from imputed data from MEGA to 1000Genomes Project 6 
within PAGE by minor allele frequency. 9 7 

4. Population Substructure 9 8 

Supplementary Figure 2: Principal Component Analysis of PAGE Populations. 10 9 

5. Meta-analysis versus Mega-analysis in Multi-ethnic Studies 10 10 

Supplementary Figure 3. Comparisons of the p-values between meta-analysis and four types of 11 
mega-analysis for MCHC (N=19,803). 11 12 

Supplementary Figure 4. Comparisons of the p-values between meta-analysis and four types of 13 
mega-analysis for MCHC with variants whose ethnic-specific minor allele frequency (MAF) 14 
differences are greater than 0.4 (N=19,803). 12 15 

Supplementary Figure 5. Quantile-quantile plots of p-values for MCHC when trait values are 16 
assumed to be heterogeneous versus homogeneous. P-values estimated from Wald test. 17 
(N=19,803) 13 18 

Supplementary Figure 6. Quantile-quantile plots of p-values for eGFR when trait values are 19 
assumed to be heterogeneous versus homogeneous. P-values estimated from Wald test. 20 
(N=27,900) 13 21 

Supplementary Figure 7. Quantile-quantile plots of p-values for FG when trait values are assumed 22 
to be heterogeneous versus homogeneous. P-values estimated from Wald test. (N=23,963) 14 23 

Supplementary Figure 8. Quantile-quantile plots of p-values for HbA1c when trait values are 24 
assumed to be heterogeneous versus homogeneous. P-values estimated from Wald test.  25 
(N=11,178) 14 26 

Supplementary Figure 9. Quantile-quantile plots of p-values for PR interval when trait values are 27 
assumed to be heterogeneous versus homogeneous. P-values estimated from Wald test. 28 
(N=17,428) 15 29 

6. Selecting Principal Components of Ancestry for Use as Covariates 15 30 

Supplementary Figure 10: Standardized principal components by population. 16 31 

Supplementary Figure 11: Correlation between SNP genotype and PC, by chromosome. 17 32 

7. Genome-wide Association Analysis 18 33 

Supplementary Figure 12: Comparison of P-values from GWAS for SUGEN (Wald test) vs. 34 
GENESIS across all traits. (Nmax=49,781; see Extended Data Table 1) 20 35 

8. Secondary Signals versus Fine-mapping 21 36 

Supplementary Figure 13: Residual signals can represent either refinement of signal or secondary 37 
alleles. 21 38 

9. Meta-analysis and Finemapping with GIANT, UK Biobank 22 39 



 
Supplementary Information for Wojcik et al. “Genetic Diversity Improves Our Understanding of Complex Trait Architecture” 

2 

Supplementary Figure 14: BMI PVE. 22 40 

Supplementary Figure 15: Finemapping for BMI. 23 41 

10. Comparison of novel and secondary variant allele frequencies in European populations 24 42 

Supplementary Figure 16: European allele frequencies of novel and secondary findings in PAGE.43 
 24 44 

11. Clinically-relevant variants and their distribution in PAGE 25 45 

Supplementary Figure 17: World map of HCP5-G frequencies within PAGE groups. 25 46 

12. Additional Acknowledgements 26 47 

Supplementary Information Bibliography 27 48 

 49 

  50 



 
Supplementary Information for Wojcik et al. “Genetic Diversity Improves Our Understanding of Complex Trait Architecture” 

3 

1. Detailed PAGE Study Descriptions 51 
 52 
BioMe Biobank: The Charles Bronfman Institute for Personalized Medicine at Mount Sinai Medical Center 53 
(MSMC), BioMeTM BioBank (BioMe) is an EMR-linked bio-repository drawing from Mount Sinai Medical 54 
Center consented patients which were drawn from a population of over 70,000 inpatients and 800,000 55 
outpatients annually. 1 The MSMC serves diverse local communities of upper Manhattan, including Central 56 
Harlem (86% African American), East Harlem (88% Hispanic/Latino), and Upper East Side (88% 57 
Caucasian/White) with broad health disparities. BioMeTM enrolled over 26,500 participants from September 58 
2007 through August 2013, with 25% African American, 36% Hispanic/Latino (primarily of Caribbean origin), 59 
30% Caucasian, and 9% of Other ancestry. The BioMeTM population reflects community-level disease 60 
burdens and health disparities with broad public health impact. Biobank operations are fully integrated in 61 
clinical care processes, including direct recruitment from clinical sites waiting areas and phlebotomy 62 
stations by dedicate Biobank recruiters independent of clinical care providers, prior to or following a clinician 63 
standard of care visit. Recruitment currently occurs at a broad spectrum of over 30 clinical care sites. Study 64 
participants of self-reported European ancestry were not included in this analysis. (dbGaP study accession 65 
number: phs000925). 66 
 67 
HCHS/SOL: HCHS/SOL: The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a multi-68 
center study of Hispanic/Latino populations with the goal of determining the role of acculturation in the 69 
prevalence and development of diseases, and to identify other traits that impact Hispanic/Latino health. 2 70 
The study is sponsored by the National Heart, Lung, and Blood Institute (NHLBI) and other institutes, 71 
centers, and offices of the National Institutes of Health (NIH). Recruitment began in 2006 with a target 72 
population of 16,000 persons of Cuban, Puerto Rican, Dominican, Mexican or Central/South American 73 
origin. Household sampling was employed as part of the study design. Participants were recruited through 74 
four sites affiliated with San Diego State University, Northwestern University in Chicago, Albert Einstein 75 
College of Medicine in Bronx, New York, and the University of Miami. Researchers from seven academic 76 
centers provided scientific and logistical support. Study participants who were self-identified Hispanic/Latino 77 
and aged 18-74 years underwent extensive psycho-social and clinical assessments during 2008-2011. A 78 
re-examination of the HCHS/SOL cohort is conducted during 2015-2017. Annual telephone follow-up 79 
interviews are ongoing since study inception to determine health outcomes of interest. (dbGaP study 80 
accession number: phs000555). 81 
 82 
MEC: The Multiethnic Cohort (MEC) is a population-based prospective cohort study including 83 
approximately 215,000 men and women from Hawaii and California. All participants were 45-75 years of 84 
age at baseline, and primarily of 5 ancestries: Japanese Americans, African Americans, European 85 
Americans, Hispanic/Latinos, and Native Hawaiians. 3,4 MEC was funded by the National Cancer Institute 86 
in 1993 to examine lifestyle risk factors and genetic susceptibility to cancer. All eligible cohort members 87 
completed baseline and follow-up questionnaires. Within the PAGE II investigation, MEC proposes to study: 88 
1) diseases for which we have DNA available for large numbers of cases and controls (breast, prostate, 89 
and colorectal cancer, diabetes, and obesity); 2) common traits that are risk factors for these diseases (e.g., 90 
body mass index / weight, waist-to-hip ratio, height), and 3) relevant disease-associated biomarkers (e.g., 91 
fasting insulin and lipids, steroid hormones). The specific aims are: 1) to determine the population-based 92 
epidemiologic profile (allele frequency, main effect, heterogeneity by disease characteristics) of putative 93 
causal variants in the five racial/ethnic groups in MEC; 2) for variants displaying effect heterogeneity across 94 
ethnic/racial groups, we will utilize differences in LD to identify a more complete spectrum of associated 95 
variants at these loci; 3) investigate gene x gene and gene x environment interactions to identify modifiers; 96 
4) examine the associations of putative causal variants with already measured intermediate phenotypes 97 
(e.g., plasma insulin, lipids, steroid hormones); and 5) for variants that do not fall within known genes, start 98 
to investigate their relationships with gene expression and epigenetic patterns in small genomic studies. 99 
For this project, MEC contributed African American, Japanese American, and Native Hawaiian samples. 100 
(dbGaP study accession number: phs000220). 101 
 102 
PAGE Global Reference Panel: The Global Reference Panel (GRP) was created by Stanford-contributed 103 
samples that can act as a population reference dataset across the globe. Therefore, this dataset includes 104 
reference individuals, without phenotypes, chosen to help infer ancestry that will aid in understanding the 105 
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diverse samples available in PAGE. The complete dataset comprises individuals of European, African, 106 
Asian, Oceanian, and Native American descent, from a total of over 50 populations. A subset of these 107 
individuals from Puno, Peru and Easter Island (Rapa Nui), Chile, are included in the PAGE samples that 108 
were whole genome sequenced in 2015. The Global Reference Panel comprises 6 sample sets: (1) a 109 
population sample of Andean individuals primarily of Quechuan/Aymaran ancestry from Puno, Peru; (2) a 110 
population sample of Easter Island (Rapa Nui), Chile; (3) individuals of indigenous origin from Oaxaca, 111 
Mexico; (4) individuals of indigenous origin from Honduras; (5) individuals of indigenous origin from 112 
Colombia; (6) individuals of indigenous origin from the Nama and Khomani KhoeSan populations of the 113 
Northern Cape, South Africa. PAGE also used samples from the Human Genome Diversity Project (HGDP) 114 
5, a subset of the Maasai from HapMap, as well as individuals sampled by the Bustamante Lab and their 115 
collaborators. The dataset comprises individuals of European, African, Asian, Oceanian, and Native 116 
American descent, from over 50 populations. Study participants were selected to reflect a family history of 117 
living in the region. The data are currently available through dbGaP (dbGaP study accession number: 118 
phs001033). 119 
 120 
WHI: The Women’s Health Initiative (WHI) is a long-term, prospective, multi-center cohort study 121 
investigating post-menopausal women’s health in the US. 6 WHI was funded by the National Institutes of 122 
Health and the National Heart, Lung, and Blood Institute to study strategies to prevent heart disease, breast 123 
cancer, colon cancer, and osteoporotic fractures in women 50-79 years of age. WHI involves 161,808 124 
women recruited between 1993 and 1998 at 40 centers across the US. The study consists of two parts: the 125 
WHI Clinical Trial which was a randomized clinical trial of hormone therapy, dietary modification, and 126 
calcium/Vitamin D supplementation, and the WHI Observational Study, which focused on many of the 127 
inequities in women’s health research and provided practical information about incidence, risk factors, and 128 
interventions related to heart disease, cancer, and osteoporotic fractures. For this project, women who self-129 
identified as European were excluded from the study sample (dbGaP study accession number: phs000227). 130 

2. Phenotype Harmonization and Modeling 131 
 132 
The phenotypes included in this study were previously harmonized across the PAGE studies.  133 
 134 
Anthropometry: The following anthropometric traits were analyzed: height, body mass index (BMI), and 135 
waist-to-hip ratio (WHR). Weight in kilograms and height in centimeters were measured by trained clinic 136 
staff in the SOL and WHI studies at the time of enrollment. Waist and hip were also measured in SOL and 137 
WHI to the nearest centimeter. In MEC and BioMe weight and height were self-reported by questionnaire 138 
and in MEC waist and hip were also self-reported. BMI was then calculated as the ratio of weight to height 139 
squared. Individuals <18 years of age and women who were pregnant were also excluded. For GWAS 140 
analysis, measurements outside of 6 standard deviations from the mean (based on sex and race) were 141 
removed. Then we created sex-specific residuals for each trait adjusted for age (and BMI for waist-to-hip 142 
ratio), then inverse normally transformed these residuals. These inverse normally transformed residuals 143 
were used in the final analysis and further adjustment was made for self-identified ancestry, study, study 144 
center (for MEC and SOL only), and 10 principal components. 145 
 146 
C-Reactive Protein (CRP): Serum CRP was reported in mg/L. CRP outliers (+/- 4 standard deviations) 147 
were dropped, and CRP was +1 and then natural log transformed. Those who were pregnant at blood draw 148 
were excluded from the analysis. There were 28,537 individuals in the final sample. Models were adjusted 149 
by age at CRP measurement, sex, BMI, current smoking status, self-identified race/ethnicity, study, study 150 
center (for MEC and SOL only), and 10 principal components.  151 
 152 
Cigarettes per Day (CPD): The number of cigarettes smoked per day (CPD) was estimated among ever 153 
smokers (n=15,8672) based on self-report and electronic health record data. To normalize the distribution 154 
of CPD, we added one to the reported CPD and then log transformed this variable. Models were adjusted 155 
for age, sex, study, study center (for MEC and SOL only), self-reported race/ethnicity, and the first 10 156 
principal components.  157 
 158 
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Chronic Kidney Disease (CKD): CKD was defined as an eGFR (estimated by the CKD Epi Equation) 159 
<=60 ml/min/1.73m^2 or ICD-9 codes 585.1-585.6, or 585.9, or ICD-10 codes N18.1-N18.5, or N18.9. 160 
Participants with end stage-renal disease (ESRD) were excluded from the analysis. CKD was modeled as 161 
a binary outcome, and models were adjusted for age, sex, race/ethnicity, study, study center (for MEC and 162 
SOL only), and 10 principal components. 163 
 164 
Coffee Consumption: The coffee analysis included 35,902 subjects with coffee consumption measured 165 
by number of cups per day which was natural log transformed. Models were adjusted age, sex, study, study 166 
center (for MEC and SOL only), and first 10 principal components.  167 
 168 
Diastolic Blood Pressure (DBP): Diastolic blood pressure was measured as the average of resting 169 
measurements in mmHg. Diastolic blood pressure was adjusted by 10 mmHg for the self-reported use of 170 
any antihypertensive medication. We winsorized outliers by setting measurements +/- 6 standard deviations 171 
from the overall mean to that value. Models for diastolic blood pressure adjusted for age, sex, BMI, self-172 
identified race/ethnicity, study, study center (for MEC and SOL only), and 10 principal components.  173 
 174 
Electrocardiogram – PR interval: PR interval is a heritable electrocardiographic measure of atrial and 175 
atrioventricular nodal conduction. Resting, supine, or semi-recumbent ECGs were digitally recorded in each 176 
study at baseline by certified technicians using standard 12-lead ECGs using either Marquette MAC12 or 177 
MAC PC machines (GE Healthcare, Milwaukee, WI, USA; Supplemental Table 1). Comparable procedures 178 
were used for preparing participants, placing electrodes, recording, transmitting, processing, and controlling 179 
the quality of the ECGs. The PR interval was measured electronically using the Marquette 12SL algorithm. 180 
Exclusion criteria included pregnancy, poor ECG quality, non-sinus rhythm including atrial fibrillation and 181 
atrial flutter on ECG, pacemaker implantation, second or third degree heart block, extreme PR values (PR 182 
≤ 80 ms or ≥ 320 ms), prevalent heart failure or myocardial infarction, and Wolff-Parkinson-White syndrome 183 
on ECG. All models were adjusted for age, sex, study, study center (for MEC and SOL only), self-identified 184 
race/ethnicity, systolic blood pressure, height, body mass index, the use of beta-adrenergic blocking agents, 185 
and the first 10 principal components.  186 

Electrocardiogram – QRS interval: QRS interval, from the beginning of the Q wave to the end of the S 187 
wave on an electrocardiogram, reflects ventricular depolarization and conduction time. Resting, supine, or 188 
semi-recumbent ECGs were digitally recorded in each study at baseline by certified technicians using 189 
standard 12-lead ECGs using either Marquette MAC12 or MAC PC machines (GE Healthcare, Milwaukee, 190 
WI, USA; Supplemental Table 1). Comparable procedures were used for preparing participants, placing 191 
electrodes, recording, transmitting, processing, and controlling the quality of the ECGs. The QRS interval 192 
was measured electronically using the Marquette 12SL algorithm. Exclusion criteria included pregnancy, 193 
poor ECG quality, non-sinus rhythm including atrial fibrillation and atrial flutter on ECG, pacemaker 194 
implantation, second- or third-degree heart block, QRS duration > or equal 120 ms, use of antiarrhythmic 195 
medications, prevalent heart failure or myocardial infarction, and Wolff-Parkinson-White syndrome on ECG. 196 
All models were adjusted for age, sex, study, study center (for MEC and SOL only), self-identified 197 
race/ethnicity, heart rate, systolic blood pressure, height, body mass index, and the first 10 principal 198 
components.  199 
 200 
Electrocardiogram (ECG) measures – QT interval: QT interval is a measurement of ventricular 201 
depolarization and repolarization. Resting, supine, or semi-recumbent ECGs were digitally recorded in each 202 
study at baseline by certified technicians using standard 12-lead ECGs using either Marquette MAC12 or 203 
MAC PC machines (GE Healthcare, Milwaukee, WI, USA; Supplemental Table 1). Comparable procedures 204 
were used for preparing participants, placing electrodes, recording, transmitting, processing, and controlling 205 
the quality of the ECGs. The QT interval was measured electronically using the Marquette 12SL algorithm. 206 
Exclusion criteria included pregnancy, poor ECG quality, non-sinus rhythm including atrial fibrillation and 207 
atrial flutter on ECG, pacemaker implantation, QRS duration > or equal 120ms, and prevalent heart failure. 208 
All models were adjusted for age, sex, study, study center (for MEC and SOL only), self-identified 209 
race/ethnicity, heart rate, and the first 10 principal components.  210 
 211 
End-Stage Renal Disease (ESRD): ESRD was defined as an eGFR (by the CKD-Epi Equation) of <=15 212 
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ml/min/1.73m2 or ICD-9 code 585.6 or ICD-10 code N18.6. Participants with chronic kidney disease (CKD) 213 
were excluded from the analysis. ESRD was modeled as a binary outcome, and models were adjusted for 214 
age, sex, race/ethnicity, study, study center (for MEC and SOL only), and 10 principal components. 215 
 216 
Estimated Glomerular Filtration Rate (eGFR) eGFR by CKD Epi Equation: Continuous eGFR in 217 
ml/mon/1.73m2 was estimated by the serum creatinine-based CKD-Epi equation 7, which has been 218 
validated for Hispanics 8. Non-Hispanic White equations were used to estimate GFR in Hispanic and Asian 219 
participants. eGFR was not transformed, and models were adjusted for age, sex, race/ethnicity, study, 220 
study center (for MEC and SOL only), and 10 principal components.  221 
 222 
Fasting Glucose (FG): FG was reported in mmol/L. Individuals that were pregnant, had a fasting glucose 223 
greater than 7 mmol/L, had Type 2 Diabetes, or were non-fasting at measurement were excluded from 224 
analysis. Rank normalized residuals were calculated after adjusting for age, sex, age*sex, study, smoking 225 
status, and BMI. Association models were adjusted for self-identified race/ethnicity, 10 principal 226 
components, and study center (for MEC and SOL only). 227 
 228 
Fasting Insulin (FI): FI was reported in pmol/L. Individuals that were pregnant, had a fasting glucose 229 
greater than 7 mmol/L, had Type 2 Diabetes, or were non-fasting at measurement were excluded from 230 
analysis. Insulin levels were log-transformed. Rank normalized residuals were calculated after adjusting for 231 
age, sex, ageXsex, study, smoking status, and BMI. Association models were adjusted for self-identified 232 
race/ethnicity, 10 principal components, and study center (for MEC and SOL only). 233 
 234 
Glycated Hemoglobin (HbA1c): Glycated Hemoglobin was reported in mmol/mol. Individuals that were 235 
pregnant, had a fasting glucose greater than 7 mmol/L, or had Type 2 Diabetes were excluded from the 236 
analysis. Rank normalized residuals were calculated after adjusting for age, sex, age by sex, study, 237 
smoking status, and BMI. Association models were adjusted for self-identified race/ethnicity, 10 principal 238 
components, and study center (for MEC and SOL only). 239 
 240 
High-Density Lipoprotein (HDL): HDL measurements were reported in mg/dL, were untransformed, and 241 
were adjusted for each individual’s medication use by adding a constant based on the type of medication 242 
used. If multiple medications were reported, only the correction factor with the largest effect was applied. 243 
The constant used for adjustment was based on effects observed in previous publications, and included 244 
adjustments for statins 9, fibrates 9, bile acid sequestrants 10, niacin 9, and cholesterol absorption inhibitors 245 
11,12.  An individual’s raw HDL measurement was adjusted by the following values if the participant was 246 
taking one of these medications: statins: -2.3; fibrates: -5.9; bile acid sequestrants: -1.9; niacin: -9.9, 247 
cholesterol absorption inhibitors: +0.0. Those who were pregnant at blood draw, or who had fasted less 248 
than 8 hours prior to lipid blood draw were excluded from the study sample. There were 33,063 individuals 249 
in the final study sample. Models were adjusted by age at lipid measurement, sex, study, study center (for 250 
MEC and SOL only), self-identified race/ethnicity, and 10 principal components. 251 
 252 
Hypertension (HT): Hypertension cases were defined based on any of the following criteria: 1) measured 253 
systolic blood pressure ≥140 mmHg, 2) measured diastolic blood pressure ≥90 mmHg, 3) reported use of 254 
any antihypertensive medication, or 4) ICD-9 codes 401.x-405.x or ICD-10 codes I10.x-I15.x. Individuals 255 
not meeting any of these criteria were considered normotensive (controls). Models for hypertension were 256 
adjusted for age, sex, BMI, study, study center (for MEC and SOL only), self-identified race/ethnicity, and 257 
10 principal components. 258 
 259 
Low-Density Lipoprotein (LDL): LDL measurements were reported in mg/dL, and were calculated using 260 
the Friedewald Equation 13, which subtracts the HDL measurement and the Triglyceride measurement 261 
(divided by 5) from the Total Cholesterol value. LDL was not calculated if the triglyceride value was greater 262 
than 400 mg/dL. LDL values were then adjusted for each individual’s medication use by adding a constant 263 
based on the type of medication used. If multiple medications were reported, only the correction factor with 264 
the largest effect was applied. The constant used for adjustment was based on effects observed in previous 265 
publications, and included adjustments for statins 9, fibrates 9, bile acid sequestrants 10, niacin 9, and 266 
cholesterol absorption inhibitors 11,12.   An individual’s raw LDL measurement was adjusted by the following 267 
values if the participant was taking one of these medications: statins: +49.9; fibrates: +40.1; bile acid 268 
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sequestrants: +40.5; niacin: +24.7; cholesterol absorption inhibitors: +40.5. Those who were pregnant at 269 
blood draw, or who had fasted less than 8 hours prior to lipid blood draw were excluded from the study 270 
sample. There were 32,221 individuals in the final study sample. Models were adjusted by age at lipid 271 
measurement, sex, study, study center (for MEC and SOL only), self-identified race/ethnicity, and 10 272 
principal components. 273 
 274 
Mean Corpuscular Hemoglobin Concentration (MCHC): Mean corpuscular hemoglobin concentration 275 
was reported in g/dL and was untransformed. MCHC is calculated using the formula: 276 
100*hemoglobin/hematocrit. MCHC outliers (+/- 4 standard deviations) were dropped, along with 277 
observations for HIV+ individuals, participants with a reported hereditary anemia, and women pregnant at 278 
time of blood draw. The MCHC model was adjusted for age at blood draw, sex, current smoking status, 279 
self-identified race/ethnicity, study, study center (for MEC and SOL only), and 10 principal components.  280 
 281 
Platelet Count (PLT): Platelet count was reported as cells x 109/L and was untransformed. PLT outliers 282 
(+/- 4 standard deviations) were dropped, along with observations for HIV+ individuals, and women 283 
pregnant at time of blood draw. The PLT model was adjusted for age at blood draw, sex, current smoking 284 
status, self-identified race/ethnicity, study, study center (for MEC and SOL only), and 10 principal 285 
components. 286 
 287 
Systolic Blood Pressure (SBP): Systolic blood pressure was measured as the average of resting 288 
measurements in mmHg. Systolic blood pressure was adjusted by 15 mmHg for the self-reported use of 289 
any antihypertensive medication. We winsorized outliers by setting measurements +/- 6 standard deviations 290 
from the overall mean to that value. Models for systolic blood pressure adjusted for age, sex, BMI, self-291 
identified race/ethnicity, study, study center (for MEC and SOL only), and 10 principal components.  292 
 293 
Total Cholesterol (TC): Total Cholesterol measurements were reported in mg/dL, were untransformed, 294 
and were adjusted for each individual’s medication use by adding a constant based on the type of 295 
medication used. If multiple medications were reported, only the correction factor with the largest effect was 296 
applied. The constant used for adjustment was based on effects observed in previous publications, and 297 
included adjustments for statins 9, fibrates 9, bile acid sequestrants 10, niacin 9, and cholesterol absorption 298 
inhibitors 11,12. An individual’s raw rotal cholesterol measurement was adjusted by the following values if the 299 
participant was taking one of these medications: statins: +52.1; fibrates: +46.1; bile acid sequestrants: +0.0; 300 
niacin: +34.6; cholesterol absorption inhibitors: +40.5. Those who were pregnant at blood draw, or who had 301 
fasted less than 8 hours prior to lipid blood draw were excluded from the study sample. There were 33,185 302 
individuals in the final study sample. Models were adjusted by age at lipid measurement, sex, study, study 303 
center (for MEC and SOL only), self-identified race/ethnicity, and 10 principal components. 304 
 305 
Type II Diabetes (T2D): The Type 2 Diabetes analysis included 14,046 cases and 31,695 controls with 306 
complete covariate data after excluding individuals who were pregnant at blood draw and those who were 307 
classified as cases for Type 1 Diabetes. Controls with glucose values greater than 7 mmol/L were excluded, 308 
as well as any cases that were younger than 20 years of age. The models were adjusted by age at T2D 309 
diagnosis, sex, study, study center (for MEC and SOL only), BMI, self-identified race/ethnicity, and first 10 310 
principal components. 311 
 312 
Triglycerides (TG): Triglyceride measurements were reported in mg/dL, were adjusted for each individual’s 313 
medication use by adding a constant based on the type of medication used, and then natural log 314 
transformed. If multiple medications were reported, only the correction factor with the largest effect was 315 
applied. The constant used for adjustment was based on effects observed in previous publications, and 316 
included adjustments for statins 9, fibrates 9, bile acid sequestrants 10, niacin 9, and cholesterol absorption 317 
inhibitors 11,12. An individual’s raw Triglyceride measurement was adjusted by the following values if the 318 
participant was taking one of these medications: statins: +18.4; fibrates: +57.1; bile acid sequestrants: +0.0; 319 
niacin: +89.4; cholesterol absorption inhibitors: +0.0. Those who were pregnant at blood draw, or who had 320 
fasted less than 8 hours prior to lipid blood draw were excluded from the study sample. Individuals with a 321 
Triglyceride value greater than 3000 mg/dL were dropped from the analysis (n=1). There were 33,096 322 
individuals in the final study sample. Models were adjusted by age at lipid measurement, sex, study, study 323 
center (for MEC and SOL only), self-identified race/ethnicity, and 10 principal components. 324 
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 325 
White Blood Cell Count (WBC): Total WBC count was measured in 109 cells/L. WBC count outliers (+/- 4 326 
standard deviations) were dropped, and total WBC was natural log transformed. Those who were pregnant 327 
a blood draw were excluded from the analysis. There were 28,534 individuals in the final sample. Models 328 
were adjusted by age at WBC measurement, sex, BMI, study, current smoking status, self-identified 329 
race/ethnicity, study, study center (for MEC and SOL only), and 10 principal components.  330 

3. Genotyping and Imputation 331 
 332 
 One major challenge in multi-ethnic studies is the limited availability of genotyping arrays that 333 
comparably tag variation in multiple genetic ancestries, especially in those with African ancestry. To 334 
address this, a collaboration among PAGE, Illumina Inc., the Consortium on Asthma among African-335 
ancestry Populations in the Americas (CAAPA) 14, and other academic partners developed the Multi-Ethnic 336 
Genotyping Array (MEGA), which includes a GWAS scaffold designed to tag both common and low 337 
frequency variants in global populations. 15 (Extended Data Figure 2) Additionally, it contains enhanced 338 
tagging in exonic regions, hand-curated content to interrogate clinically relevant variants, and enriched 339 
coverage to fine-map known GWAS loci. 16 340 

DNA was isolated from blood (SOL, BioMe, GRP), buffy coat (WHI, MEC), mouthwash/saliva 341 
(MEC, GRP), or lymphoblastoid cell line (GRP). There were 548 HapMap genotyping control samples, and 342 
1,001 blind study duplicate samples. Samples were genotyped on complete or partial 96-well plates, over 343 
three batches. MEC, BioMe, SOL and WHI samples were distributed across the three batches in a 344 
proportion that represented the size of each study. Sex, race/ethnicity, recruitment site, and DNA source 345 
were not stratified, but samples were randomly selected within each stratification level. To better understand 346 
the rich genetic diversity within PAGE, particularly in underrepresented ancestries from the Africa and the 347 
Americas, we genotyped an additional 1,553 samples on MEGA from a Global Reference Panel (GRP), 348 
which were drawn from the Human Genome Diversity Project 5 and supplemented with previously sampled 349 
populations from the Americas and Africa 14,17–20. Some GRP samples were included on the plates in 350 
Batches 1 and 2, but the majority of these samples were included on 12 separate plates. Each plate 351 
contained one or two duplicates. Duplicate samples were place on a different plate than the original sample. 352 
Each plate contained an average of one HapMap sample. There were also 110 investigator controls 353 
previously genotyped that were included with at most one of these controls per plate.  354 

A total of 53,426 samples were genotyped at the Center for Inherited Disease Research (CIDR) 355 
using the Multi-Ethnic Genotyping Array (MEGA), Consortium version. MEGA was designed through a 356 
collaboration between PAGE, University of Michigan, CAAPA, and Illumina to provide broad coverage for 357 
globally diverse populations, as well as provide enhanced exomic, functional, and clinically-relevant 358 
content. Genotypes were called by the Center for Inherited Disease Research (CIDR) using the 359 
GenomeStudio version 2001.1, Genotyping Module 1.9.4, and GenTrain version 1.0.  360 

Genotyping data that passed initial quality control at CIDR, including sex discrepancies, Mendelian 361 
inconsistencies, unexpected duplication, unexpected non-duplication, poor performance, or DNAmixture 362 
observed were released to the Quality Assurance / Quality Control (QA/QC) analysis team at the University 363 
of Washington Genetic Coordinating Center (UWGAC), the study investigator’s team, and dbGaP. The 364 
UWGAC QA/QC team used quality control methods previously described by Laurie et al. 21 The UWGAC 365 
QA/QC team further removed samples with identity issues, restricted consent, and duplicate scans to return 366 
data for 51,520 subjects.  367 

A total of 1,705,969 variants were genotyped on MEGA. Variant-level quality control (QC) was 368 
completed by were filtered through various criteria, including the exclusion of (1) CIDR technical filters, (2) 369 
variants with missing call rate >= 2%, (3) variants with more than 6 discordant calls in 988 study duplicates, 370 
(4) SNPs with greater than 1 Mendelian errors in 282 trios and 1,439 duos, (5) variants with a Hardy-371 
Weinberg p-value less than 10-4, (6) variants with sex difference in allele frequency >= 0.2 for 372 
autosomes/XY, and (7) variants with sex difference in heterozygosity > 0.3 for autosomes/XY. After variant 373 
QC, a total of 1,438,399 variants remained.  374 

Imputation was conducted at the UWGAC. Sites were further restricted to variants with (1) known 375 
chromosome and position; (2) located on chromosomes 1-22, X, or XY (pseudo-autosomal); (3) with 376 
unique positions, which involved removing redundant and duplicate sites; and (4) sites with available 377 
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strand annotation. After these restrictions, a total of 1,402,653 sites remained. The study samples were 378 
phased with SHAPEIT2 22 and imputed with IMPUTE2 23 to the 1000 Genomes Project Phase 3 data 379 
release 24. Reference panel variants were filtered to exclude all monomorphs and singletons (i.e. 380 
restricting to minor allele count (MAC) >= 2 across all 1000 Genomes Phase 2 samples). Imputed 381 
variants were excluded if the IMPUTE2 info score was less than 0.4.  382 

 383 

 384 

Supplementary Figure 1: Average info from imputed data from MEGA to 385 
1000Genomes Project within PAGE by minor allele frequency. 386 
We show high imputation quality across all minor allele frequency bins from 0.5-50%. 387 

 388 

4. Population Substructure 389 
 390 
Historically, analyses have been stratified by self-identified race/ethnicity to account for confounding by 391 
genetic ancestry. In PAGE, we conducted principal component analysis to evaluate population substructure 392 
and mapped self-identified racial/ethnic groups (Hispanic/Latino, African American, Asian, Native Hawaiian, 393 
Native American, and Other) onto the estimated principal components (PCs). The selection of unrelated 394 
individuals was essential for accurate estimation of the principal components within the global study 395 
population. Kinship coefficients were estimated using PC-Relate, as implemented in the R package 396 
GENESIS (Conomos et al. 2015; Conomos, Reiner, et al. 2016). The SNPRelate (Zheng et al. 2012) 397 
package in R was then used for principal components analysis using unrelated individuals, defined as 398 
pairwise kinship coefficients less than 2^(-9/2). Since principal components are required for unbiased 399 
kinship estimation in admixed populations, the two estimation procedures were iterated to ensure that the 400 
principal components were computed over unrelated individuals. Principal component scores were then 401 
estimated for all remaining individuals by projection. 25 402 
 403 
Most notably in Hispanics/Latinos, but evident to a lesser extent in all populations, genetic ancestry reveals 404 
greater demographic complexity compared with culturally assigned labels. Genetic ancestry appears as a 405 
continuum, demonstrating that it is not categorical in diverse populations that have varying degrees of 406 
admixture (Supp Figure 1). Stratifying by self-reported race/ethnicity would fail to separate groups with 407 
similar patterns of genetic ancestry and therefore would still require adjustment of PCs with reduced 408 
statistical power in a smaller sample size. For this reason, we pooled all samples in a single mega-analysis. 409 
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 410 

Supplementary Figure 2: Principal Component Analysis of PAGE Populations.  411 
Scatterplot of PCs for PAGE racial/ethnic groups. Each point represents one individual, color-coded by self-412 
identified race/ethnicity. Global variation for all PAGE participants for principal component (PC) 1 versus 413 
PC2. Genotyped individuals self-identified as Hispanic/Latino (N=22,216), African American (N=17,299), 414 
Asian (N=4,680), Native Hawaiian (N=3,940), Native American (N=652), or Other (N=1,052).  415 

5. Meta-analysis versus Mega-analysis in Multi-ethnic 416 

Studies 417 
 418 
It has been shown, both theoretically and numerically, that meta-analysis and mega-analysis of 419 
independent studies are (asymptotically) equivalent, if mega-analysis allows nuisance parameters (i.e., 420 
trait variances and covariate effects) to be different among studies 26,27. The comparison of meta and 421 
pooled analysis has some subtle aspects that are important.  Considering a simple scenario with a variant 422 
with MAF=50% in population 1 and MAF=1% in population 2, and the same sample size and same effect 423 
size in each population, if allele frequency is the only difference between the two studies then it is actually 424 
slightly more powerful to perform a mega analysis (with no adjustment for study) rather than meta-425 
analysis. In general, however, we expect that allele frequency will not constitute the only difference 426 
between studies, and we therefore always include study indicators in pooled analyses. Inclusion of study 427 
as a covariate ensures that the mega-analysis estimator for the genetic effect can be expressed as an 428 
inverse-variance weighted estimator, with weights that are asymptotically equivalent to the weights in the 429 
meta-analysis estimator; see Example 1 in Lin & Zeng (2010). 26 Supplementary Figure 2 compares the 430 
results of meta-analysis to four types of mega-analysis (assuming heterogeneous vs homogeneous trait 431 
variances and heterogeneous vs homogeneous covariate effects) for MCHC. The mega-analysis that 432 
allows both trait variances and covariate effects to be different among studies (i.e., ethnicities in our case) 433 
fits the same model as meta-analysis does, so the p-values from the two methods are virtually identical; 434 
the p-values can be quite different when trait variances are allowed to be different across ethnicities vs 435 
when they are assumed to the same across ethnicities; and the results are fairly similar when covariate 436 
effects are allowed to be different across ethnicities vs when they are assumed to be the same across 437 
ethnicities. Supplementary Figure 3 shows that the same conclusions hold for variants whose ethnic-438 
specific MAF differences are greater than 0.4. We chose mega-analysis over meta-analysis because the 439 
former allows related individuals across studies (whereas the latter does not) and provides greater 440 
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flexibilities in modelling the effects of covariates. 441 
 442 
SUGEN and GENESIS allow trait variances to be different among studies (i.e., ethnicities in our case) 443 
whereas other LMM methods do not. We chose to focus on methods adjusting for global ancestry as 444 
these were more stable across the extremely heterogeneous mix of populations in PAGE, where local 445 
ancestry estimation could be challenging to reconcile. Further, as we have previously shown, local 446 
ancestry adjustment is expected to impair statistical power for discovery when compared to global 447 
ancestry adjustment. 28 Supplementary Figures 4-8 display the p-values for the five traits with the most 448 
severe trait-variance heterogeneity, when the trait variances are assumed to be homogeneous vs 449 
heterogeneous across ethnicities in the analysis. These results confirm the theoretical expectation that 450 
allowing heterogeneous variances yields better control of type I error and higher power in association 451 
tests. 452 

 453 
 454 

Supplementary Figure 3. Comparisons of the p-values between meta-analysis and 455 
four types of mega-analysis for MCHC (N=19,803).  456 
Het_V and Hom_V denote, respectively, heterogeneous and homogeneous trait variances among ethnic 457 
groups; Het_E and Hom_E denote, respectively, heterogeneous and homogeneous covariate effects 458 
among ethnic groups. The p-values are estimated from Wald test, with values less than 110-15 winsorized 459 
at 110-15. 460 
 461 
 462 
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 463 
 464 

Supplementary Figure 4. Comparisons of the p-values between meta-analysis and 465 
four types of mega-analysis for MCHC with variants whose ethnic-specific minor 466 
allele frequency (MAF) differences are greater than 0.4 (N=19,803).  467 
Het_V and Hom_V denote, respectively, heterogeneous and homogeneous trait variances among ethnic 468 
groups; Het_E and Hom_E denote, respectively, heterogeneous and homogeneous covariate effects 469 
among ethnic groups. The p-values are estimated from Wald test, with values less than 110-15 winsorized 470 
at 110-15. 471 
 472 
 473 
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 474 

Supplementary Figure 5. Quantile-quantile plots of p-values for MCHC when trait 475 
values are assumed to be heterogeneous versus homogeneous. P-values 476 
estimated from Wald test. (N=19,803) 477 
 478 

 479 

Supplementary Figure 6. Quantile-quantile plots of p-values for eGFR when trait 480 
values are assumed to be heterogeneous versus homogeneous. P-values 481 
estimated from Wald test. (N=27,900) 482 
 483 
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 484 

Supplementary Figure 7. Quantile-quantile plots of p-values for FG when trait 485 
values are assumed to be heterogeneous versus homogeneous. P-values 486 
estimated from Wald test. (N=23,963) 487 
 488 

 489 

Supplementary Figure 8. Quantile-quantile plots of p-values for HbA1c when trait 490 
values are assumed to be heterogeneous versus homogeneous. P-values 491 
estimated from Wald test.  (N=11,178) 492 
 493 
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 494 

Supplementary Figure 9. Quantile-quantile plots of p-values for PR interval when 495 
trait values are assumed to be heterogeneous versus homogeneous. P-values 496 
estimated from Wald test. (N=17,428) 497 
 498 
 499 

6. Selecting Principal Components of Ancestry for Use 500 

as Covariates 501 
 502 
Previous GWAS analyses have generally used between 3 and 10 principal components (PCs) for 503 
adjustment for population structure, often simply determined by post-hoc interpretation of results. In our 504 
study, we used two additional criteria to calibrate the number of PCs to include in the analysis: reference 505 
population specificity (Supp Fig 9) and chromosome specificity (Supp Fig 10). 506 

While PC1 through PC10 showed clear population specificity in the reference samples, most of the higher 507 
PCs showed much weaker population-specificity. PC9 and PC10 were clearly African in origin in the 508 
reference data (top panel), although these two PC did not vary tremendously within the PAGE study 509 
population. A few higher PC showed population specificity in the reference samples (PC15, 16, 18 and 510 
22), but we felt it was more appropriate to specify a single threshold (exclude all PC past PC10), rather 511 
than cherry picking a PC less-relevant to the samples with phenotypic data. 512 

An alternative approach to assessing which principal components to include in an analysis uses 513 
chromosome-specificity. Principal components which load uniformly across the genome are likely to 514 
represent ancestral populations, while principal components that load heavily onto specific chromosomes 515 
are frequently artifacts in the data (e.g. large polymorphic inversions on chromosomes 8 and 17). A 516 
loading analysis is shown in the new Supp Fig 10, which shows the correlation between SNP genotype 517 
and PC1 through PC20. Again, PC1 through PC8 are clearly consistent across the genome, so their 518 
inclusion as covariables is justified. In contrast, PC11 through PC20 show significant chromosome 519 
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specificity, so we chose to exclude PC11 and higher due to the lack of discernible population specificity in 520 
either the reference or study samples. 521 

PC9 and PC10 posed a unique challenge. Population specificity (Supp Fig 9) suggests that these two 522 
might be important in African populations, arguing for inclusion, but the chromosome loading (Supp Fig 523 
10) suggests that these two could be artifactual. We conservatively chose to retain these two PC in our 524 
analyses, but analyses with either eight or twelve PCs are almost entirely consistent with the ten PC 525 
analysis, so PC9 and PC10 were not influential in the results that are presented. 526 

 527 

  528 

Supplementary Figure 10: Standardized principal components by population. 529 
After standardizing the ranges of principal component 1 (PC1) through PC32, we plotted the value for 530 
each individual as a line (N=49,839). The top panel shows individuals within the reference population 531 
color coded by population, with study samples in grey. The bottom panel shows PAGE participants 532 
colored by their self-reported ancestry with the reference populations in pink. This allows us to see the 533 
distribution of different race/ethnicity groups across the different principal components. For example, in 534 
the top panel we see orange lines at the outer ranges of the distribution, indicating that principal 535 
component 3 represents the spectrum of Native American ancestry, as orange denotes reference groups 536 
from the Americas. 537 
 538 

 539 
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 540 

Supplementary Figure 11: Correlation between SNP genotype and PC, by 541 
chromosome. 542 
Genome position is shown on the X axis, and the correlation between genotype and PC is shown on the 543 
Y axis, range (0,1) in all panels. The first eight PCs are clearly consistent across the genome, while 544 
higher PCs tend to be more chromosome-specific. (N=49,839) 545 
 546 
 547 
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7. Genome-wide Association Analysis 548 
 549 
Analysis:  550 
 551 
We based our analysis on generalized linear models of form 552 
 553 
M1: 𝑔(𝐸(𝑌)) = 𝑋𝛼 + 𝐺𝛽 554 
 555 
Where Y is the vector (of length n, the number of participants used in a given analysis) of observed 556 
outcomes which may be continuous or binary, E() denotes expectation, g is a link function, X denotes a 557 
matrix of adjustment variables (of size n x p , with p the number of adjustment variables) including age, 558 
sex, principal components (PCs), self-identified ethnicity as a proxy for cultural background, and other 559 
relevant variables, and G is a vector of length n of observed or imputed allele counts for a given variant of 560 
interest.  561 

For binary traits we used the logit link function g(x)=log(x)-log(1-x) so that it is the log odds that is 562 
linear in the G and X variables, while for continuous traits the identity function, g(x)=x, was used. Some 563 
continuous traits were inverse-normal transformed before model M1 (and other models) were applied to 564 
the sorted trait values. In particular, if Y(1),…Y(n) are the sorted trait values, then Y(i) is replaced by Φ-565 
1(i/(n+1)), where Φ-1 is the inverse cumulative normal distribution function. 566 

We used a combination of methods to account for hidden population structure (e.g. admixture) 567 
and relatedness among study participants. For both continuous and binary traits, we included leading 568 
PCs of the genotype matrix as part of the adjustment variables in M1 to ensure that large scale population 569 
structure would not induce false positive associations. In all our analyses, we included ten PCs in M1. 570 
Based on our assessment, ten PCs was sufficient to account for all major ethnic variation, while not 571 
including too many PCs to negatively affect the power of the analyses. Limited experimentation (not 572 
shown) suggested that adding a few more PCs did not noticeably influence the results. 573 
 For continuous traits, we adopted a linear mixed models (LMM) and a generalized estimating 574 
equations (GEE) approach to correct for the effects of relatedness between individuals. For binary traits, 575 
we only used the GEE approach. Two programs, GENESIS and SUGEN, were developed by PAGE 576 
collaborators to implement these approaches for GWAS studies of populations with genetic admixture 577 
and known or cryptic relatedness.  578 
 579 
GENESIS: The GENESIS program 29–31 is available as a Bioconductor package made available in R, and 580 
uses a LMM to test for SNP - phenotype associations. For continuous traits, the regression models were 581 
fit assuming a variance matrix model for the variance-covariance matrix of the outcomes Y of form 𝜎-𝐼 +582 
𝛾-𝐾.    583 

Here 𝐼 is the identity matrix and 𝐾 is the genetic relatedness matrix computed from the available 584 
SNP data, once for all of PAGE II. Score tests of 𝛽=0 were computed by replacing M1 with the null model 585 

  M0: 𝐸(𝑌) = 𝑋𝛼 586 
and then in M1 performing a test for 𝛽 = 0 with 𝜎^2 and 𝛾^2 held at their estimated values from the fit of 587 
M0. The elements of G (in turn) are simply the observed allele counts (0, 1, or 2), or for imputed data the 588 
estimated allele counts (taking values from 0-2) for each of the variants of interest. Using the variance 589 
model V1 corrects the score tests of 𝛽 = 0 for both close and more distant relationships between 590 
individuals in the dataset. Estimation of α and the variance parameters 𝜎^2, 𝛾^2 only needs to be 591 
performed once which provides a great savings in computer time needed to use GENESIS. 592 

 593 
Both GENESIS and SUGEN rely upon the estimated relationship matrix K. The GENESIS 594 

package includes the program PC-Relate, which uses a principal component analysis (PCA) based 595 
method to infer genetic relatedness in samples with unspecified and unknown population structure. By 596 
using individual-specific allele frequencies estimated with sample principal component eigenvectors, it 597 
provides estimates of kinship coefficients and identity by descent (IBD) sharing probabilities in samples 598 
with population structure, admixture, and HWE departures. It does not require additional reference 599 
population panels or prior specification of the number of ancestral subpopulations.  600 

 601 
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SUGEN: The SUGEN program 32 is a command-line software program developed for genetic association 602 
analysis with complex survey sampling and relatedness patterns. It implements the generalized 603 
estimating equation (GEE) approach, which empirically accounts for within-family correlations without 604 
modeling the correlation structures of complex pedigrees.  605 
 606 
Association analysis in SUGEN requires the study subjects to be grouped into “independent” families. 607 
There is a complex pattern of relatedness in HCHS/SOL: individuals in the same household are related, 608 
and there is endogamous mating within the Hispanic/Latino community, such that some households are 609 
connected into large pedigrees. To address this challenge, we first used the genetic relationship matrix K 610 
to identify pairs of individuals who are first-degree or second-degree relatives. We then formed extended 611 
families by connecting the households who share first-degree relatives or either first- or second-degree 612 
relatives. The trait values are assumed to be correlated within families but independent between families.  613 
In our dataset, we found it sufficient to account for first-degree relatedness in association analysis. 614 
 615 
The GEE approach uses a “sandwich” variance estimator to empirically estimate within-family 616 
correlations. SUGEN adopts a modified version of the sandwich variance estimator, which replaces the 617 
empirical covariance matrix of the score vectors by the Fisher information matrix for unrelated subjects. 618 
This modified variance estimator is more accurate than the original sandwich variance estimator for low-619 
frequency variants.  620 
 621 
SUGEN can perform Wald and score tests. We used the Wald test because it yields slightly better control 622 
of the type I error than the score test. SUGEN can accommodate binary, continuous, and age-at-onset 623 
traits. When analyzing continuous traits, we allowed the trait variances to be different among different 624 
ethnic groups. 625 
 626 
The GEE assumption of independence between families is more restrictive than the covariance model 627 
assumed in the LMM. However, the GEE approach does not rely on the normality assumption and is 628 
robust to model misspecification. While the original SUGEN version had general methodology, the 629 
software has been extended to handle heterogeneous variances for the PAGE analyses 630 
(https://github.com/dragontaoran/SUGEN#). In our dataset, SUGEN provides very accurate control of the 631 
type I error, as judged by the QQ-plots and genomic control parameter. We used SUGEN as the primary 632 
method for association testing and ran GENESIS in parallel for comparison purposes (Supplemental 633 
Table 2, Supplemental Figure 5). 634 

 635 
Genetic Ancestry Interactions: Besides simple tests of association, we were also interested in whether 636 
allelic effects differ according to ethnicity or ancestral makeup. These presence of these effects can be 637 
estimated by adding SNPxPC interaction effects into model M1 to form 638 

 639 
M2: 𝑔(𝐸(𝑌)) = 𝑋𝛼 + 𝐺𝛽 + (𝐺𝑥)𝜃 640 

 641 
and then testing that 𝜃 = 0, generally this will yield a multi degree of freedom test (F-test) for 642 
heterogeneity of effects depending upon how many PCs are included in the hypothesis tests. We choose 643 
to include interaction terms for all 10 PCs to account for the sub-continental differences that were 644 
differentiated in the higher PCs. We explored using a smaller number of PCs in M2, but found that the P-645 
values for the F-test obtaned with 5 PCs were extremely similar to those with 10 PCs for the vast majority 646 
of SNPs (results not shown). 647 
 648 

Assessing Single Variant Results: For each phenotype, QQ plots and genomic inflation factors 649 
(λ) were used to assess inflation, using the full set of results, and results omitting previously known loci. 650 
Inflation values ranged from 0.98 to 1.15 for all traits. Analyses were restricted to SNPs with an 651 
imputation quality score greater than 0.4 and an effective sample size (effN) greater than 30 for 652 
continuous traits, and greater than 50 for binary traits. The effN was calculated based on previous 653 
publications24:  654 

 655 
effN = 2*MAF*(1-MAF)*N*info 656 

 657 
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where MAF is the minor allele frequency among the set of individuals included in a phenotype-specific 658 
model, N is the total sample size for a given phenotype, and info is the impute2 info quality score. The 659 
SNP with the smallest p-value in a 1Mb region was considered the Lead SNP. A Lead SNP was 660 
considered to be a Novel loci if it met the following criteria: 1) it was located greater than +/- 500 Kb away 661 
from a previously known loci (per the phenotype-specific Known Loci list); 2) it had a SUGEN p-value less 662 
than 5E-08; 3) it had a SUGEN conditional p-value less than 5E-08 after adjustment for all previously 663 
known loci on the same chromosome; and 4) it had 2 or more neighboring SNPs (within +/- 500 Kb) with 664 
a p-value less than 1E-05. A Lead SNP was considered to be a Residual signal in a previously known loci 665 
if it met the following criteria: 1) it was located within +/- 500 Kb of a previously known loci; 2) it had a 666 
SUGEN p-value less than 5E-08; and 3) it had a SUGEN conditional p-value less than 5E-08 after 667 
adjustment for all previously known loci on the same chromosome. Full results for all Novel and Residual 668 
findings are included in Supplemental Tables 2-3. Additionally, minor allele frequency-dependent 669 
thresholds were used for genome-wide significance, as per guidelines in Fadista et al (2016). 33 For 670 
common variants with MAF>5%, the standard P<5x10-8 threshold was used to determine significance. For 671 
low frequency and rare variants with MAF<5%, a more stringent P<3x10-9 was utilized. This is reflected in 672 
the 16 novel genome-wide significant trait-variant associations and the 11 low-frequency loci with 673 
suggestive associations (3x10-9>P> 5x10-8).  674 
 675 

 676 

Supplementary Figure 12: Comparison of P-values from GWAS for SUGEN (Wald 677 
test) vs. GENESIS across all traits. (Nmax=49,781; see Extended Data Table 1) 678 
  679 
 680 
 681 
 682 
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8. Secondary Signals versus Fine-mapping 683 
 684 

To further illustrate the difference in mechanism between fine-mapping and secondary independent 685 
signals, we highlight two examples (Supplementary Figure 12). The first is a refinement of the association 686 
between hexokinase 1 (HK1) and HbA1c. The residual signal at rs72805692 (Punadj=9.22x10-22, N=11,178, 687 
CAF=0.061) is in moderate LD in European (r2=0.61) and Hispanic/Latino (r2=0.63) populations with the 688 
previously implicated SNP (rs16926246) 5.7kb away. Therefore, after adjustment, the signal is greatly 689 
diminished but remains statistically significant (Pcond=3.05x10-9). This represents the refinement of a known 690 
locus (fine-mapping), as the high LD present in this area results in an attenuated, but still statistically 691 
significant, signal, and may represent only one underlying fSNP. In contrast, we found a residual signal for 692 
PR interval at rs1895595, upstream of TBX5 (Punadj=2.16x10-11, N=17,428, CAF=0.17). After adjustment for 693 
5 known tagSNPs in this region (rs3825214, rs7312625, rs7135659, rs1895585, rs1896312), the signal 694 
remains largely unchanged (Pcond=1.99x10-11). This secondary signal at rs1895595 is independent of all 5 695 
conditioned SNPs, with extremely low LD (r2<0.03) across all global populations, and therefore likely 696 
represents an independent fSNP. Both fine-mapping of primary findings and knowledge of independent, 697 
secondary alleles are important to comprehensively characterize GWAS loci, particularly in diverse 698 
populations, thereby improving genetic risk prediction. 699 

 700 

Supplementary Figure 13: Residual signals can represent either refinement of 701 
signal or secondary alleles.  702 
(A) Fine-mapping: -log10 p values from SUGEN Wald test are plotted against position for a GWAS catalog 703 
tagSNP T, as well as two tagged SNPs: J is strongly tagged by T (r2=1) in all populations, and K is variably 704 
tagged across populations. After adjustment, signal at T and J is no longer significant, but residual signal 705 
at K indicates that the original association has been fine-mapped. Unadjusted (B) and adjusted (C) results 706 
for trait HbA1c (N=11,178), showing weakened signal at residual SNP rs72805692 after adjusting for 707 
GWAS catalog tagSNP rs16926246, consistent with signal refinement. This tagSNP was first reported from 708 
a study of 46,368 Europeans34, so LD with the tagSNP is shown from a European reference panel, 709 
illustrating how the set of strongly tagged SNPs (red/orange) is fine-mapped to the two strongest (residual) 710 
signals in the multi-ethnic population. (D) Secondary alleles are independent of known loci, so L is not in 711 
significant LD with T (r2 ~ 0). After adjustment for T, signal at L is unchanged. Unadjusted (E) and adjusted 712 
(F) results for trait PR interval (N=17,428), showing no change in signal at residual SNP rs1895595 after 713 
adjusting for GWAS catalog tagSNP rs3825214, consistent with the residual signal being an independent 714 
secondary allele. Again, LD shown is from a European population, as the GWAS catalog report 35 was from 715 
12,670 Europeans. P-values estimated from SUGEN Wald test. 716 
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9. Meta-analysis and Finemapping with GIANT, UK 717 

Biobank 718 
For height 36, GIANT imputed their GWAS data to the HapMap in roughly 250,000 individuals, yielding 2.5M 719 
variants that overlapped with the PAGE dataset. All of these are common (MAF>5%) in at least one 720 
ancestry, so the traditional threshold of statistical significance (P<5x10-8) is appropriate. In the GIANT BMI 721 
manuscript 37, the GWAS data were augmented with metabochip data (a focused platform targeting specific 722 
regions of the genome) from ~80,000 additional individuals. The previously published manuscripts used a 723 
more relaxed definiton of  “locus” than we have in this manuscript (associations less than 1Mbp apart were 724 
merged into a single locus, where we have used 500kbp), and also reported results from multiple analytic 725 
approaches (by subset, or conditioned on known loci). For clarity in our comparison, we use the same locus 726 
definition as we used earlier in this manuscript, and we limit the comparison to a single approach: the sex-727 
combined joint analysis of all European individuals in GIANT, meta-analyzed with the sex-combined 728 
SUGEN results from either PAGE or the UK Biobank. 729 
 730 
To create a comparable sample size as PAGE, a total of 50,000 “White British” individuals were randomly 731 
subset from the larger UK Biobank (UKB50k). Height and BMI was adjusted for both sex and age identically 732 
to PAGE procedures. The linkage disequilibrium information for GIANT was generated from 9,700 ARIC 733 
individuals who were part of the larger GIANT consortium. For PAGE, correlation between sites were 734 
calculated separately for each race/ethnicity group. These matrices were then combined, weighted by the 735 
inverse sample size to create a combined weighted correlation matrix of sites. For the meta-analyses, the 736 
correlation matrices were again combined, weighted by the inverse of the sample size proportional to 250k 737 
GIANT, 50k PAGE, and 50k “White British” UK Biobank participants.  738 
 739 

 740 

Supplementary Figure 14: BMI PVE.  741 
Although less of the variance is explained for BMI than for height, results are broadly consistent: meta-742 
analysis with more Europeans (GIANT+UKB) exacerbates existing disparities in PVE between Europeans 743 
and a multi-ethnic cohort (center pair of bars), while in this case, meta-analysis with the multi-ethnic 744 
cohort (GIANT+PAGE) actually yields improved PVE in the multi-ethnic cohort.  745 
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A 746 

 747 
B 748 

 749 

Supplementary Figure 15: Finemapping for BMI. 750 
(A) Comparison of 95% credible sets for height, comparing GIANT alone (N=253,288) to UKB50k+GIANT 751 
(N=303,288; paired sample t-test P=0.60) and PAGE+GIANT (N=303,069; paired sample t-test P=0.50).  752 
Boxplots show the median at the notch, with the top and bottom of the box indicating the interquartile 753 
range (IQR). Whiskers extend to either the minimum value or 1.5*IQR. Notches indicate the 95% 754 
confidence interval of the medians. (B) Top posterior probability from each 95% credible set for height, 755 
comparing GIANT (N=253,288) to UKB50k+GIANT (N=303,288) and PAGE+GIANT (N=303,069). 756 

 757 
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10. Comparison of novel and secondary variant allele 758 

frequencies in European populations 759 
 760 

To interrogate the possibility of discovery of our novel and secondary findings in a European ancestry 761 
sample, we downloaded the vcfs from the gnomAD browser (https://gnomad.broadinstitute.org) and 762 
extracted the sites that matched our PAGE hits for the non-Finnish European group (NFE), as the largest 763 
public repository of European-derived allele frequencies. Of these, we identified 24 novel and 35 residual 764 
sites that were biallelic, did not contain repeat motifs, and within the callability mask. As can be seen in 765 
the boxplots below, novel sites had significantly lower allele frequencies than secondary sites (median 766 
minor allele frequency: 0.0050 vs 0.015, Wilcoxon p: 0.03). We also observed a weakly significant 767 
increase in sites with a measured MAF of 0 in NFE: 7/24 vs 3/35 in novel and secondary, respectively: 768 
logistic regression P=0.05, OR=4.4, 95% CI: 1.1-22, reflecting the small sample size of novel and 769 
secondary sites. However as can be seen in the plot, even in the novel findings there are common 770 
variants (maximum MAF: rs6730558, MAF~37%), indicating that lead variants still require fine mapping to 771 
uncover the causal signals as described above.  772 

 773 

Supplementary Figure 16: European allele frequencies of novel and secondary 774 
findings in PAGE.  775 
Here we show the distribution of allele frequencies in the Non-Finnish European group in the gnomAD 776 
browser (N=63,369) for our novel and secondary findings, demonstrating the preponderance of low 777 
frequency variants in European populations which are now adequately powered in PAGE groups. The 778 
median is denoted in bold with the top and bottom indicating the interquartile range (IQR). The whiskers 779 
denote 1.5*IQR or the minimum/maximum value, with outliers displayed as dots. 780 

  781 
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11. Clinically-relevant variants and their distribution in 782 

PAGE 783 

We also investigated the HLA-B*57:01 allotype, which interacts with the HIV drug abacavir to trigger 784 
a potentially life-threatening immune response 38–41 and therefore is recommended by the FDA for 785 
screening prior to treatment initiation 42. The rs2395029 (G) variant in HCP5 is used to screen for abacavir 786 
hypersensitivity 43, as it is a near perfect tag of HLA-B*57:01 in Europeans and has utility (r ~ 0.92, 44) 787 
across globally diverse populations in the 1000 Genomes Project. Using PAGE and Global Reference Panel 788 
samples, we show that risk allele frequencies for rs2395029 rise above 5% in multiple large South Asian 789 
populations, and above 1% within some admixed populations with Native American ancestry (Figure 4). 790 
PAGE allele frequencies can therefore aid in expanding the reach of precision medicine to encompass 791 
individuals of diverse ancestry, particularly when combined with other studies. 17,45 792 
  793 
 794 

 795 

Supplementary Figure 17: World map of HCP5-G frequencies within PAGE 796 
groups. 797 
The histocompatibility protein variant HLA-B*57:01 interacts with the HIV drug abacavir to stimulate a 798 
hypersensitivity response. A variant in a gene near HLA-B, HCP5 rs2395029 (G allele), can be used to 799 
genotype for the -B*57:01 allele as it is in high linkage disequilibrium (correlation ~0.92 in 1000 Genomes 800 
Phase 1).43,44,46,47. This HCP5 tag-SNP segregates within all continental populations of the PAGE study, 801 
providing increased resolution of the global haplotype frequency, particularly within Latin America. Above, 802 
minor allele (G) frequency is shown. Population size is indicated by the radius of the circle. Black dot 803 
(MAF not displayed): population has less than twenty individuals or the variant is a singleton in that 804 
population. 805 

 806 

  807 
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