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Figure S1. In silico super-enhancer screen identifies potential glioblastoma stem cell specific therapeutic
targets, related to Figure 1.

(A) Super-enhancer hockey-stick plots show all ranked enhancers called from 10 glioblastoma

(B)

(€

primary tissue samples (GBM-2907, GBM-3018, GBM-3028, GBM-3069, GBM-B39, GBM-2493,
GBM-P69, GBM-R28, GBM-S08, GBM-2585). Enhancers were ranked based on the difference
between the H3K27ac signal from ChIP-seq data and the respective matched ChIP input file.
Super-enhancers were defined by the ROSE algorithm.

All genes present in the glioblastoma TCGA HG-U133A microarray dataset were analyzed for
prognostic significance based on mRNA expression levels using (top) the Cox proportional hazards
test or (bottom) log rank analysis with patients with greater than the average (mean) expression
in the “High expression” group and others in the “Low expression” group.

All genes present in the glioblastoma TCGA HG-U133A microarray dataset were analyzed for
prognostic significance based on mRNA expression levels using (top) the Cox proportional hazards
test or (bottom) log rank analysis with patients with greater than the average (mean) expression
in the “High expression” group and others in the “Low expression” group. Survival analysis was
performed across all glioblastoma patients (left) or restricted to IDH wildtype glioblastoma
patients (right).

(D) Venn diagram illustrating overlaps between genes with poor prognosis as determined in (B).

(E)

Volcano plot showing differentially expressed genes between glioblastoma TCGA RNA-seq data
and the GTEx normal brain RNA-seq dataset, as derived from (54). Log2 Fold change > 1, FDR-
corrected p-value < 1e-15.
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Figure S2. Glioblastoma stem cell specific super-enhancer associated genes are essential for
glioblastoma stem cell proliferation, related to Figure 2.

(A) gPCR analysis of mMRNA expression of SOX2 in 7 matched GSCs and DGCs. Student t-test was used
to assess statistical significance with four technical replicates. ***, p < 0.001. ****, p < 0.0001.

(B) gPCR analysis of mRNA expression of OLIG2 in 7 matched GSCs and DGCs. Student t-test was used
to assess statistical significance with four technical replicates. ****, p < 0.0001.

(C) gPCR analysis of mMRNA expression of GFAP in 7 matched GSCs and DGCs. Student t-test was used
to assess statistical significance with four technical replicates. **, p < 0.01. ***, p < 0.001. ****,
p < 0.0001.

(D) gPCR analysis of mRNA expression of ELOVL2 in a second derivation of 8 matched GSCs and DGCs.
Student t-test was used to assess statistical significance with four technical replicates. * , p < 0.05,
*** p<0.001. **** p<0.0001.

(E) gPCR analysis of mRNA expression of KLHDC8A in a second derivation of 8 matched GSCs and
DGCs. Student t-test was used to assess statistical significance with four technical replicates. * , p
<0.05, *** p<0.001. **** p<0.0001.

(F) gPCR analysis of mRNA expression of WSCD1 in a second derivation of 8 matched GSCs and DGCs.
Student t-test was used to assess statistical significance with four technical replicates. * , p < 0.05,
*** p<0.001. **** p<0.0001.

(G) gPCR analysis of mMRNA expression of SOX2 in a second derivation of 9 matched GSCs and DGCs.
Student t-test was used to assess statistical significance with four technical replicates. ***, p <
0.001. **** p < 0.0001.

(H) gPCR analysis of mRNA expression of OLIG2 in a second derivation of 9 matched GSCs and DGCs.
Student t-test was used to assess statistical significance with four technical replicates. ***, p <
0.001. **** p < 0.0001.

() gPCR analysis of mMRNA expression of GFAP in a second derivation of 9 matched GSCs and DGCs.
Student t-test was used to assess statistical significance with four technical replicates. ***, p <
0.001. **** p < 0.0001.

(J) gPCR analysis of MRNA expression of ELOVL2, following treatment with 1.5uM of JQ1 for 48 hours
in three GSCs (GSC387, GSC3565, and GSC23) with 6 technical replicates per condition. Student’s
t-test with Holm-Sidak multiple test corrections, (****, p < 0.0001)

(K) Same as (J) for KLHDCS8A.
(L) Same as (J) for WSCD1.

(M) gPCR analysis of mRNA expression of MYC, following treatment with 1.5uM of JQ1 for 48 hours in
three GSCs (GSC387, GSC3565, and GSC23). Student’s t-test with Holm-Sidak multiple test
corrections with six technical replicates (****, p<0.0001)

(N) Cell viability in the GSC3565 cell model was assessed over a 7-day time course following
knockdown with two independent, non-overlapping shRNAs targeting ELOVL2 (shELOVL2.308,
ShELOVL2.843) or a non-targeting shRNA (shCONT). Two-way repeated measures ANOVA was
used for statistical analysis with Dunnett’s multiple hypothesis test correction with five technical
replicates (****, p<0.0001). Inset shows qPCR analysis of mRNA expression of ELOVL2 in the
GSC3565 tumor model following knockdown. One-way ANOVA was used for statistical analysis
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with Dunnett’s multiple hypothesis test correction with three technical replicates. ***, p < 0.001.
**** p<0.0001.

(O) Cell viability in the GSC3565 cell model was assessed over a 7-day time course following

(P)

knockdown with two independent, non-overlapping shRNAs targeting KLHDCS8A
(shKLHDC8A.1842, shKLHDC8A.883) or a non-targeting shRNA (shCONT). Two-way repeated
measures ANOVA was used for statistical analysis with Dunnett’s multiple hypothesis test
correction with five technical replicates (****, p<0.0001). Inset shows gPCR analysis of mRNA
expression of KLHDC8A in the GSC3565 tumor model following knockdown. One-way ANOVA was
used for statistical analysis with Dunnett’s multiple hypothesis test correction with three technical
replicates. *, p < 0.05. **** p < 0.0001.

Cell viability in the GSC3565 cell model was assessed over a 7-day time course following
knockdown with two independent, non-overlapping shRNAs targeting WSCD1 (shWSCD1.1087,
shWSCD1.952) or a non-targeting shRNA (shCONT). Two-way repeated measures ANOVA was
used for statistical analysis with Dunnett’s multiple hypothesis test correction with five technical
replicates (****, p<0.0001). gPCR analysis of mMRNA expression of WSCD1 in the GSC3565 tumor
model following knockdown. Two-way repeated measures ANOVA was used for statistical analysis
with Dunnett’s multiple hypothesis test correction with three technical replicates. ****,
p<0.0001.
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Figure S3. ELOVL2 knockdown and knockout impairs cell proliferation capacity in glioblastoma stem
cells, related to Figure 4.

(A) Representative cell images 4 days following knockdown with two independent, non-overlapping

shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting sShRNA (shCONT). The
scale bar represents 200 um.

(B) gPCR analysis of mRNA expression of ELOVL2 in four GSCs following knockdown with two

independent, non-overlapping shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-
targeting shRNA (shCONT). One-way ANOVA was used for statistical analysis with Dunnett’s
multiple hypothesis test correction with four technical replicates. ****, p < 0.0001.

(C) Western blot showing ELOVL2 protein levels following CRISPR-Cas9 mediated knockout of

ELOVL2. Actin was used as a loading control.

(D) Genomic DNA flanking the ELOVL2 CRISPR-Cas9 cut site was PCR amplified and subjected to

(E)
(F)

Sanger sequencing. Sequencing tracks from the non-targeting sgRNA (sgCONT) and sgRNA
targeting ELOVL2 are displayed with insertion/deletion sites.

Schematic of shRNAs targeting the ELOVL2 mRNA.

Cell viability in GSC387 over a 7-day time course following knockdown with two independent,
non-overlapping shRNAs targeting ELOVL2 (shELOVL2.503, shELOVL2.1460) or a non-targeting
ShRNA (shCONT). 5 technical replicates were used for each condition. Two-way repeated
measures ANOVA with Dunnett’s multiple hypothesis test correction (****, p < 0.0001). Inset
shows gqPCR demonstrating ELOVL2 expression following treatment with two independent non-
overlapping shRNAs targeting ELOVL2 (***, p < 0.001).

(G) Quantification of stem cell frequency from in vitro limiting dilution assay.

(H) Western blot following ELOVL2 knockdown with two independent, non-overlapping shRNAs

U

()

targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting shRNA (shCONT). Tubulin was
used as a loading control.

Cell cycle analysis of the GSC3565 cell model 3 days following knockdown with two independent,
non-overlapping shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting
shRNA (shCONT).

gPCR analysis of OLIG2 mRNA expression in paired GSCs and DGCs derived from GSC387,
GSC3565, and GSC23. Two-way ANOVA with Sidak multiple test correction was used for statistical
analysis. **** p < 0.0001.
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Figure S4. ELOVL2 marks stem cell populations and is not a pan-essential gene, related to Figure 4.

(A)

(B)

(€

(D)

(E)

(F)
(G)
(H)

Cell viability in three neural stem cells (ENSA, hNP1, and NSC11) was assessed over a 7-day time
course following knockdown with two independent, non-overlapping shRNAs targeting ELOVL2
(shELOVL2.308, shELOVL2.843) or a non-targeting shRNA (shCONT). Two-way repeated measures
ANOVA was used for statistical analysis with Dunnett’s multiple hypothesis test correction with
five technical replicates (****, p<0.0001). Inset shows gPCR analysis of mRNA expression of
ELOVL2 following knockdown. One-way ANOVA was used for statistical analysis with Dunnett’s
multiple hypothesis test correction with three technical replicates. **, p < 0.01. ***, p < 0.001.

Cell viability in three non-malignant neural cells derived from epilepsy tissue resection specimens
(NM55, NM176, and NM263) was assessed over a 7-day time course following knockdown with
two independent, non-overlapping shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a
non-targeting shRNA (shCONT). Inset shows gPCR analysis of mRNA expression of ELOVL2
following knockdown. One-way ANOVA was used for statistical analysis with Dunnett’s multiple
hypothesis test correction with three technical replicates. ***, p < 0.001. **** p < 0.0001.

ELOVL2 dependency score in a whole genome CRISPR-Cas9 screen across 558 cancer cell lines. A
lower score means that a gene is more likely to be dependent in a given cell line. A score of 0 is
equivalent to a gene that is not essential whereas a score of -1 corresponds to the median of all
common essential genes. Data were derived from the Cancer Dependency Map
(www.depmap.org). Dependency score is calculated using the CERES algorithm.

ELOVL2 dependency score in a whole genome shRNA screen across 711 cancer cell lines.
Dependency score is calculated using the DEMETER2 algorithm.

Single-cell RNA-sequencing (scRNA-seq) data from normal brain specimens derived from (31)
presented as a t-Distributed Stochastic Neighbor Embedding (t-SNE) plot demonstrating
expression of ELOVL2 across brain cell types. Data is presented as median centered mRNA
expression in counts per million (CPM). IPC denotes intermediate progenitor cells.

Quantification of data in (E).
Same as (E) for SOX2 mRNA expression.

Quantification of data in (G).
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Figure S5. Global metabolomics analysis reveals enrichment in purine salvage and pyrimidine
degradation pathways following ELOVL2 knockdown, related to Figure 5.

(A)

(B)

(€

(D)

(E)

(F)

(G)

(H)

U

()

(K)

Cell viability in GSC387 following knockdown with two independent, non-overlapping shRNAs
targeting ELOVL2 or a non-targeting shRNA (shCONT). Cells were treated with vehicle, 10 uM, or
20 uM of docosahexaenoic acid (DHA). Statistical significance was assessed using two-way ANOVA
with Dunnett multiple test correction with six technical replicates. **; p < 0.01; ***, p < 0.001;
**** p<0.0001.

Same as (A) with docosapentaenoic acid (DPA).

Heatmap displaying the top 1,000 differential mass spectrometry features in the negative mode
(HILIC) in the GSC387 model following knockdown with two independent, non-overlapping
shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting shRNA (shCONT).

Heatmap displaying the top 1,000 differential mass spectrometry features in the negative mode
(HILIC) in the GSC3565 model following knockdown with two independent, non-overlapping
shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting sShRNA (shCONT).

Pathway cloud plot showing differential mass spectrometry features in the GSC387 model when
analyzed in the negative mode (HILIC).

Pathway cloud plot showing differential mass spectrometry features in the GSC3565 model when
analyzed in the negative mode (HILIC).

Pathway analysis of differential putative metabolites in the GSC387 model following ELOVL2
knockdown as determined through mass spectrometry in the negative mode (HILIC).

Pathway analysis of differential putative metabolites in the GSC387 model following ELOVL2
knockdown as determined through mass spectrometry in the negative mode (HILIC).

Metabolite abundance of guanine following knockdown with two independent, non-overlapping
shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting ShRNA (shCONT).
One-way ordinary ANOVA was used for comparisons with three technical replicates. **, p < 0.01.
*** n<0.001.

Metabolite abundance of hypoxanthine following knockdown with two independent, non-
overlapping shRNAs targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting shRNA
(shCONT). One-way ordinary ANOVA was used for comparisons with three technical replicates.
** p<0.01. ***, p <0.001.

Heatmap displays differential transcriptional signatures derived from RNA-sequencing following
knockdown with two independent, non-overlapping shRNAs targeting ELOVL2 or a non-targeting
shRNA (shCONT).
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Figure S6. Polyunsaturated fatty acid synthesis supports EGFR signaling in glioblastoma stem cells,
related to Figure 6.
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Volcano plot demonstrating differentially expressed genes in the TCGA HG-U133A microarray
glioblastoma dataset between ELOVL2 high and ELOVL2 low specimens, using the median ELOVL2
mRNA expression as a cutoff.

Volcano plot demonstrating differentially expressed genes in the TCGA HG-U133A microarray
glioblastoma dataset between EGFR high and EGFR low specimens, using the median EGFR mRNA
expression as a cutoff.

ELOVL2 mRNA expression from The Cancer Genome Atlas (TCGA) HG-U133A glioblastoma
microarray between three transcriptional subtypes. Statistical significance was assessed using
ordinary one-way ANOVA with Tukey multiple comparison correction. **** p < 0.0001 for all
pairwise comparisons.

Correlation between ELOVL2 and EGFR was calculated in (left) the TCGA HG-U133A glioblastoma
dataset, (middle) the Rembrandt glioma/glioblastoma dataset, and (right) the Gravendeel
glioma/glioblastoma dataset.

Volcano plot showing results of differential expression RNA-seq analysis in GSC387 and GSC3565.

Gene set enrichment plot for the KEGG MAPK Signaling pathway. Genes were ranked based on
the p-value significance of their differential expression between shCONT and shELOVL2.308/
shELOVL2.843. FDR-corrected g-value = 0.13.

Super-resolution stochastic optical reconstruction microscopy (STORM) imaging of EGFR following
knockdown with two independent, non-overlapping shRNAs targeting ELOVL2 (shELOVL2.308,
ShELOVL2.843) or a non-targeting shRNA (shCONT) in the GSC387 and GSC3565 model. Scalebar
shows 2 um.

Flow cytometry analysis of cell surface EGFR following knockdown with two independent, non-
overlapping shRNAs targeting ELOVL2 or a non-targeting ShRNA (shCONT) in GSC387 and GSC3565
with three technical replicates.

Heatmap showing glioma subtype and clinical characteristics from the TCGA dataset. ELOVL2 and
EGFR mRNA expression from the HG-U133A glioma microarray is presented with reverse phase
protein array (RPPA) data for receptor tyrosine kinases.

Western blot in GSC387 following knockdown with two independent, non-overlapping shRNAs
targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting shRNA (shCONT). GAPDH is
used as a loading control.

Western blot in GSC3565 following knockdown with two independent, non-overlapping shRNAs
targeting ELOVL2 (shELOVL2.308, shELOVL2.843) or a non-targeting shRNA (shCONT). GAPDH is
used as a loading control.

Western blot GSC387 cells following treatment with dCas9-KRAB and two sgRNAs targeting the
ELOVL2 super-enhancer critical region or an empty dCas9-KRAB vector. TUBULIN and GAPDH are
used as loading controls.

(M) gPCR analysis of mRNA expression of MEK1 (MAP2K1) in GSC3565 following treatment with a

(N)

constitutive active MEK (5218D, S222D) or an empty vector.

Cell viability in GSC387 following knockdown with two independent, non-overlapping shRNAs
targeting ELOVL2 or a non-targeting shRNA (shCONT). Cells were treated with vehicle, 20 uM, or
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50 uM of lysophosphatidylethanolamine. Statistical significance was assessed using two-way
ANOVA with Dunnett multiple test correction with six technical replicates. ****, p < 0.0001.
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Figure S7. ELOVL2 knockdown abolishes preferential localization of EGFR to cell membrane, related to
Figure 6.

(A) Stochastic optical reconstruction microscopy (STORM) imaging of GSC387 following treatment
with a non-targeting shRNA (shCONT) showing (Left) EGFR density with bivariate histogram plot
of blink number (right) histogram of blink numbers corresponding to EGFR density across two
different 4 um sections that cross the center of the cell.

(B) Same as (A) following treatment with an shRNA targeting ELOVL2 (shELOVL2.308).
(C) Same as (A) following treatment with an shRNA targeting ELOVL2 (shELOVL2.843).

(D) Stochastic optical reconstruction microscopy (STORM) imaging of GSC3565 following treatment
with a non-targeting shRNA (shCONT) showing (Left) EGFR density with bivariate histogram plot
of blink number (right) histogram of blink numbers corresponding to EGFR density across two
different 4 um sections that cross the center of the cell.

(E) Same as (D) following treatment with an shRNA targeting ELOVL2 (shELOVL2.308).
(F) Same as (D) following treatment with an shRNA targeting ELOVL2 (shELOVL2.843).
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Figure S8. Polyunsaturated fatty acid synthesis is a potential clinical target in glioblastoma, related to
Figure 7.
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Kaplan-Meier curve showing survival of patients in the TCGA HG-U133A glioblastoma dataset
stratified based on signature score from the “Reactome remodeling of
phosphatidylethanolamine” signature. Log-rank analysis (p=0.0036, “Signature low” n=262,
“Signature high” n=263).

Kaplan-Meier curve showing survival of patients in the TCGA HG-U133A glioblastoma dataset
stratified based on signature score from the “KEGG ether lipid metabolism” signature. Log-rank
analysis (p=0.0011, “Signature low” n=262, “Signature high” n=263).

Kaplan-Meier curve showing survival of patients in the TCGA HG-U133A glioblastoma dataset
stratified based on signature score from the “GO regulation of phospholipid biosynthetic process”
signature. Log-rank analysis (p=0.037, “Signature low” n=262, “Signature high” n=263).

MRNA expression TPM values in normal brain (GTEx, n=207) and glioblastoma (TCGA, n=163) from
RNA-seq data for FADS2. Four-way ANOVA controlling for sex, age, and ethnicity with Benjamini
and Hochberg false discovery rate (FDR) method, p= 3.9e-29.

H3K27ac signal at the FADS2 promoter region in three matched GSCs and DGCs (MGG4, MGGS6,
and MGG8). Data was derived from (26).

Cell viability of GSC387 and GSC3565 following combinatorial treatment with lapatinib or SC-
26196. Six technical replicates were used.

Western blot following treatment with lapatinib (5 uM), SC-26196 (10 uM), or a combination.
Tubulin was used as a loading control.

Cancer cell viability data from 860 cell lines in response to 481 compounds is stratified based on
ELOVL2 expression. For each compound, the Pearson correlation z-score between drug sensitivity
and ELOVL2 expression is plotted with positive values indicating that low ELOVL2 expression is
associated with increased sensitivity to the compound and positive values indicating that low
ELOVL2 expression is associated with decreased sensitivity to the compound. Data was accessed
from the Cancer Therapeutics Response Portal (https://portals.broadinstitute.org/ctrp.v2.1/).
Cells in any growth mode and primary site/subtype were considered for analysis.

In vitro synergy diagram of combinatorial lapatinib and SC-26196 treatment. ZIP score was used
to assess synergy (55).

(Top) Kaplan-Meier curve showing survival of mice following implantation with GSC3565 following
knockdown with two independent, non-overlapping shRNAs targeting ELOVL2 or a non-targeting
ShRNA (shCONT). n=5 mice per arm. shCONT vs. shELOVL2.308, p = 0.004. shCONT vs.
SshELOVL2.843, p = 0.002. (Bottom) Hematoxylin and eosin staining of brains following
implantation with GSC387 following shCONT or shELOVL2 treatment.

Kaplan-Meier curve showing survival of mice following implantation with GSC387 following
treatment with an shRNA targeting ELOVL2 (shELOVL2.308) or a non-targeting control (shCONT).
Mice were treated by oral gavage with vehicle control, low dose lapatinib (20 mg/kg), or high dose
lapatinib (40 mg/kg). Vehicle/low dose lapatinib group (n=10). High dose lapatinib group (n=>5).

Hematoxylin and eosin staining of brains following implantation with GSC387 and treatment as
shown in Figure 7K. Scale bar indicates 3mm in upper panels, and 400uM in the callout.

(M) Model diagram for the mechanisms underlying ELOVL2 activation and function in glioblastoma
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stem cells. In glioblastoma stem cells, a cell-state specific super-enhancer supported by SOX2
drives ELOVL2 expression. ELOVL2 functions to increase long chain polyunsaturated fatty acid
synthesis, which supports cell membrane architecture and efficient EGFR signaling.



