# Science Advances

advances.sciencemag.org/cgi/content/full/5/10/eaav9822/DC1

### Supplementary Materials for

#### Bone marrow storage and delayed consumption at Middle Pleistocene Qesem Cave, Israel (420 to 200 ka)

R. Blasco\*, J. Rosell, M. Arilla, A. Margalida, D. Villalba, A. Gopher, R. Barkai

\*Corresponding author. Email: ruth.blasco@cenieh.es, rblascolopez@gmail.com

Published 9 October 2019, *Sci. Adv.* **5**, eaav9822 (2019) DOI: 10.1126/sciadv.aav9822

#### This PDF file includes:

Fig. S1. Examples of cut marks associated to disarticulation and/or skinning from Amudian and Yabrudian levels of Qesem Cave.

Fig. S2. Test of normality and graphs showing the number of cut marks with inclination almost parallel to the bone and weeks of conservation by scenarios (SC 1 and SC 2).

Fig. S3. Examples of different actions (skinning, tendon removal, and bone breakage) during the development of the SC 1.

Fig. S4. Ternary plots showing analysis of bone break planes (outline, angle, and surface edge) of metapodials with more than 20 mm length from experimental series [outdoor (autumn and spring) scenarios] and Qesem Cave faunal assemblage following the criteria established by Villa and Mahieu (*31*).

Table S1. Variation on FAME (%) composition according to the week of conservation in the outdoor (autumn) scenario (SC 1).

Table S2. Weight and energy data (kcal) from the metapodial bones by experimental scenario and exposure time.



**Fig. S1. Examples of cut marks associated to disarticulation and/or skinning from Amudian and Yabrudian levels of Qesem Cave.** (Top) Transverse (and slightly oblique) incisions on proximal epiphysis and metaphysis of metapodials; (bottom) cut-marked basipodials of fallow deer. Dotted lines show the area of the bone with cut marks (including not only the surface shown in detail). The 3D images and details were generated by a KH-8700 3D Digital Microscope. Photo credits: R. Blasco.



Fig. S2. Test of normality and graphs showing the number of cut marks with inclination almost parallel to the bone and weeks of conservation by scenarios (SC 1 and SC 2). Note an increase of cut marks in line with the exposure time and especially from the fourth week onwards.



**Fig. S3. Examples of different actions (skinning, tendon removal, and bone breakage) during the development of the SC 1.** Note the use of the tool with an inclination almost parallel to the bone in A and B (week 4). Images in D and E show the beginning of the skin removal on the proximal part of the metapodials (weeks 6 and 8); A and C show the tendons removal in combination with skinning, and F, the extraction of the tendon after skinning. Note the ease of tendon removal when still fresh/semi-fresh in F (week 1), which is only attached to the bone through proximal and distal extremities; only a few cuts are needed to obtain it. Images in G to I show the bone breakage process during the fourth and fifth week. Note that no well-defined notches appear in H and I. Photo credits: M. Arilla.



Fig. S4. Ternary plots showing analysis of bone break planes (outline, angle, and surface edge) of metapodials with more than 20 mm length from experimental series [outdoor (autumn and spring) scenarios] and Qesem Cave faunal assemblage following the criteria established by Villa and Mahieu (*31*).

Table S1. Variation on FAME (%) composition according to the week of conservation in the outdoor (autumn) scenario (SC 1).

|                    | week of conservation |       |       |       |       |        |         |  |  |  |
|--------------------|----------------------|-------|-------|-------|-------|--------|---------|--|--|--|
| FAME (%)           | 0                    | 2     | 4     | 6     | 8     | slope  | p-value |  |  |  |
| C14:0              | 1.88                 | 1.56  | 1.48  | 1.01  | 1.70  | -0.046 | 0.2014  |  |  |  |
| C14:1(n-5)         | 3.00                 | 1.66  | 2.65  | 1.37  | 2.12  | -0.103 | 0.1659  |  |  |  |
| C15.0              | 0.56                 | 0.90  | 0.44  | 0.50  | 0.89  | 0.013  | 0.6177  |  |  |  |
| C16:0              | 10.04                | 13.17 | 10.40 | 10.09 | 12.10 | 0.052  | 0.7483  |  |  |  |
| C16:1(n-7)         | 16.64                | 11.66 | 16.69 | 13.80 | 14.45 | -0.111 | 0.6511  |  |  |  |
| C17:0              | 0.36                 | 0.66  | 0.33  | 0.45  | 0.58  | 0.012  | 0.4427  |  |  |  |
| C17:1(n-7)         | 1.15                 | 1.60  | 1.06  | 1.86  | 1.94  | 0.092  | 0.0182* |  |  |  |
| C18:0              | 2.35                 | 2.32  | 2.44  | 0.83  | 1.47  | -0.162 | 0.0181* |  |  |  |
| C18:1 <sup>1</sup> | 1.10                 | 1.02  | 0.50  | 0.36  | 0.40  | -0.104 | 0.0307* |  |  |  |
| C18:1(n-9)         | 36.52                | 34.08 | 35.58 | 30.91 | 31.20 | -0.691 | 0.0014* |  |  |  |
| C18:1 <sup>2</sup> | 10.60                | 2.00  | 13.17 | 6.18  | 2.82  | -0.569 | 0.2915  |  |  |  |
| C18.2(n-6)         | 2.42                 | 2.12  | 2.69  | 1.97  | 1.88  | -0.061 | 0.0792  |  |  |  |
| C18:3(n-3)         | 1.03                 | 1.09  | 1.29  | 0.73  | 0.73  | -0.048 | 0.0536  |  |  |  |
| C20:1              | 0.55                 | 0.00  | 0.54  | 0.39  | 0.20  | -0.016 | 0.5575  |  |  |  |
| Non ident          | 11.80                | 25.78 | 10.74 | 28.97 | 27.23 | 1.702  | 0.0631  |  |  |  |
| Monosaturated      | 77.57                | 68.42 | 77.44 | 75.45 | 70.73 | -0.003 | 0.4793  |  |  |  |
| Polyunsaturades    | 3.91                 | 4.34  | 4.46  | 3.80  | 3.59  | -0.001 | 0.1362  |  |  |  |
| Saturated          | 18.52                | 27.24 | 18.09 | 20.75 | 25.68 | 0.004  | 0.4069  |  |  |  |

\*Statistically significant values.

<sup>1</sup> (E)-octadec-9-enoic acid <sup>2</sup> (E)-octadec-11-enoic acid

## Table S2. Weight and energy data (kcal) from the metapodial bones by experimental scenario and exposure time.

| Exposure time (weeks) | Scenario   | Lab reference       | Metapodium weight (1) | Tendon weight |                       | Marrow weight | Marrow %      | Energy<br>(Kcal) | % Steak 100g |
|-----------------------|------------|---------------------|-----------------------|---------------|-----------------------|---------------|---------------|------------------|--------------|
| (/                    |            |                     |                       | Dorsal        | Anterior              |               |               | ( )              |              |
| 0                     | SC1        | 0B.1                | 124.4                 | 32.9          | 3.4                   | 7.1           | 5.7%          | 66.74            | 12%          |
| 1                     | SC1        | 1B.1                | 95.8                  | 27            | 4.9                   | 6.6           | 6.9%          | 62.04            | 11%          |
| 1                     | SC1        | 1B.2                | 70                    | 23.1          | 4.6                   | 6.3           | 9.0%          | 59.22            | 10%          |
| 2                     | SC1        | 2B.2                | 97                    | 23.9          | 5.3                   | 14.4          | 14.8%         | 135.36           | 24%          |
| 2                     | SC1        | 2B.1                | 103.3                 | 36.6          | 6.3                   | 11.8          | 11.4%         | 110.92           | 20%          |
| 3                     | SC1        | 3B.2                | 82.5                  | 21.8          | 4.1                   | 7             | 8.5%          | 65.8             | 12%          |
| 3                     | SC1        | 3B.1                | 100.7                 | 27            | 3.4                   | 4.2           | 4.2%          | 39.48            | 7%           |
| 4                     | SC1        | 4B.1                | 113.5                 | 31.1          | 6.3                   | 10.5          | 9.3%          | 98.7             | 17%          |
| 4                     | SC1        | 4B.2                | 127.5                 | 34.1          | 8                     | 7.4           | 5.8%          | 69.56            | 12%          |
| 5                     | SC1        | 5B.2                | 68.3                  | 15.6          | 1.9                   | 6.2           | 9.1%          | 58.28            | 10%          |
| 5                     | SC1        | 5B.1                | 99.1                  | 21.3          | 3.1                   | 2.2           | 2.2%          | 20.68            | 4%           |
| 6                     | SC1        | 6B.1                | 114.3                 | 31            | 5.3                   | 11.6          | 10.1%         | 109.04           | 19%          |
| 6                     | SC1        | 6B.2                | 61.2                  | 12.1          | 1.9                   | 4.2           | 6.9%          | 39.48            | 7%           |
| 7                     | SC1        | 7B 2                | 66.9                  | 15.9          | 2                     | 7.2           | 10.8%         | 67.68            | 12%          |
| 7                     | SC1        | 7B 1                | 84.3                  | 14.7          | 24                    | 59            | 7.0%          | 55.46            | 10%          |
| 8                     | SC1        | 8B 2                | 75.7                  | 20.3          | 2.1                   | 4 Q           | 6.5%          | 46.06            | 8%           |
| 8                     | SC1        | 8B 1                | 98.7                  | 18.1          | 2.1                   | 0.4           | 0.0%          | 3 76             | 1%           |
| Q                     | SC1        | 0D.1<br>0R 1        | 87.8                  | 22            | 2.0                   | 7/            | 8.4%          | 69 56            | 12%          |
| 9                     | SC1        | 9B.1                | 116.8                 | 20 5          | 2                     | 6.6           | 5.7%          | 62.04            | 12%          |
| 0                     | SC2        | 04.2                | 110.0                 | 20.0          | 47                    | 11 /          | 9.6%          | 107 16           | 10%          |
| 0                     | SC2        | 0A.2                | 170                   | 34.6          | 4./<br>7              | 10.3          | 5.0%          | 96.82            | 17%          |
| 1                     | SO2<br>SC2 | 1.0.1               | 151.0                 | 29.1          | 68                    | 9.9           | 5.0%          | 90.02<br>90.70   | 15%          |
| 1                     | 30Z        | 14.1                | 101.9                 | 20.4          | 0.0                   | 0.0<br>E 0    | 0.0%<br>E E0/ | 02.12            | 10%          |
| 1                     | 30Z        | 1A.Z                | 100.2                 | 37.5          | 4.4<br>6.2            | 0.0<br>11 /   | 0.0%          | 04.0Z            | 10%          |
| 2                     | 30Z        | 2A.1                | 122.4                 | 20.0          | 0.3                   | 11.4          | 9.3%          | 107.10           | 19%          |
| 2                     | 30Z        | 2A.Z                | 02.2                  | 20<br>10 2    | 2.0                   | 3.5           | 5.1%          | 32.9             | 0 /0         |
| 3                     | 30Z        | 3A.1                | 92.Z<br>100.7         | 10.0          | 3.0<br>2.0            | 4.9           | 0.0%          | 40.00            | 0 /0<br>70/  |
| 3                     | 30Z        | 3A.Z                | 100.7                 | 10.9          | ა. <del>9</del><br>ეე | 4.4           | 4.4%<br>E E0/ | 41.30            | / %<br>00/   |
| 4                     | 562        | 4A.Z                | 89.Z                  | 10.0          | 2.3                   | 4.9           | 5.5%          | 40.00            | 8%<br>0%     |
| 4                     | 562        | 4A.1                | 90.3                  | 0.1<br>40.7   | 2.5                   | 3.5           | 3.6%          | 32.9             | 6%<br>0%     |
| 5                     | 562        | DA.I                | 103.7                 | 12.7          | 3.3                   | 5.7           | 5.5%          | 03.00            | 9%           |
| 5                     | 562        | 5A.Z                | 120.5                 | 14.7          | 3.9                   | 1.2           | 0.9%          | 11.28            | 2%<br>2%     |
| 6                     | SC2        | 6A.2                | 151.6                 | 14.8          | 4.2                   | 4.6           | 3.0%          | 43.24            | 8%           |
| 6                     | SC2        | 6A.1                | 143.9                 | 11.6          | 3.1                   | 0.3           | 0.2%          | 2.82             | 0%           |
| 1                     | SC3        | 1C.3 <sup>(2)</sup> | 59.3                  | -             | -                     | 4.6           | 7.8%          | 43.24            | 8%           |
| 1                     | SC3        | 1C.1                | 75.8                  | 23.2          | 4.1                   | 4.5           | 5.9%          | 42.3             | 7%           |
| 1                     | SC3        | 1C.2                | 61.4                  | 19.3          | 1.9                   | 3.4           | 5.5%          | 31.96            | 6%           |
| 2                     | SC3        | 2C.2                | 68.4                  | 12            | 2.5                   | 3.3           | 4.8%          | 31.02            | 5%           |
| 2                     | SC3        | 2C.3 <sup>(2)</sup> | 62.5                  | -             | -                     | 3             | 4.8%          | 28.2             | 5%           |
| 2                     | SC3        | 2C.1                | 53.3                  | 11            | 1.5                   | 1.4           | 2.6%          | 13.16            | 2%           |
| 3                     | SC3        | 3C.1                | 76.2                  | 19.6          | 2.7                   | 4.4           | 5.8%          | 41.36            | 7%           |
| 3                     | SC3        | 3C.3 <sup>(2)</sup> | 67.6                  | -             | -                     | 3.6           | 5.3%          | 33.84            | 6%           |
| 3                     | SC3        | 3C.2                | 51.2                  | 10.7          | 1.4                   | 2             | 3.9%          | 18.8             | 3%           |
| 4                     | SC3        | 4C.2                | 50.2                  | 8.3           | 1.6                   | 1.5           | 3.0%          | 14.1             | 2%           |
| 4                     | SC3        | 4C.3 <sup>(2)</sup> | 42.3                  | -             | -                     | 1.2           | 2.8%          | 11.28            | 2%           |
| 4                     | SC3        | 4C.1 <sup>(3)</sup> | 62.3                  | 12.4          | 2.1                   | 0.3           | 0.5%          | 2.82             | 0%           |

SC 1=Outdoor (autumn) scenario; SC 2= Outdoor (spring) scenario; SC 3= Indoor simulation.

(1) Weight without skin and tendons; (2) metapodials without skin during the exposure time; (3) presence of worms.