Science Advances

advances.sciencemag.org/cgi/content/full/5/10/eaax6525/DC1

Supplementary Materials for

Synchronization of stochastic expressions drives the clustering of functionally related genes

Haiqing Xu, Jing-Jing Liu, Zhen Liu, Ying Li, Yong-Su Jin, Jianzhi Zhang*

*Corresponding author. Email: jianzhi@umich.edu

Published 9 October 2019, *Sci. Adv.* **5**, eaax6525 (2019) DOI: 10.1126/sciadv.aax6525

This PDF file includes:

Fig. S1. Simulation of the GAL pathway.

Fig. S2. Comparison of protein expression levels of *GAL* genes between cis- and trans-tagging strains.

Fig. S3. Flowchart showing the construction of cis- and trans-deletion strains for the pair of *GAL1* and *GAL10* genes.

Fig. S4. Ln(cell number ratio between the cis- and trans-deletion strains) as a function of competition time.

Table S1. Parameter values used in the simulation of the linear pathway with two reactions.

Table S2. Parameter values used in the simulation of the GAL pathway.

Table S3. Primers for strain construction.

Table S4. gRNA target sequences.

Table S5. Doubling times for various trans-deletion strains.

References (46–51)

Fig. S1. Simulation of the *GAL* **pathway.** (**A**) Expected concentrations of galactose-1-P under different levels of correlation between the concentrations of Gal1 and Gal7, determined by non-steady state numerical simulations. The correlation coefficient in concentration between Gal1 and Gal10 and that between Gal7 and Gal10 are fixed at various levels indicated on the right of the figure. Each circle indicates the average from 2,000 simulations. Error bars show SEs. (**B**) Expected concentrations of Gal7 and Gal10, determined by non-steady state numerical simulations. The correlation coefficient in concentration between Gal1 and Gal10 and that between Gal7 and Gal10, determined by non-steady state numerical simulations. The correlation coefficient in concentration between Gal1 and Gal10 and that between Gal1 and Gal7 are fixed at various levels indicated on the right of the figure. Each circle indicates the average from 10,000 simulations. Error bars show SEs.

Fig. S2. Comparison of protein expression levels of *GAL* genes between cis- and transtagging strains. (A to C) Study of the pair of *GAL1* and *GAL10* genes. Mean Gal1-yfp (a) and mean Gal10-cfp (B) protein levels are not significantly different between *cis-* and *trans-*tagging strains, but the partial correlation between Gal1-yfp and Gal10-cfp protein levels among cells upon the control for cell morphology is significantly higher in the *cis-* than *trans-*tagging strains (C). (D to F) Study of the pair of *GAL7* and *GAL10* genes. Mean Gal7-yfp (D) and mean Gal10cfp (E) protein levels are not significantly different between the *cis-* and *trans-*tagging strains, but the partial correlation between Gal7-yfp and Gal10-cfp protein levels among cells upon the control for cell morphology is significantly different between the *cis-* and *trans-*tagging strains, but the partial correlation between Gal7-yfp and Gal10-cfp protein levels among cells upon the control for cell morphology is significantly higher in the *cis-* than *trans-*tagging strains, but the partial correlation between Gal7-yfp and Gal10-cfp protein levels among cells upon the control for cell morphology is significantly higher in the *cis-* than *trans-*tagging strains (F). In all panels, each circle represents the average of eight biological replicates, each with 5000 cells. Error bars show SEs. Significance levels are indicated as follows: NS, $P \ge 0.05$; ^{*}, P < 0.05.

Fig. S3. Flowchart showing the construction of cis- and trans-deletion strains for the pair of *GAL1* and *GAL10* genes.

Fig. S4. Ln(cell number ratio between the cis- and trans-deletion strains) as a function of competition time. (**A** to **D**) Competitions between *cis-* and *trans-*deletion strains involving *GAL1* and *GAL10* gene deletions. (**E** to **H**) Competitions between *cis-* and *trans-*deletion strains involving *GAL7* and *GAL10* gene deletions. Note the different competition media used and the variation in the fluorescence marker of each strain.

Parameter	Value	Explanation
$[M_1]$	3.2×10^7 molecule/cell ^a	Based on the intracellular glucose concentration (46)
k _{cat1}	702 min ⁻¹	From the parameter for Gal1 (47)
k_{cat2}	900 min ⁻¹	From the simplified parameter for Gal7 (47)
$K_{\rm m1}$	2.3×10^7 molecule/cell ^a	Based on the parameter for Gal1 (47)
K _{m2}	8.6×10^7 molecule/cell ^a	Based on the simplified parameter for Gal7 (47)

Table S1. Parameter values used in the simulation of the linear pathway with two reactions.

^a The conversion from mM to number of molecules per cell is done by assuming 1 gram of dry cell has a volume of 2.38 ml (48) and a haploid cell weight of 1.5×10^{-11} gram (49). This means one haploid cell has a volume of 3.57×10^{-14} L.

Parameter	Value	Explanation
[Gal]	8×10 ⁶ molecule/cell ^a	Arbitrarily set to enable the simulation to approach equilibrium in a reasonable time
[UG1]	1976024 molecule/cell ^{a,b}	The intial UDP-glucose concentraion estimated according to a previous study (50)
[UGa]	4023976 molecule/cell ^{a,b}	The initial UDP-galactose concentration estimated according to a previous study (50)
k _{cat1}	3350 min ⁻¹	k_{cat} of the Gal1 reaction from a previous simulation study (51)
k_{cat2}	59200 min ⁻¹	k_{cat} of the Gal7 reaction from a previous simulation study (51)
k_{cat3}	3890 min ⁻¹	k_{cat} of the Gal10 reaction from a previous simulation study (51)
K_{m1}	1.29×10^7 molecule/cell ^a	$K_{\rm m}$ in the Gal1 reaction from a previous simulation study (51)
$K_{\rm m2}$	8.6×10^7 molecule/cell ^a	$K_{\rm m}$ for G1P in the Gal7 reaction from a previous simulation study (51)
$K_{\rm m3}$	5.6×10 ⁶ molecule/cell ^a	$K_{\rm m}$ for UGl in the Gal7 reaction from a previous simulation study (51)
$K_{\rm m4}$	4.73×10^6 molecule/cell ^a	$K_{\rm m}$ for UGa in the Gal10 reaction from a previous simulation study (51)
$K_{\rm m5}$	5.37×10^6 molecule/cell ^a	$K_{\rm m}$ for UGl in the Gal10 reaction from a previous simulation study (51)
K _{eq}	3.5	Equilibrium constant for the reaction in Eq. (5) in Materials and Methods (51)

Table S2. Parameter values used in the simulation of the *GAL* pathway.

^a The conversion from mM to number of molecules per cell is done by assuming that 1 gram of dry cell has a volume of 2.38 ml (48) and that a haploid cell weights 1.5×10^{-11} gram (49). This means one haploid cell has a volume of 3.57×10^{-14} L.

^b The initial [UGI] and [UGa] are modified so that reactions are at equilibrium when simulation starts

Table S3. Primers for strain construction.

Name	Sequence $(5' \rightarrow 3')$	Description
xhq3	GATCTGAAAAACGGTGAAACTTACGTTTTAGAGCTAG	For GAL10 gRNA
		hybridization
xhq4	CTAGCTCTAAAACGTAAGTTTCACCGTTTTTCA	For GAL10 gRNA
		hybridization
xhq5	GATCTATAGACAGCTGCCCAATGCGTTTTAGAGCTAG	For GAL1 gRNA
		hybridization
xhq6	CTAGCTCTAAAACGCATTGGGCAGCTGTCTATA	For GAL1 gRNA
		hybridization
xhq'/	ATAGAAAAAATATGATATGAATGAATATTCCACTTTCT	For GAL/ Cas9
	TTTTTGAGGGA	deletion's donors
1 0		hybridization
xnq8		For GAL/ Cas9
	AAAAAGAAAGIG	deletion s donors
what		nybridization
xiiq9		ror GALIO Casy
	AAATTATATIOAA	hybridization
vha10	ΔΤΥΥΥΛΛΛΛΛΛΛΛΛΛΛΛΑΥΤΑ	For GAL 10 Cas9
Aliq10	TAATTTGCCAGCT	deletion's donors
		hybridization
xha11	ATATACCTCTATACTTTAACGTCAAGGAGAAAAAACT	For GAL1 Cas9
	ATAGTATACTTC	deletion's donors
		hybridization
xhq12	TGAGAAGTTGTTCTGAACAAAGTAAAAAAAAAAAGAAGTA	For GAL1 Cas9
-	TACTATAGTTTTTTTCTCCTTG	deletion's donors
		hybridization
xhq13	TAGGTGCAGGATTTCCATCG	For the confirmation
		of Cas9 deletion of
		GAL7
xhq14	TATACTTCGGAGCACTGTTGAG	For the confirmation
		of Cas9 deletion of
1 15		GAL/
xhq15	IGCICCGAAGIAIAGCIIICC	For the confirmation
		of Cas9 deletion of
wha16		GALIU For the confirmation
xiiq10	AUGAGAGICIICCUICUGAG	of Cas9 deletion of
		GAL 10
xha17	GTTCCTGAAACGCAGATGTG	For the confirmation
Xiiq17		of Cas9 deletion of
		GAL1
xha18	GCAGCGGTTGAAAGCATATC	For the confirmation
1		of Cas9 deletion of
		GAL1

- xhq19 TATTAGGTGTGAAACCACGAAAAGT
- xhq20 CATGTCTTCTCGTTAAGACTGCAT
- xhq21 ACTTTTATTACATACAACTTTTTAAACTAATATACACA TT
- xhq22 CTCATAAGCAGCAATCAATTCTATCTATACTTTAAAAA GTGTAAACGCGAAGCTTGCAAA
- xhq23 GATCGCCGGCTTGATCGACTCAGAGTTTTAGAGCTAG
- xhq24 CTAGCTCTAAAACTCTGAGTCGATCAAGCCGGC
- xhq27 GATCTTGGTTGGTTTGGAATTGTTGTTTTAGAGCTAG
- xhq28 CTAGCTCTAAAACAACAATTCAAAAACCAACCAA
- xhq63 TGTTCCATACTGGGCCATCTGG
- xhq64 GTCACTCCGTTCAAGTCGACAACC
- xhq69 CGGTGATTTCTTGTCTGCTGG
- xhq72 GCCCTTGCCAATGAGTTCTAC
- xhq90TAATAGAAAAAATATGATATGAATGAATATTCCACTTT
CTTTAGCTTGCCTCGTCCCCGCxhq92AATGAGAAGTTGTTCTGAACAAAGTAAAAAAAAAAAAGAAG
- TATACAGCTTGCCTCGTCCCCGC xhq107 AGAGTGCATATTTTCAAGAAGGATAGTAAGCTGGCAA
- A AGCTTGCCTCGTCCCCGC
- xhq120 TAAACCAGCATTGGGCAGCTGTCTATATGAATTA GGTGACGGTGCTGGTTTAATTAAC TCTAAAGGTGAAGAATTATTCACTGG
- xhq121 TTTAGATGGTCAGATTCATTATCTACAAAGACTG GGTGACGGTGCTGGTTTAATTAAC TCTAAAGGTGAAGAATTATTCACTGG
- xhq123 CGGTGAAACTTACG GGTCCAAGATTGTCTACAGATTTTCC GGTCGACGGATCCCCGGG

For the confirmation of replacing HO by *YFP* or *GFP* For the confirmation of replacing HO by YFP or GFP For constructing donors for replacing *HO* by *YFP* or *GFP* For constructing donors for replacing *HO* by *YFP* or *GFP* For HO gRNA of replacing HO by YFP or *GFP* hybridization For HO gRNA of replacing HO by YFP or *GFP* hybridization For GAL7 gRNA hybridization For GAL7 gRNA hybridization For the confirmation of GAL7-FP fusion For the confirmation of GAL7-FP fusion For the confirmation of GAL10-FP fusion For the confirmation of GAL1-FP fusion For donors of GAL7-*YFP-KanMX* fusion For donors of GAL1-YFP-KanMX fusion For donors of GAL10-CFP-NatMX fusion with linker For donors of GAL1-*YFP-KanMX* fusion with linker For donors of GAL7 *YFP-KanMX* fusion with linker For donors of GAL10 CFP-NatMX fusion with linker

xhq126	GATCGTACGGGGACGACGGCGACCGTTTTAGAGCTAG	For constructing gRNA for knocking out <i>NatMX</i> coding gene
xhq127	CTAGCTCTAAAACGGTCGCCGTCGTCCCCGTAC	For constructing gRNA for knocking out <i>NatMX</i> coding gene
xhq130	ACTAAAAGATATAGAGTGCATATTTTCAAGAAGGATA	For constructing
1	GTA AGCTGGCAAACTATTTGTAC	donors for deleting <i>NatMX</i> gene
xhq131	TTGTTACTGCTGCTGGTATTACCCTAGGTATGGATGAA	For constructing
-	TT GTACAAATAGTTTGCCAGCT	donors for deleting <i>NatMX</i> gene
xhq134	TGACGGTGCTGGTTTAATTAAC	Primer on <i>YFP</i> fusion linker
xhq135	GATCCCCGGGTTAATTAACAGT	Primer on <i>CFP</i> fusion linker
xhq137	GTACGGGGACGACGGCGACC	For checking guide
-		RNA construction of
		NatMX

Table S4. gRNA target sequences.

Guide RNA target	Target sequence
GAL10	TGAAAAACGGTGAAACTTAC
GAL1	TATAGACAGCTGCCCAATGC
GAL7	GCCGGCTTGATCGACTCAGA
НО	TTGGTTGGTTTTGAATTGTT
NatMX	GTACGGGGACGACGGCGACC

Strain name	Medium	Doubling time (hr) ¹
4743 Trans $gal10\Delta$ and $gal1\Delta$ HO Δ ::GFP	YPD	1.102 ± 0.016
4743 Trans $gall0\Delta$ and $gall\Delta HO\Delta$::GFP	YPGal	1.458 ± 0.016
4743 Trans $gall0\Delta$ and $gall\Delta HO\Delta$::YFP	YPD	1.087 ± 0.039
4743 Trans $gall0\Delta$ and $gall\Delta$ $HO\Delta$::YFP	YPGal	1.461 ± 0.013
4743 Trans $gal10\Delta$ and $gal7\Delta HO\Delta$::GFP	YPD	0.919 ± 0.135
4743 Trans $gal10\Delta$ and $gal7\Delta HO\Delta$::GFP	YPGal	1.616 ± 0.045
4743 Trans $gal10\Delta$ and $gal7\Delta HO\Delta$::YFP	YPD	1.000 ± 0.100
4743 Trans $gal10\Delta$ and $gal7\Delta$ HO Δ ::YFP	YPGal	1.607 ± 0.027

Table S5. Doubling times for various trans-deletion strains.

¹Mean ± standard error estimated from five replicates.