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Supplementary Figure 1 

Scores in Sub-challenge 1. 

(a) Overall scores of the 42 module identification methods applied in Sub-challenge 1 at four different FDR cutoffs (10%, 5%, 2.5%, and 
1% FDR). For explanation see legend of Fig. 2b, which shows the scores at 5% FDR (the predefined cutoff used for the challenge 
ranking). The top-performing method (K1) ranks first at all four cutoffs. The consensus prediction achieves the top score at 10% and 5% 
FDR, but not at the more stringent cutoffs.  

(b) Average number of trait-associated modules across the 42 methods for each of the six networks. The most trait modules are found 
in the two protein-protein interaction (PPI) and the co-expression networks. Related to Fig. 2d, which shows the average number of trait 
modules relative to network size. 



 

Supplementary Figure 2 

Pairwise similarity of module predictions from different methods. 

(a) Pairwise similarity of module predictions from different methods in Sub-challenge 1, averaged over all networks. Similarity was 
computed based on whether the same genes were clustered together by the two methods. Specifically, a prediction vector     was 
defined for every method   and network  , specifying for every pair of genes whether they were co-clustered in the same module 

(Methods). The prediction vectors     of method   for the six networks (           ) were then concatenated, forming a single vector 

   representing the module predictions of that method for all six networks. A corresponding distance matrix between the 42 methods 
was computed as described in Methods (Equation 1) and hierarchically clustered using Ward’s method. The annotation row and column 
show the method type. The top five methods (1-5) and the consensus (C) are highlighted. The top methods did not converge to similar 
module predictions (they are not all grouped together in the hierarchical clustering). Related to Fig. 3, which shows similarity of module 
predictions from individual networks. 

(b) Comparison of trait-associated modules identified by all challenge methods. Pie-charts show the percentage of trait modules that 
show overlap with at least one trait module from a different method in the same network (top) and in different networks (bottom). We 
distinguish between strong overlap, sub-modules, weak but statistically significant overlap, and insignificant overlap (Methods). 



 

Supplementary Figure 3 

Optimal module granularity is method- and network-specific. 

All panels show results for single-network module identification methods (Sub-challenge 1). 

(a) Average module size versus score for each of the 42 methods. The x-axis shows the average module size of a given method across 
the six networks. The y-axis shows the overall score of the method. Top teams (highlighted) produced modules of varying size, i.e., 
they did not converge to a similar module size during the leaderboard round. There is no significant correlation between module size 
and score (p-value = 0.13 using two-sided Pearson’s correlation test), i.e., the scoring metric did not generally favor either small or 
large modules. Rather, when optimizing parameters during the leaderboard round, teams converged to very different granularities that 
led to the best performance for their specific methods. 

(b) Average number of modules versus score for each method. The x-axis shows the average number of submitted modules across 
networks for a given method, and the y-axis shows the corresponding score. The top five teams (highlighted) submitted a variable 
number of modules (between 103 and 470 modules, on average, per network). There is no significant correlation between the number 
of submitted modules and the obtained score (p-value = 0.99 using two-sided Pearson’s correlation test), i.e., the scoring metric was 
not biased to generally favor either a small or high number of submitted modules. 

(c) Comparison of module sizes between networks and method types. For each network, boxplots show the distribution of average 
module sizes for kernel clustering (n = 6 methods), modularity optimization (n = 10 methods), random-walk-based (n = 10 methods), 
and hybrid methods (n = 7 methods; the remaining categories are not shown because they comprise only three methods each). Note 
that teams tuned the resolution (average module size) of their method during the leaderboard round. The variation in module size 
between different method categories and networks suggests that the optimal resolution is method- and network-specific. For example, 
teams using random-walk-based methods tended to choose a higher resolution (smaller average module size) than teams using kernel 



clustering or modularity optimization methods. On average, modules were smallest in the signaling network and largest in the co-
expression network. 

(d) Module size versus trait-association p-value for individual modules from all methods and networks. For all n = 84,798 modules, the 
module size (x-axis) is plotted against the -log10 of the minimum Pascal p-value across all GWASs (y-axis). Color shows the density of 
points. By design, Pascal p-values are not confounded by module size

23
, which is confirmed here (the regression line, shown in red, is 

flat; see also Supplementary Fig. 4). 



 

Supplementary Figure 4 

Module granularity of random predictions does not correlate with score. 

The panels show the average number of trait-associated modules for 17 random modularizations of the networks (i.e., networks were 
decomposed into random modules of the given sizes). Results are shown both for Bonferroni (orange) and Benjamini-Hochberg (blue) 
corrected p-values at a significance level of 0.05. The difference between the two panels is the background gene set used for the 
Pascal module enrichment test (see Methods). 

(a) The complete set of all annotated genes is used as background to compute module enrichment (the UCSC known genes). This is 
an incorrect choice for the background because module genes are drawn from the network genes, which is a subset of all known 
genes. As expected, this incorrect choice of a background set leads to a higher number of trait-associated random modules than in 
Panel b, in particular for large modules. 

(b) The set of all genes in a given network is used as background to compute module enrichment. This is the approach that was 
employed for the challenge scoring. Besides from very small modules of size 3, the module size does not affect the number of trait-
associated random modules, i.e., our scoring methodology is not biased towards a specific module size (see also Supplementary Fig. 
3d). 



 

Supplementary Figure 5 

Scores in Sub-challenge 2. 

(a) Final scores of multi-network module identification methods in Sub-challenge 2 at four different FDR cutoffs (10%, 5%, 2.5%, and 
1% FDR). For explanation see legend of Fig. 3e, which shows the scores at 5% FDR (the predefined cutoff used for the challenge 
ranking). Ranks are indicated for the top five teams (ties are broken according to robustness analysis described in Panel b). The multi-
network consensus prediction (red) achieves the top score at each FDR cutoff. Interestingly, the performance of methods integrating all 
five networks (dark blue) seems to drop substantially at the more stringent FDR thresholds. For example, the second and third ranking 
methods at both 5% and 10% FDR, which integrated all five networks, performed poorly at the 2.5% and 1% FDR thresholds (see 
second and third row from the top). This suggests that not only the absolute number of trait-associated modules, but also their quality in 
terms of association strength could not be improved by considering multiple networks. As mentioned in the Discussion, the challenge 
networks may not have been sufficiently related for multi-network methods to reveal meaningful modules spanning several networks. 
Indeed, the similarity between our networks in terms of edge overlap was small (Supplementary Fig. 6). Of note, there is an important 
conceptual difference between the multi-network methods that teams applied (blue) and the multi-network consensus prediction (red). 
While the former performed modularization on blended or multi-layer networks, the latter integrated the single-network module 
predictions obtained from each individual network (see Supplementary Fig. 7). Results thus suggest that our multi-network consensus 
approach is better suited than multi-layer module identification methods when network similarity is low. Exploring the performance of 
these different approaches when applied to networks of varying similarity is a promising avenue for future work.  

(b) Robustness of the overall ranking in Sub-challenge 2 was evaluated by subsampling the GWAS set used for evaluation 1,000 times. 
For each method, the resulting distribution of ranks is shown as a boxplot (using the 5% FDR cutoff for scoring). Related to Fig. 2c, 
which shows the same analysis for Sub-challenge 1. The difference between the top single-network module prediction and the top 
multi-network module predictions is not significant when sub-sampling the GWASs (Bayes factor < 3, see Methods section “Robustness 
analysis of challenge ranking”). 



 

Supplementary Figure 6 

Pairwise similarity of challenge networks. 

Pairwise similarity of challenge networks. The upper triangle of the matrix shows the percent of shared links (the Jaccard index 
multiplied by 100) and the lower triangle shows the fold-enrichment of shared links compared to the expected number of shared links at 
random. The two protein-protein interaction networks are the two most similar networks, yet they have only 8% shared edges. Of note, 
a recent study has found similarly low overlap between protein-protein interaction networks from different sources, suggesting that 
these molecular maps are still far from complete

60
. 

60. Huang, J. K. et al. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst. 6, 484-495.e5 (2018) 



 

Supplementary Figure 7 

Consensus Module Predictions. 

(a) Schematic of the approach used to generate single-network consensus module predictions for Sub-challenge 1. For each network, 
module predictions from the top 50% of teams were integrated in a consensus matrix C, where each element cij gives the fraction of 
teams that clustered gene i and j together in the same module in the given network (performance as the percentage of considered 
teams is varied is shown in (c)). The overall score from the leaderboard round was used to select the top 50% of teams, i.e., the same 
set of teams was used for each network. The consensus matrix of each network was then clustered using the top-performing module 
identification method of the challenge (method K1; see Methods). 

(b) The approach used to generate multi-network consensus module predictions for Sub-challenge 2 was exactly the same as for 
single-network predictions, except that team submissions from all networks were integrated in the consensus matrix C. In other words, 
as input we still used the single-network predictions of the top 50% of teams from Sub-challenge 1, but instead of forming a consensus 
matrix for each network, a single cross-network consensus matrix was formed. This cross-network consensus matrix is then clustered 
using method K1 as described above (see Methods). 

(c) Scores of the single-network consensus predictions as the percentage of integrated teams is varied. We considered the top 25%, 
50%, 75% and 100% of teams, as well as the top eight (19%) teams (these are the teams that ranked 2nd, or tied with the team that 
ranked 2nd, at any of the considered FDR cutoffs).  

(d) Performance of different methods to construct the consensus matrix C. In addition to the basic approach described above 
(Standard), two more sophisticated approaches to construct the consensus matrix were evaluated (Normalized and SML). In each 
case, the same set of team submissions were integrated (top 50%) and method K1 was applied to cluster the resulting consensus 
matrix. 

The first alternative (Normalized) is similar to the basic method but further assumes that appearing together in a smaller cluster is 
stronger evidence that a pair of genes is associated than appearing together in a larger cluster. Thus, each cluster’s contribution to the 
consensus matrix was normalized by the size of the cluster. Furthermore, we normalized the ij-entry of the consensus matrix by the 
number of methods that assigned gene i to a cluster, thus taking the presence of background genes into account. We found that the 
consensus still achieved the top score with these normalizations, but there was no improvement compared to the basic approach. 



The second method is a very different approach called Spectral Meta Learner (SML)
56

. SML is an unsupervised ensemble method 
designed for two-class classification problems. Briefly, it takes a matrix of predictions  , where each row corresponds to different 

samples being classified and the columns correspond to different methods. Accordingly, each matrix element     is the class (0 or 1) 

assigned to sample   by method  . Under the assumption of conditional independence of methods given class labels, SML can estimate 

the balanced accuracy of each classifier in a totally unsupervised manner using only the prediction matrix  . The algorithm then uses 
this information to construct an ensemble classifier in which the contribution of each classifier is proportional to its estimated 
performance (balanced accuracy). The module identification problem is an unsupervised problem by its nature and we applied the SML 
algorithm as a new way for constructing consensus modules. For each method   and network  , we created a vector of prediction    , 
of size    

by    
, where    

is the number genes in network as follows: 

                                                                   (1) 

                       

For each network, we constructed the prediction matrix   with each column    defined as above. We then provided this matrix as input 
to the SML algorithm. The SML algorithm outputs a consensus matrix, which assigns a weight between each pair of genes. We found 
that SML did not perform well in the context of this challenge, likely because the underlying assumption of SML is that top-performing 
methods converge to similar predictions, which was not the case here (see Fig. 3 and Supplementary Fig. 2). 



 

Supplementary Figure 8 

Number of distinct trait-associated modules recovered by top methods. 

Number of distinct trait-associated modules recovered by the top K methods. Here, we did not form consensus modules. Instead, given 
the top K methods, we considered the set including all individual modules predicted by these methods and scored them with the same 
pipeline as used for the challenge submissions. We then evaluated how many “distinct” trait-associated modules were recovered by 
these methods. Distinct modules were defined as modules that do not show any significant overlap among each other. Overlap 
between pairs of modules was evaluated using the hypergeometric distribution and called significant at 5% FDR (Benjamini-Hochberg 
adjusted p-value < 0.05). From the set of trait-associated modules discovered by the top K methods, we thus derived the subset of 
distinct trait-associated modules (when several modules overlapped significantly, only the module with the most significant GWAS p-
value was retained). Although the resulting scores (number of distinct trait-associated modules) cannot be directly compared with the 
challenge scores (because module predictions had to be strictly non-overlapping in the challenge), it is instructive to see how many 
distinct trait modules can be recovered when applying multiple methods. The stacked bars (colors) further show how many of the 
distinct trait modules are contributed by each method category. The number of distinct trait modules is not monotonically increasing as 
more methods are added because the larger sets of modules also increase the multiple testing burden of the GWAS scoring. The top 
four methods together discover 78 distinct trait-associated modules. Relatively little is gained by adding a higher number of methods. 



 

Supplementary Figure 9 

Functional Enrichment for Example Modules. 

Enrichment p-values for mouse mutant phenotypes, Reactome pathways and GO biological processes are shown for four example 
modules discussed in the main text. P-values were computed using the non-central hypergeometric distribution and adjusted using the 
Bonferroni method (Methods). Results for the remaining trait-associated modules from the consensus analysis in the STRING protein-
protein interaction network are shown in Supplementary Fig. 12 and Supplementary Table 4. Functional enrichment analysis for 
additional pathway databases and modules from all methods and networks are available on the challenge website. 



(a) Module associated with height described in Fig. 5 (n = 25 genes). 

(b) Module associated with rheumatoid arthritis described in Fig. 6a (n = 25 genes). 

(c) Module associated with inflammatory bowel disease described in Fig. 6b (n = 42 genes). 

(d) Module associated with myocardial infarction described in Fig. 6c (n = 36 genes). 



 

Supplementary Figure 10 

Enrichment of trait-associated modules in curated gene sets from recent studies. 

Enrichment of trait-associated modules in six curated gene sets from three recent studies. The first two gene sets were taken from 
Marouli et al.

32
 and correspond to genes comprising height-associated ExomeChip variants (n = 475 genes) and genes known to be 

involved in skeletal growth disorders (n = 266 genes), respectively. The third gene set was taken from de Lange et al.
61

 and 
corresponds to genes causing monogenic immunodeficiency disorders (n = 316 genes). Lastly, three gene sets relevant for type 2 
diabetes (T2D) were taken from Fuchsberger et al.

62
 and correspond to genes in literature-curated pathways that are believed to be 

linked to T2D (we distinguished between genes in cytokine signalling pathways [n = 384 genes] and other pathways [n = 390 genes]) 
and genes causing monogenic diabetes (n = 81 genes). We then considered corresponding GWAS traits in our hold-out set, namely 
height, all immune-related disorders, and T2D. We tested all modules associated with these GWAS traits for enrichment in these six 
external gene sets. Enrichment was tested using the hypergeometric distribution and p-values were adjusted to control FDR using the 
Benjamini-Hochberg method. The heatmap shows for each GWAS (row) the fraction of trait-associated modules that significantly 
overlap with a given gene set (column). It can be seen that modules associated with a given trait predominantly overlap the external 
gene sets that are expected to be relevant for that trait. 

61. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory 
bowel disease. Nat. Genet. 49, 256–261 (2017). 

62. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016). 



 

Supplementary Figure 11 



Support of trait-module genes in higher-powered GWASs. 

Trait-associated modules comprise many genes that show only borderline or no signal in the corresponding GWAS (called “candidate 
trait genes”). To assess whether modules correctly prioritized candidate trait genes, we considered eight traits for which older (lower-
powered) and more recent (higher-powered) GWAS datasets were available in our holdout set. This allowed us to evaluate how well 
trait-associated modules and candidate trait genes predicted using the lower-powered GWAS datasets were supported in the higher-
powered GWAS datasets.  

(a) Pairs of older (lower-powered) and more recent (higher-powered) GWASs used for the evaluation of module-based gene 
prioritization. The first column gives the trait and the second and third columns the corresponding GWASs. The bar plot shows the 
percentage of trait-associated modules from the first GWAS that are also trait-associated modules in the second GWAS. At the bottom, 
the expected percentage of confirmed modules at random is shown (i.e., assuming the trait-associated modules in the second GWAS 
were randomly selected from the set of predicted modules). 

(b) Height-associated module from Fig. 5 as an illustrative example (n = 25 genes). The module shows modest association to height in 
the lower-powered GWAS. Color indicates GWAS gene scores (FDR-corrected Pascal p-value = 0.04, see Methods). The signal is 
driven by three genes from different loci with significant scores (pink), while the remaining genes (grey) are predicted to be involved in 
height because of their module membership.  

(c) The module from (b) is supported in the higher-powered GWAS (q-value = 0.005). 45% of candidate trait genes (grey in (b)) are 
confirmed (pink).  

(d) Since high-powered GWASs typically result in many trait-associated genes, even random modules would have some genes 
“confirmed”. It is thus important to evaluate whether more candidate trait genes are confirmed than expected. Here we show support of 
candidate trait genes across the eight traits listed in (a). The lower-powered GWASs were used to predict candidate trait genes, defined 
as genes that: (i) are within a trait-associated module in the lower-powered GWAS; (ii) have a high gene p-value (p > 5E-4, i.e., two 
orders of magnitude above the genome-wide significance threshold of 5E-6 (cf. grey genes in (a)) and (iii) are located more than one 
megabase away from the nearest significant locus of the corresponding GWAS. Gene p-values were computed using Pascal as 
described above. Finally, the Pascal p-value of all candidate trait genes was evaluated for the higher-powered GWAS (n = 2,254 genes 
considering trait-modules from all methods). Since there is a genome-wide tendency for p-values to become more significant in higher-
powered GWAS data

38
, Pascal p-values were also evaluated for a background gene set (all genes that meet the two conditions (ii, iii), 

but do not belong to trait-associated modules of the lower-powered GWAS). The plot shows the cumulative distribution of gene scores 
in the higher-powered GWASs for candidate trait genes (red line) and genes in the background set (grey line). a substantial fraction of 
module genes that do not show any signal and are located far from any significant locus in the lower-powered GWAS are subsequently 
confirmed by the higher-powered GWAS.  

(e) Since candidate trait genes (i.e., genes satisfying the three conditions (i-iii) described above) could still have lower p-values than 
genes in the background set (i.e., genes satisfying the two conditions (ii, iii)), we repeated the same analysis with higher gene p-value 
thresholds for condition (ii): p-value > 5E-3 (n = 2,185 genes) (e) and p-value > 5E-2 (n = 1,969 genes) (f). For this range the 
“discovery” gene score p-values in the candidate set and the background set are much more similar. Although there may remain some 
confounding, the same trend as in (d) is observed, indicating that the result is robust. This suggests that modules are predictive for trait-
associated genes and could potentially be used to prioritize candidate genes for follow-up studies, for instance. 



 

Supplementary Figure 12 

Overview of Consensus Trait-modules in the STRING Network. 

Overview of all 21 trait-associated consensus modules in the STRING protein-protein interaction network. The first three columns give 
the module ID, the trait type, and the specific GWAS trait that the module is associated to. We tested all modules for enrichment in GO 
annotation, mouse mutant phenotypes, and other pathway databases using the non-central hypergeometric test (Methods). The 
putative function of each module based on this enrichment analysis is summarized in the fourth column (see Figs. 5, 6, 
Supplementary Fig. 9, and Supplementary Table 4 for details). Two thirds of the modules have functions that correspond to core 
pathways underlying the respective traits, while the remaining modules correspond either to generic pathways that play a role in diverse 
traits or to pathways without an established connection to the considered trait or disease. Only pathways with a well-established link to 
the trait were considered core pathways. Generic pathways, such as cell-cycle-related or epigenetic pathways, were not considered 
core pathways because they are relevant for many traits and tissues, making them more difficult to target therapeutically. For example, 
modules 77 and 109 are both associated with schizophrenia and comprise pathways related to epigenetic gene silencing and 
nucleosome organization, respectively. Although there is evidence that epigenetic mechanisms may play a role in schizophrenia, we 
considered this to be a generic pathway. 



 

Supplementary Figure 13 

Modules Associated with IgA Nephropathy. 



The top ten enriched GO biological processes, Reactome pathways and mouse mutant phenotypes are shown for two IgA nephropathy 
(IgAN) associated modules. P-values were computed using the non-central hypergeometric distribution (Methods).  

(a) IgAN-associated module identified using the consensus analysis in the InWeb protein-protein interaction network (n = 19 genes). 
The module comprises immune-related NF-κB signaling pathways. Enriched mouse mutant phenotypes for module gene homologs 
include perturbed immunoglobulin levels (IgM and IgG1). The module implicates in particular the NF-κB subunit REL as a candidate 
gene. The REL locus does not reach genome-wide significance in current GWASs for IgAN but is known to be associated with other 
immune disorders such as rheumatoid arthritis. 

(b) IgAN-associated module identified by the best-performing method (K1) in the InWeb protein-protein interaction network (n = 12 
genes). Besides finding complement factors that are known to play a role in the disease (CFB and C4A), the module implicates novel 
candidate genes such as the chemokine Platelet Factor 4 Variant 1 (PF4V1) from a sub-threshold locus, and is enriched for coagulation 
cascade, a process known to be involved in kidney disease

62
. The top two enriched mouse mutant phenotypes are precisely “abnormal 

blood coagulation” and “glomerulonephritis”. 

62. Madhusudhan, T., Kerlin, B. A. & Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat. Rev. Nephrol. 
12, 94–109 (2016). 

 



 

 
 
 

Supplementary Table 1 (Included in the online Supplementary Information as Excel file) 
Collection of GWAS Datasets used for the Challenge. 
The table lists the GWAS datasets used for the module scoring. The first column indicates whether the GWAS was 
used during the "leaderboard" or "final" evaluation phase. The five GWAS listed in the end ("extra") were not used for 
the scoring as they were added to the collection after the challenge. The PASCAL gene scores for all GWAS are 
available for download from the challenge website (file names are given in the last column). The original GWAS SNP 
summary statistics can be downloaded individually from the indicated sources or we can share the complete 
collection upon request.  
 
  



 

Supplementary Table 2. Module identification methods 
 
IDa 

 
Description 

 
Scoreb 

Pre- / post- 
processingc 

Kernel clustering: (i) the weighted adjacency matrix is transformed into a gene similarity matrix; (ii) a clustering algorithm is applied. 
K1 (i) Diffusion State Distance metric24; (ii) spectral clustering. 60 R 
K2 (i) Singular Value Thresholding63 maps the graph into a latent feature space; (ii) hierarchical clustering using Ward’s method. 48 W, R 
K3 (i) Large-scale Information Network Embedding (LINE)48; (ii) K-means clustering. 46 - 
K4 (i) Extension of Spectral Clustering On Ratios-of-Eigenvectors (SCORE)64 allowing for weighted networks and hierarchical 

structure of submodules; (ii) spectral clustering. 
42 R 

K5 (i) SCORE64; (ii) spectral clustering.  38 - 
K6 (i) Diffusion kernel is applied to graph Laplacian47; (ii) Weighted Gene Coexpression Network Analysis (WGCNA)7. 30 M 
Modularity optimization: search algorithms are employed to find modules that maximize a modularity quality function. 
M1 Modularity optimization algorithms are extended with a multiresolution technique27. 60 S, R 
M2 Louvain community detection algorithm49. 56 S,W,R,M 
M3 Extension of a multi-network module identification method31,36, here applied to single-layer networks. 48 R 
M4 PageRank algorithm is used to create an initial partition for the Louvain method75. 44 W, R 
M5 Hierarchical module tree generated using Louvain algorithm, optimal partitions selected using modularity, conductance, and 

connectivity metrics74. 
42 W,R,M,F 

M6 Greedy agglomerative clustering approach optimizes a score based on total weight of intra-module edges and module size. 40 S,W, M 
M7 Fast greedy clustering algorithm65 that iteratively divides modules to optimize the modularity. 40 - 
M8 Modularity optimization by Conformational Space Annealing (Mod-CSA)66 using the weighted adjacency matrix. 38 S, R 
M9 Louvain algorithm is used for optimization of a generalized modularity metric with a resolution parameter. 37 R 
M10 Louvain algorithm. 33 R 
Random-walk-based: modules are identified using diffusion processes over the network. 
R1 Multi-level Markov clustering is extended with a regularization matrix to balance module sizes28. 58 S, W, R 
R2 Walktrap algorithm50, output modules are filtered based on the median node degree. 44 S, R 
R3 Walktrap algorithm. 43 S, R 
R4 A machine learning approach for predicting disease genes from graph features is combined with the Infomap algorithm51.  40 S,R,F 
R5 Walktrap algorithm with varying number of steps. 39 S, F, M 
R6 Infomap algorithm, Markov-time parameter is optimized to yield maximum number of modules of valid size. 38 R,M 
R7 Markov clustering, output modules are filtered based on conductance and module size. 36 S, w 
R8 Recursive local graph sparsification and clustering using Infomap for scalable community detection73. 36 S, R 
R9 Walktrap is used for the first network, Infomap for the remaining networks. 28 R 
R10 Modules detected using Walktrap and Infomap are combined. 20 S 
Local methods: agglomerative algorithms that grow modules from seed nodes. 
L1 Topological overlap matrix is clustered using the fast agglomerative SPICi52 and SCAN++ algorithms67. 55 S, W,R 
L2 Basic agglomerative approach assigning genes to connected modules until the module size limit is reached. 31 W,R,M 
L3 Local method that grows modules from seed nodes using a novel Triangle based Community Expansion (TCE) method. 30 M 
Ensemble clustering: alternative clusterings sampled either from stochastic runs or from a set of different methods are merged. 
E1 Various clustering methods are applied on network embeddings created using DeepWalk68, consensus modules are 

obtained using a bagging method. 
46 S,W,M 

E2 Consensus modules are derived from two flat clustering algorithms: ClusterOne and Finding Low-Conductance set with 
Dense interactions (FLCD)69. 

41 S,W,F 

E3 Ensemble approach applied to integrate multiple Markov clustering runs. 24 S,R 
Hybrid methods: different clustering methods are selected for each network based on leaderboard performance or structural quality scores. 
H1 Either Louvain, Infomap, or a continuous optimization method70 are selected for each network. 50 R, F 
H2 Either Louvain, Infomap, SPICi, or DCut71 are selected for each network. 50 W,R 
H3 Five different methods are applied to cluster networks, followed by filtering of modules based on structural quality metrics. 40 W,R, M, F 
H4 Nine different methods are applied in different combinations, followed by module filtering and post-processing steps. 37 R,M,F 
H5 Seven different methods are applied including an ensemble approach, followed by filtering and post-processing steps72. 31 S,W,R,M,F 
H6 WGCNA followed by fast greedy community detection to refine modules. 19 R 
H7 No detailed description provided. 14 - 
Others 

  

O1 Agglomerative algorithm that joins clusters based on the number of shared neighbors and the cluster sizes. 36 W,F 
O2 Two-way modules (dense bipartite subgraphs) are mined using a heuristic algorithm. 33 W,F 
O3 No detailed description provided. 12 - 

(legend on next page) 
  



 

Supplementary Table 2 (See previous page) 
The 42 module identification methods applied in Sub-challenge 1 grouped by category. 
aIdentifier (ID) of the method used throughout the paper. 
bOverall score of the method as defined in Fig. 2b. 
cCommon pre- and post-processing steps. Pre-processing steps are coded as: (S) sparsification of networks and (W) 
rescaling of edge weights. Post-processing steps are coded as: (R) recursive break-down of large modules, (M) 
merging modules of invalid size followed by re-modularization, and (F) filtering modules according to a quality metric. 
 
 
 
Supplementary Table 3 (Included in the online Supplementary Information as Excel file) 
Challenge scores of methods in the leaderboard and final round. 
The table shows the challenge scores of all methods both for the leaderboard and final rounds. 
  
 
 
Supplementary Table 4 (Included in the online Supplementary Information as Excel file) 
Functional Enrichment of Consensus Trait Modules. 
For each of the 21 consensus trait-modules shown in Supplementary Fig. 12, all categories with a Bonferroni-
corrected P-value below 0.05 are listed (Methods). Only results for mouse mutant phenotypes, Reactome pathways 
and GO biological process annotations are included for brevity. Full results including all tested pathway databases 
and all challenge modules are available on the challenge website. 
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