Supplemental Material for the manuscript: "Optimal proteome allocation strategies for phototrophic growth in a light-limited chemostat" by M. Faizi and R. Steuer



Figure S1: Parameter fitting. Optimized cellular growth rates  $\mu$  for different turnover rates  $\tau$ ,  $k_d = 10^{-7}$  and  $\hat{\sigma} = 10 \text{ nm}^2 \text{ PSU}^{-1}$  (left panel). Best fit for  $\tau = 500 \text{ s}^{-1}$  was obtained with  $k_d = 2.7 \cdot 10^{-7}$  and  $\hat{\sigma} = 15 \text{ nm}^2 \text{ PSU}^{-1}$  (right panel). Optimized growth rates for the lower range were simulated with  $\tau = 500 \text{ s}^{-1}$ ,  $k_d = 5 \cdot 10^{-7}$  and  $\hat{\sigma} = 5 \text{ nm}^2 \text{ PSU}^{-1}$  and for the upper range with  $\tau = 500 \text{ s}^{-1}$ ,  $k_d = 10^{-7} \text{ and } \hat{\sigma} = 30 \text{ nm}^2 \text{ PSU}^{-1}$ .



**Figure S2: Light profile of photobioreactor filled with medium only.** The background turbidity is fitted to  $K_{bg} = 0.06 \text{ cm}^{-1}$ . Data points represent mean values of three photobioreactors. Data provided by T. Zavřel (personal communication).



Figure S3: Prediction errors and comparison of *in silico* results with experimental data using *Synechocystis* sp. PCC 6803. Shown are predictions for the growth rate and the culture productivity for an incident light intensity  $I_0 = 92 \ \mu\text{Em}^{-2} \ \text{s}^{-1}$  (as used in Straka and Rittmann (2018)). Also shown are the error bars resulting from variance in the estimation of cellular dry weight (see section 'Model parametrization' in 'Methods'). Culture densities reported for conventional cultivation are typically significantly below the values suggested here. Shown is a comparison our results with the values reported by Straka and Rittmann (2018). While the functional form is in good agreement, the experimental and predicted values differ by a factor of 2.5. See section 'Discussion' for further analysis.

| parameter                                          | definition                                                        | value                                           | source |
|----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|--------|
| V <sub>cell</sub>                                  | cell volume                                                       | 4.19· 10 <sup>−15</sup> [L cell <sup>−1</sup> ] | 0      |
| Proteins                                           | protein mass per cell                                             | $1.4\cdot10^{10}$ [aa cell $^{-1}$ ]            | •      |
| Quota                                              | remaining cellular dry weight                                     | 10 <sup>11</sup> [carbon cell <sup>-1</sup> ]   |        |
| $n_{\rm ET}$                                       | transporter length                                                | 1681 [aa molecules <sup>-1</sup> ]              | •      |
| $n_{\rm EC}$                                       | length of carbon fixation enzyme                                  | 5400 [aa molecules <sup>-1</sup> ]              |        |
| $n_{EQ}$                                           | enzyme length of quota catalyzing enzyme                          | 23230 [aa molecules <sup>-1</sup> ]             |        |
| $n_{\rm EM}$                                       | length of metabolic enzyme complex                                | 23230 [aa molecules <sup>-1</sup> ]             |        |
| $n_R$                                              | ribosome length                                                   | 7358 [aa molecules <sup>-1</sup> ]              | •      |
| $n_{\rm PSU}$                                      | length of photosynthetic unit                                     | 95451 [aa molecules <sup>-1</sup> ]             | •      |
| $n_{\rm PQ}$                                       | length of quota protein                                           | 300 [aa molecules <sup>-1</sup> ]               |        |
| $m_{c,ec}$                                         | average carbon chain length of $c_3$                              | 3                                               |        |
| $m_{c,em}$                                         | amount of $c_3$ required for aa                                   | 2                                               |        |
| $m_{e,ec}$                                         | amount of e consumed to create one $c_3$                          | 23                                              |        |
| $m_{e,em}$                                         | amount of e consumed to create one aa                             | 22                                              |        |
| $m_{e,r}$                                          | amount of e needed for one transl. elong. step                    | 3                                               | •      |
| $m_{hv}$                                           | photons required to activate one PSU                              | 8                                               |        |
| $\mathrm{m}_{\phi}$                                | amount of e produced by PSU cycle                                 | 8                                               | •      |
| $k_{\rm cat}^{\rm t}$                              | maximal import rate                                               | 45360 [h <sup>-1</sup> ]                        | •      |
| $\mathrm{K}_{\mathrm{t}}$                          | half-saturation constant of the transporter $E_T$                 | 15 [µM]                                         | •      |
| $k_{cat}^{c}$                                      | maximal carbon fixation rate                                      | 32700 [h <sup>-1</sup> ]                        | •      |
| $K_{c}$                                            | carbon fixation threshold                                         | 181 [µM]                                        | •      |
| $k^q_{cat},\ k^m_{cat}$                            | average maximal turnover rate of an enzyme                        | 72000 [h <sup>-1</sup> ]                        |        |
| $K_m,\;K_q$                                        | half-saturation constant of the metabolic enzymes $E_M$ and $E_Q$ | 10000 [molecules cell <sup>-1</sup> ]           |        |
| $\gamma_{ m max}$                                  | maximal translation rate                                          | 79200 [aa molecules <sup>-1</sup> $h^{-1}$ ]    | •      |
| $\mathrm{K}_{\mathrm{a}},~\mathrm{K}_{\mathrm{e}}$ | half-saturation constants for e and aa                            | 10000 [molecules cell <sup>-1</sup> ]           | •      |
| $d_{\rm P}$                                        | protein degradation rate                                          | 0.043478 [h <sup>-1</sup> ]                     | 0      |
| $\mathbf{k}_{\mathrm{me}}$                         | energy maintenance rate                                           | $7\cdot10^9~[{ m molecules~cell^{-1}~h^{-1}}]$  | 0      |
| $\hat{\sigma}$                                     | absorption cross section                                          | 15 [nm <sup>2</sup> PSU <sup>-1</sup> ]         |        |
| au                                                 | maximal turnover rate of the photosynthetic unit PSU              | $1800000 \ [h^{-1}]$                            |        |
| k <sub>d</sub>                                     | rate constant for photodamage                                     | $2.7 \cdot 10^{-7}$                             |        |

**Table S1:** Model parameters taken from Faizi et al.  $(2018)^{\bullet}$ , Zavřel et al.  $(2019)^{\circ}$  or estimated here.