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Supplementary Discussion 

 

Genome annotation 

Gene annotation 

We identified 51,098 and 28,968 protein-coding gene models in Azolla and Salvinia, 
respectively, using the MAKER-P pipeline1 (Supplementary Fig. 2). Genes were classified as 
high-confidence (HC) if they were supported by transcript evidence or had significant sequence 
similarity to other known plant proteins (Supplementary Fig. 1, Supplementary Table 3). Gene 
models only supported by ab initio predictions were classified as low-confidence (LC) and were 
excluded from analyses of gene families. The mean length of HC protein-coding genes is 5 kb 
and 3.4 kb with a mean of 5.3 and 5.2 introns per gene in Azolla and Salvinia, respectively 
(Supplementary Table 3). 

RNA gene profiles 

The number of rRNA genes is similar in Azolla and Salvinia (1,397 and 1,161, respectively; 
Supplementary Fig. 2, Supplementary Table 3). In contrast, the Salvinia genome contains 50% 
more tRNA genes (an increase of 3,515 genes) compared to Azolla. These tRNA genes are 
primarily distributed evenly across the genome in both species (Supplementary Fig. 3), but a few 
tRNA genes appear to have proliferated locally. For example, high numbers of tRNA-Glu genes 
are clustered on scaffolds 43, 46, and 48 in Salvinia, and tRNA-Asp genes are clustered on 
scaffolds 10 and 19 in Azolla (Supplementary Fig. 3). Azolla has nearly twice as many tRNA-
Asp genes as its second most abundant tRNA, 95% of which have one (ATC) of the two possible 
Asp anticodons. The two most abundant tRNA gene types in Salvinia are tRNA-Arg and tRNA-
Glu, which are 4.5 and 6.3 times more than the third (tRNA-His). Like Azolla, specific 
anticodons are disproportionately represented (Supplementary Fig. 3). 

Repetitive elements 

In Azolla, we found 17,484 putative full length long terminal repeat retrotransposons (LTR-RT), 
more than six times the number in Salvinia (Supplementary Figs. 1 and 4). We estimated 
sequence divergences between LTRs for all full length LTR-RT predictions that were supported 
by having homology to LTR-RTs in the Dfam 2.0 and Repbase 22.04 databases. Assuming a low 
rate of gene conversion among LTRs2, the divergence between LTRs could serve as a proxy for 
time since element insertion due to the nature of the LTR-RT transposition mechanism. 
Interestingly, the density plots in Supplementary Fig. 4 show the distribution of LTR divergences 
in Salvinia as potentially bimodal. Given a constant background mutation rate and a constant 
birth rate for LTR-RTs, one would expect a smoothly tapered right-skewed distribution. The 
bimodality could be due to recent deletion of many newer LTR-RTs, a burst of transposition in 
the past, and/or heterogeneous historical substitution rates. The Azolla and Salvinia assemblies 
include 12.138 Mb and 13.095 Mb of centromere-like sequences, respectively. These sequences 
are concentrated on particular scaffolds and have been identified on 514 scaffolds in Azolla and 
940 scaffolds in Salvinia (Supplementary Fig. 2).  



Tandem gene duplications 

In addition to examining gene evolution associated with whole genome duplications, we also 
characterized tandem gene duplication in the Azolla and Salvinia genomes. To distinguish gene 
duplicates as syntenic or tandem, we used SynMap and DAGChainer algorithm to extract 
syntenic paralogs. Duplicates that are within ten genes apart in the same region of the genome 
were identified as tandem duplicates. Functional enrichment analysis revealed the GO term 
‘protein binding’ as the most significantly over-represented in both Azolla and Salvinia tandemly 
duplicated genes, most of them annotated as belonging to the highly diverged pentatricopeptide 
repeat protein (PPR) family. A second group of Azolla tandem duplicates was found to be 
involved in chitin-binding and chitinase activities, belonging to a distinct family of glycosyl 
hydrolases involved in breaking down glycoside bonds in chitin, a polymer of the glucose 
derivative N-acetylglucosamine found in the cell walls of fungi and the exoskeletons of 
arthropods such as crustaceans and insects. These tandem genes formed a cluster of 12 genes, 
located in a genomic region syntenic to a cluster of four tandem duplicates in the Salvinia 
genome (the microsynteny analysis can be regenerated at https://genomevolution.org/r/zsy2). 
 

Azolla-cyanobacteria symbiosis 

Global gene expression pattern comparing cyano-absent and cyano-present individuals 

A total of 6,644 genes are differentially expressed between AzCy- and AzCy+ individuals, and 
2,254 of them exhibit at least 2-fold expression difference. Under the N- conditions, 3,433 genes 
are up-regulated and 2,777 are down-regulated. Far fewer genes, 1,286 and 839 genes, are 
respectively up- and down-regulated under the N+ conditions.  

Candidate gene set 

We show here that cyanobacterial N2-fixation rate is highly induced when plants are grown 
without nitrogen nutrient (Supplementary Fig. 10), indicating an active control of plants on the 
cyanobionts. To identify likely candidates involved in this symbiotic regulation, we focused on 
genes that, when cyanobionts are present, are differentially expressed between the N treatments, 
but not or to a lesser degree when cyanobionts are gone. In other words, for the up-regulated 
genes, they have to satisfy these three criteria: (1) when cyanobionts are present, they have a 
higher expression in N- than in N+, (2) when limited by nitrogen nutrients, they have a higher 
expression in cyano+ than cyano-, and (3) they are not down-regulated in N- compared to N+ 
when cyano-. And the opposite pattern would apply to the down-regulated genes. We found a 
total of 88 up-regulated and 72 down-regulated genes in this category that we termed “putative 
symbiotic genes”. These include an ammonium transporter, a metal ion transporter, and a 
chalcone synthase that might be involved in flavonoid signaling. The importance of these genes 
is discussed below.  

Symbiosis-specific transporters 

Azolla has five ammonium transporter paralogs (AMT) within its genome. Ammonium 
transporters come in two major classes in plants: AMT1s and AMT2s. In plants, AMT1 genes are 
mainly expressed in the roots, and are responsible for transporting ammonium from the external 
environment into the xylem. These genes are usually constitutively expressed. In contrast, 



AMT2s are inducibly-expressed in all other plant tissues, such as shoots, leaves, and flowers. 
Azolla filiculoides has one AMT1 (Azfi_s0034.g025388) and four AMT2s. One A. filiculoides 
AMT2, AfAMT2-4 (Azfi_s0034.g025227), appears to be symbiosis-specific, as its expression is 
up-regulated when the cyanbiont is present, particularly under the nitrogen-depleted condition 
(i.e. when cyanobionts are fixing the most nitrogen; Supplementary Fig. 11). AfAMT2-4 is 
therefore likely the main transporter for exchange of ammonium with Nostoc in the leaf pocket. 
On the other hand, the expression profile of AfAMT2-3 (Azfi_s0093.g043301) suggests that it is 
a nitrogen-starvation responsive gene, whereas AfAMT1 is likely a general ammonium 
transporter, as it is expressed similarly regardless of cyanobacterial presence (Supplementary 
Fig. 11). The AfAMT2-1 and AfAMT2-2 genes are nearly identical to each other, so that their 
expressions cannot be measured correctly and were thus excluded. In addition to ammonium, 
there are myriad cofactors that are needed by Nostoc for N2-fixation. Metal ions, such as 
molybdenum, copper, and iron, are among the most crucial of these cofactors3,4. We found a 
particular paralog of molybdate transporter (AfMOT1; Azfi_s0167.g054529) and a paralog of 
vacuolar iron transporter (AfVIT) in the putative symbiotic gene list (Supplementary Fig. 11). 
Similarly, in Medicago truncatula, a root nodule-specific MtMOT1.3 paralog was recently 
identified to mediate Mo transfer from plants to the symbiotic rhizobium5.  

Possible roles of flavonoids in Azolla-cyanobacteria communication 

The identification of a chalcone synthase (CHS) in our putative symbiosis gene list is of 
particular interest (Figure 5e). CHS produces naringenin chalcone, and is the first committed step 
in flavonoid biosynthesis pathway. Flavonoids are major plant signals used in symbioses with 
rhizobia and Frankia. Silencing of CHS in Medicago truncatula6 and Casuarina glauca7 both 
resulted in a defective nodule formation. Interestingly, flavonoids also have significant effects on 
cyanobacteria growth and cellular differentiation. Naringenin was shown to stimulate growth of 
a number of cyanobacteria species including ones in Nostoc8. Furthermore, naringin was found 
to be one of the most potent hormogonia-repressing factors (HRF)9. Hormogonia are the motile 
stage of cyanobacteria and do not contain N2-fixing heterocysts. In the Azolla-Nostoc symbiosis, 
hormogonia are maintained in the shoot apex, and upon entering nascent leaf cavities, they return 
to the vegetative stage, and develop heterocysts for N2-fixation. Because hormogonia cannot fix 
nitrogen, boosting the hormogonia-repressing signals can promote N2-fixation rates and 
cyanobacteria maturation. Given the expression pattern of CHS, we hypothesize that flavonoids 
act as a HRF in Azolla-Nostoc symbiosis, and are a major communication signal to help time the 
development of the leaf cavity with the metabolic development of the cyanobiont. Consistent 
with our hypothesis, Azolla aqueous extract was found to contain flavonoids and, importantly, 
can effectively suppress hormogonia differentiation10.  
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Supplementary Figure 1. Summary of Azolla filiculoides and Salvinia cucullata genome annotations. (a) Comparison of 
BUSCO scores (the Plants set) of Azolla and Salvinia assemblies with other sequenced plant genomes. Blue, yellow, and 
red bars respectively illustrate the proportion of complete (C), fragmented (F), and missing (M) BUSCO genes; the dark 
blue bar is for complete but duplicated BUSCO genes. (b) The annotated genomic compositions, with Salvinia as lower bars 
(vibrant colors) and Azolla as upper bars (diffuse colors). Identification of high-confidence (HC) protein-coding genes in (c) 
Azolla and (d) Salvinia. HC genes were identified as having evidence from RNA-seq data, or similarity to protein data in 
UniProt/SwissProt, Selaginella, Chlamydomonas, Arabidopsis, Oryza, Amborella, or the PlantTribes 22 Genomes v1.1 
database. (e) Distribution of HC gene features: intron length, exon length, number of exons per gene, and transcript length 
in Azolla (red) and Salvinia (blue). 
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Supplementary Figure 3. Genomic distribution of tRNA genes. Circos plots showing locations and densities of 
non-pseudogenized tRNA genes predicted by tRNAscan-SE organized by their predicted anticodon for the largest scaffolds 
greater than 1 Mb for Salvinia (a) and Azolla (b). The shade of each 1 Mb region in the outermost track corresponds to the 
total tRNA density for that sequence region. Each inner track shows the location of each 1 Mb sequence region that 
contains tRNA genes for a specific amino acid; square size is proportional to the density of the given tRNA gene in that 
region. Numbers of tRNA genes in genome by amino acid (c) and anticodon (d). Circular plot areas are proportional to the 
amount of sequence shown. 
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Supplementary Figure 6. Phylogeny of ACC synthase (ACS). 
Seed plants have an expanded ACS repertoire compared to seed 
-free plants. The numbers above branches are bootstrap (BS) 
support values (BS=100 is omitted), and the thickened branches 
indicate BS>70. 
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Supplementary Figure 7. Histogram plots of frequency distributions of Ks values estimated from pairs of syntenic paralogs 
within Azolla (red) and Salvinia (blue) genomes, as well as of syntenic orthologs between Azolla and Salvinia (green).



a  b

Supplementary Figure 8. Patterns of RNA-editing in Azolla filiculoides and Salvinia cucullata plastid genomes. (a) High 
proportions of start and stop codon editing events (orange) are shared between A. filiculoides and S. cucullata, suggesting 
that RNA-editing could be a mechanism to control gene expression. (b) RNA-editing sites are concentrated at the start 
codon (arrow) in plastid protein-coding genes. The x-axis is the relative position in each of the genes, with 0 and 1 being the 
start and stop codon respectively. 
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Supplementary Figure 9. ScTma12 is a nuclear-encoded gene in Salvinia cucullata genome. (a) The location of ScTma12 
in scaffold s0099, with up- and down-stream genes all being annotated as plant genes. (b) Expression of ScTma12 in the 
floating leaves, and (c) in the submerged leaves. The intron in ScTma12 is supported by RNA-seq data. 
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Supplementary Figure 10. Cyanobacterial NifH expressions in Azolla filiculoides using real-time PCR. Low expression in 
AzNo- N+/- conditions indicates the cyanobiont was removed, and in AzNo+ N+, that exogenous nitrogen impacts Nostoc 
azollae nitrogenase activity. Asterisk indicates p-value < 0.0001.
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Supplementary Figure 12. Phylogeny of 
squalene-hopene cyclase (SHC). Among streptophytes, 
SHC homologs can only be found in ferns, lycophytes, 
mosses, and liverworts, and appear to be absent in seed 
plants and in green algae. Plant SHCs are not monophy-
letic, and are interspersed among bacterial sequences, 
suggesting multiple horizontal gene transfers might have 
taken place. Cyanobacteria and heterotrophic bacteria are 
colored in green and orange, respectively. The numbers 
above branches are bootstrap (BS) support values 
(BS=100 is omitted), and the thickened branches indicate 
BS > 70. Blue asterisks denote the sequences coming 
from plant whole genome assemblies. 



Supplementary Figure 13. Identification of SHC-synthesized triterpenes in Salvinia cucullata. (a) Partial GC/MS chromato-
gram of a total lipid extract of S. cucullata, indicating major peaks of common plant sterols (Campesterol, Stigmasterol and 
β-sitosterol) and peaks 1,2 and 3 representing SHC-synthesized triterpenes. Mass spectra of the identified compounds (b) 
Hop-22(29)-ene, (c) Tetrahymanol, and (d) 22-hydroxyhopane (diplopterol). 
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Supplementary Table 1. Species included in this study for flow cytometry and/or genome 
sequencing.  

 

Taxon Source Voucher/Accession 
Azolla filiculoides The Netherlands, Utrecht, Galgenwaard ditch Dijkhuizen et al 2018 
Azolla rubra International Rice Research Institute IRRI 6502 
Azolla microphylla International Rice Research Institute IRRI 4021 
Azolla mexicana International Rice Research Institute IRRI 2001 
Azolla caroliniana 1 International Rice Research Institute IRRI 3017 
Azolla caroliniana 2 International Rice Research Institute IRRI 3004 
Azolla nilotica International Rice Research Institute IRRI 5001 
Salvinia cucullata Dr. Cecilia Koo Botanic Conservation Center K060108 
Pilularia americana Duke University Greenhouse F.-W. Li s.n. (DUKE) 
Regnellidium diphyllum Taipei Botanic Garden Wade 4794 (TAIF) 
Marsilea crenata Taipei Botanic Garden Kuo 4170 (TAIF) 



Supplementary Table 2. Genome assembly statistics.  
 

 

Genome 
size (Mb) 

Assembled 
(Mb) 

N50 
(Kb) 

No. 
scaffold 

Average scaffold 
len (Kb) 

% Genomic 
reads mapped* 

% RNA reads 
mapped 

Azolla filiculoides 753 622.6 964.7 3839 162.2 97.14 93.77 
Salvinia cucullata 255 231.8 719.8 3721 62.3 95.76 95.85 

 

 *contaminated Illumina reads removed before mapping 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 3. Gene annotation statistics. Gene composition in Azolla and Salvinia by 
feature type. Abbreviations: Low Confidence (LC), High Confidence (HC). 
 

  Azolla Salvinia 

 
 

 
All 

genes 

Count 51098 28968 

Sum length (Mb) 235.2 75.2 

Proportion of assembly 37.8% 32.3% 

Mean transcript length (bp) 821 1282 

Mean number of introns 4.1 4.9 

 Mean intron length (bp) 1151 257 

 
 

 
LC 

genes 

Count 30897 9054 

Sum length (Mb) 134.2 6.9 

Proportion of assembly 21.6% 3.0% 

Mean transcript length (bp) 476 463 

Mean number of introns 2.6 2.0 

 Mean intron length (bp) 2352 284 

 
 

 
HC 

genes 

Count 20203 19780 

Sum length (Mb) 101 68.3 

Proportion of assembly 16.2% 29.3% 

Mean transcript length (bp) 1347 1282 

Mean number of introns 5.3 5.2 

 Mean intron length (bp) 587 254 

 
tRNA 
genes 

Count 6992 10507 

Sum length (Mb) 0.6 0.9 

Proportion of assembly 0.1% 0.4% 

 
rRNA 
genes 

Count 1397 1161 

Sum length (Mb) 1.6 1.7 

Proportion of assembly 0.3% 0.7% 



Supplementary Table 4. Repeat annotation results. Genome composition by number or 
elements, sum length, and proportion of assembly. 
  Azolla Salvinia 

Repeats 
Sum length (Mb) 333.6 103.7 

Proportion of 
assembly 53.6% 44.5% 

RNA Transposons 
Sum length (Mb) 239.1 47.8 

Proportion of 
assembly 47.0% 26.2% 

DNA Transposons 
Sum length (Mb) 15.0 5.4 

Proportion of 
assembly 2.4% 2.3% 

Satellite 
Sum length (Mb) 16.1 13.6 

Proportion of 
assembly 2.6% 5.8% 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 




