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S	1 Introduction	

S	1.1 The	UK	Biobank	cohort	
UK	Biobank	is	a	prospective	cohort	study	of	over	500,000	individuals	from	across	the	
United	Kingdom.		Participants,	aged	between	40	and	69,	were	invited	to	one	of	22	
centres	across	the	UK	between	2006	and	2010.		Blood,	urine	and	saliva	samples	were	
collected,	physical	measurements	were	taken,	and	each	individual	answered	an	
extensive	questionnaire	focused	on	questions	of	health	and	lifestyle.		This	baseline	
information	has	been	extended	in	a	number	of	ways,	including	by	genotyping	the	full	
cohort	using	a	purpose-designed	genotyping	array.	Table	S1	provides	URLs	to	further	
information	about	the	data	types	described	in	Extended	Data	Table	1.	

Touchscreen	questionnaire	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100025	
Verbal	interview	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100071	
Physical	measures	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100006.	
Web-based	questionnaires	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100089	
Physical	activity	monitor	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=1008	
Biochemistry	markers	 http://www.ukbiobank.ac.uk/wp-

content/uploads/2013/11/BCM023_ukb_biomarker_panel_websit
e_v1.0-Aug-2015.pdf	

Urinary	biomarkers	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100083	
Imaging	study	 http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100003	
Table	S1	:	URLs	that	link	to	further	information	about	the	data	types	described	in	Extended	Data	Table	
1.	
	

S	1.2 The	UK	Biobank	Axiom	genotyping	array	
The	UK	Biobank	Axiom	array	from	Affymetrix*	was	specifically	designed	by	an	expert	
group	for	the	purpose	of	genotyping	the	UK	Biobank	participants.		There	are	
~825,000	markers	on	the	array,	including	both	single	nucleotide	polymorphisms	
(SNPs)	and	small	insertions	and	deletions	(Indels).	

The	UK	Biobank	Axiom	array	was	used	to	genotype	~450,000	of	the	~500,000	UK	
Biobank	participants.		The	other	~50,000	samples	were	genotyped	on	the	closely	
related	UK	BiLEVE	Axiom	array.		The	UK	BiLEVE	project,	for	which	the	UK	BiLEVE	
array	was	designed,	aims	to	study	the	genetics	of	lung	health	and	disease,	and	so	
those	~50,000	individuals	were	selected	based	on	lung	function	and	smoking	
behaviour	from	participants	with	self-declared	European	ancestry1.		Otherwise,	the	
UK	BiLEVE	cohort	and	the	rest	of	UK	Biobank	differ	only	in	small	details	of	the	DNA	
processing	stage	(e.g.	UK	BiLEVE	samples	were	manually	transferred	from	storage	to	
plates	for	DNA	extraction2).	

The	two	genotyping	arrays	are	very	similar,	with	over	95%	common	marker	content.		
The	UK	Biobank	Axiom	array	is	an	updated	version	of	the	UK	BiLEVE	Axiom	array,	and	
																																																								
*	Now	part	of	Thermo	Fisher	Scientific.	
†	This	artefact	involved	a	subset	of	SNPs	and	a	very	small	number	of	samples	(~300),	so	it	only	affects	
a	very	small	proportion	of	all	the	data	(details	in	Section	S	2.3).		We	excluded	these	SNPs	in	our	
sample-based	QC	and	analysis	as	a	precaution	only.	
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it	includes	additional	novel	markers	(such	as	cancer-related	markers),	which	replaced	
a	small	fraction	of	the	markers	used	for	genome-wide	coverage.		The	array	
annotation	files	for	both	the	UK	BiLEVE	and	the	UK	Biobank	Axiom	arrays	are	
available	as	part	of	the	UK	Biobank	resource,	and	further	details	of	the	array	design	
are	available	in	the	UK	Biobank	Axiom	Array	content	summary3.		The	positions	of	
markers	in	this	release	are	reported	in	coordinates	of	the	genome	build,	Genome	
Reference	Consortium	Human	Reference	37	(GRCh37).	

S	1.3 Data	releases	
The	full	data	release	contains	the	cohort	of	successfully	genotyped	samples	
(488,377).		An	interim	release	of	genotype	data	in	May	2015	comprised	genotype	
calls	for	152,736	samples.		Subsequent	to	the	interim	release,	changes	were	made	by	
Affymetrix	to	their	genotype	calling	pipeline4	and	there	were	some	changes	to	the	
quality	control	pipeline.	These	changes	were	applied	to	the	full	cohort,	which	means	
that	some	small	number	of	genotype	calls	in	the	final	release	may	have	changed	
since	the	interim	data	release	(Figure	S1).			
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Figure	S1	|	Comparison	of	genotype	calls	with	genotype	calls	in	interim	release	data.	We	measured	the	
discordance	between	the	genotype	calls	in	the	interim	release	dataset	and	those	in	the	current	release.	
That	is,	for	each	sample	that	was	included	in	both	datasets,	we	measured	the	fraction	of	genotype	calls	
that	are	non-identical,	out	of	all	the	genotype	calls	that	were	not	missing	in	both	datasets	for	that	sample.	
The	dashed	vertical	line	shows	the	mean	discordance	rate.	The	histogram	is	on	the	log10	scale	but	
annotated	with	the	original	values.	
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S	1.4 Details	of	DNA	extraction	and	genotyping	

S	1.4.1 Sample	storage	and	DNA	extraction	

The	blood	samples	collected	from	participants	are	held	at	the	UK	Biobank	facility	in	
Stockport,	UK5.		Samples	for	genotyping	were	picked	by	robot	to	a	96-position	
destination	rack	(a	plate)	ready	for	DNA	extraction	(94	samples	per	plate	leaving	two	
spaces	for	the	addition	of	two	controls,	as	noted	below).		Importantly,	this	
automated	sample	retrieval	process	was	designed	such	that	experimental	units	such	
as	plates	or	timing	of	extraction	do	not	correlate	systematically	with	baseline	
phenotypes	such	as	age,	sex	and	ethnic	background,	or	the	time	and	location	of	
sample	collection.		This	was	achieved	via	a	sample	selection	algorithm	that	ensures	
each	destination	rack	contains	samples	with	a	mixture	of	baseline	characteristics	and	
collection	centres.		During	DNA	extraction,	the	DNA	concentration	and	purity	were	
assessed2.		Samples	failing	to	meet	defined	thresholds	were	not	submitted	for	
genotyping;	where	possible	these	samples	were	re-processed	at	a	later	date.		Full	
details	of	the	UK	Biobank	sample	retrieval	and	DNA	extraction	procedures	can	be	
found	in2,6.	
	
A	set	of	blind	spike	duplicates	were	also	deliberately	included	in	the	genotyping	
experiment	as	a	validation	tool2.		These	are	samples	where	an	extra	aliquot	from	the	
same	participant	was	submitted	for	genotyping.		The	choice	of	blind	spike	duplicates	
was	determined	as	samples	were	being	extracted.		One	blind	spike	duplicate	was	
included	in	the	first	500	plates	processed	for	the	samples	genotyped	on	the	UK	
BiLEVE	array	and	one	blind	spike	duplicate	was	included	on	one	plate	in	each	
shipment	(approximately	70	plates)	for	the	samples	genotyped	on	the	UK	Biobank	
array.		All	plate	positions	(except	spaces	for	controls)	were	used	as	a	position	for	
blind	spike	duplicates.		The	position	of	a	blind	spike	duplicate	on	any	given	plate	was	
chosen	randomly	by	a	lab	operator	from	the	set	of	positions	that	were	previously	
unused	for	blind	spike	duplicates	(repeated	as	necessary).		The	sample	chosen	to	be	
duplicated	was	the	sample	in	the	same	position	on	the	plate	that	was	processed	
either	before	or	after	the	plate	with	the	blind	spike	duplicate.		We	present	analysis	
of	the	genotype	calls	for	these	samples	in	Section	S	3.7.3.	
	

S	1.4.2 Genotype	assay	and	calling	
All	samples	were	genotyped	at	the	Affymetrix	Research	Services	Laboratory	in	Santa	
Clara,	California,	USA.		Upon	receipt	of	a	96-well	plate	containing	94	UK	Biobank	
samples,	Affymetrix	added	two	control	individuals	(from	1000	Genomes)	to	the	
same	well	positions	on	each	plate:	HG00097	to	well	A12	and	HG00264	to	well	E12.		
Samples	were	processed	in	plates	on	the	Affymetrix	GeneTitan®	Multi-Channel	(MC)	
Instrument.		Genotypes	were	then	inferred	from	the	resulting	intensities	in	106	
batches	of	around	4,700	samples	each	(~4,800	including	the	controls).		Eleven	
batches	contain	individuals	typed	on	the	UK	BiLEVE	Axiom	array,	and	the	other	95	
batches	contain	individuals	typed	on	the	UK	Biobank	Axiom	array	(see	Appendix	
Table	S12).		After	all	samples	were	genotyped,	a	set	of	poorly	performing	samples	
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was	re-genotyped	(i.e.	a	new	set	of	intensities	measured),	and	those	that	
subsequently	performed	better	were	combined	into	‘Batch_b095’7.	
	
Affymetrix	assays	genetic	markers	using	“probe	sets”:	a	set	of	probes	targeting	a	
particular	marker.		The	fluorescence	intensity	of	two	alleles	is	measured	and	used	to	
infer	an	individual’s	genotype	at	the	marker.		Individuals	with	the	same	genotype	at	
any	given	marker	will	cluster	together	in	a	two-dimensional	intensity	space	(one	
dimension	for	each	targeted	allele).		Briefly,	genotype	calling	involves	inferring	
properties	of	these	clusters	within	each	batch	and	assigning	each	sample	a	genotype	
(or	leaving	the	call	missing)	based	on	its	position	in	intensity	space.		Figure	S2	shows	
the	intensities	and	genotype	calls	for	an	example	marker.		Technical	details	of	
Affymetrix’s	laboratory	process	are	available	in	7,	and	details	of	the	genotyping	
calling	routine	specific	to	the	UK	Biobank	project	are	available	in	4.	
	

Figure	S2	|	Example	of	intensity	data	and	genotype	calls	for	a	marker	in	three	batches.	Each	point	
represents	one	sample	and	is	coloured	according	to	its	inferred	genotype	at	this	marker.		The	x	and	y	axes	
are	transformations	of	the	intensities	for	probes	targeting	allele	“A”	and	allele	“B”.		The	ellipses	indicate	
the	location	and	shape	of	the	posterior	probability	distribution	(2-dimensional	multivariate	Normal)	for	
each	genotype	cluster,	such	that	85%	of	the	probability	density	falls	inside	the	ellipse.	
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S	1.4.3 Filtering	by	Affymetrix	

The	purpose-designed	UK	Biobank	Axiom	array	attempts	to	assay	a	large	number	of	
markers	(SNPs	or	Indels)	that	have	not	been	previously	genotyped	using	Affymetrix	
technology.		In	order	to	maximize	the	chances	of	such	markers	being	successfully	
assayed,	some	were	typed	using	more	than	one	probe	set.		For	each	of	these	
markers	Affymetrix	recommended	a	single	probe	set	that	had	performed	best	across	
all	batches	and	these	recommendations	were	adopted	throughout.		Affymetrix	also	
applied	filters	to	each	batch	separately	to	exclude	markers	with	poor	cluster	
properties.		If	a	marker	did	not	meet	the	Affymetrix	success	criteria	in	a	given	batch,	
it	was	set	to	missing	for	all	samples	in	that	batch.			
	
As	expected	with	a	novel	array,	a	small	number	of	markers	exhibited	sub-optimal	
and/or	complex	clustering	patterns	across	all	or	many	batches	and	were	also	
excluded	from	the	final	data	release.		Some	markers	assayed	on	the	array	were	
known,	or	suspected	to	have	more	than	two	segregating	alleles.		Such	multi-allelic	
markers	require	special	treatment	in	array	design	and	genotype	calling,	and	these	
have	also	been	excluded	from	the	current	data	release.			
	
For	any	of	the	above	reasons	a	total	of	35,014	unique	markers	were	excluded	from	
the	data.		This	is	made	up	of	31,518	markers	on	the	UK	Biobank	Axiom	array	and	
29,296	markers	on	the	UK	BiLEVE	Axiom	array,	which	is	less	than	5%	of	all	markers	
present	on	either	array.	

Affymetrix	also	checked	sample	quality	(such	as	DNA	concentration	and	genotype	
call	missing	rates)	and	genotype	calls	were	provided	only	for	samples	with	
satisfactory	metrics.		More	information	about	the	Affymetrix	calling	algorithms	and	
filtering	protocols	is	available	in	4,7.			
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S	2 Details	of	marker-based	QC	and	analysis	

S	2.1 Overview	
Genotype	calling	by	Affymetrix	resulted	in	a	dataset	of	489,212	individuals	typed	at	
812,428	markers	with	which	to	carry	out	further	QC.		Our	QC	pipeline	aimed	to	
address	issues	specific	to	a	large-scale,	ancestrally	diverse	dataset	which	was	
genotyped	in	many	batches	(106,	with	~4700	individuals	each),	using	two	arrays,	
and	which	will	be	used	by	many	researchers	with	a	wide	variety	of	research	
questions.		These	factors	mean	that	some	quality	control	metrics	commonly	used,	
for	example,	in	genome-wide	association	studies	(GWAS),	are	not	directly	applicable	
in	this	context.		We	used	a	variety	of	approaches	in	our	QC	procedures	to	account	
for	effects	such	as	the	large	cohort	size,	population	structure,	and	batch-based	
genotype	calling.		The	amount	of	data	affected	by	our	QC	is	summarized	in	Extended	
Data	Table	4	and	Figure	2.	

After	applying	QC	we	assessed	the	quality	of	the	released	dataset	by	comparing	
genotype	calls	across	replicates	included	in	the	experiment;	as	well	as	comparing	
allele	frequencies	in	the	UK	Biobank	with	those	in	an	external	source,	the	Exome	
Aggregation	Consortium	(ExAC)	(see	Section	S	2.4).	

S	2.2 Details	of	accounting	for	population	structure	in	marker-
based	QC		

Many	QC	tests	are	ineffective	in	the	context	of	population	structure.		We	therefore	
applied	all	marker-based	QC	tests	using	a	subset	of	463,844	individuals	drawn	from	
the	largest	ancestral	group	in	the	cohort	(European).		Here	we	describe	the	
procedure	to	identify	such	samples	using	principal	component	analysis	(PCA)	and	
two-dimensional	clustering.			

We	first	downloaded	1000	Genomes	Project	Phase	1	data	in	Variant	Call	File	(VCF)	
format8	and	extracted	714,168	SNPs	(no	Indels)	that	are	also	on	the	UK	Biobank	
Axiom	array.		We	selected	355	unrelated	samples	from	the	populations	CEU,	CHB,	
JPT,	YRI,	and	then	chose	SNPs	for	principal	component	analysis	using	the	following	
criteria:	

• MAF	≥	5%	and	HWE	p-value	>	10-6,	in	each	of	the	populations	CEU,	CHB,	JPT	
and	YRI.			

• Pairwise	r2	≤	0.1	to	exclude	SNPs	in	high	LD.		(The	r2	coefficient	was	
computed	using	plink	9	and	its	‘indep-pairwise’	function	with	a	moving	
window	of	size	of	1000	kilo-bases	(Kb)	and	a	step-size	of	80	markers).	

• Removed	C/G	and	A/T	SNPs	to	avoid	unresolvable	strand	mismatches.	
• Excluded	SNPs	in	several	regions	with	high	PCA	loadings	(after	an	initial	PCA).	

With	the	remaining	40,220	SNPs	we	computed	PCA	loadings	from	the	355	1,000	
Genomes	samples,	then	projected	all	the	UK	Biobank	samples	onto	the	1st	and	2nd	
principal	components.		All	computations	were	performed	with	Shellfish	
(http://www.stats.ox.ac.uk/~davison/software/shellfish/shellfish.php).	
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Finally,	for	each	batch	separately,	we	applied	an	outlier	detection	algorithm	aberrant	
10	(with	the	lambda	parameter	set	to	20)	to	isolate	the	largest	cluster	of	samples	
from	the	rest	in	the	batch,	based	on	the	two	leading	PCs.		In	UK	Biobank,	the	largest	
cluster	is	composed	of	individuals	with	European	ancestry.	

S	2.3 Details	of	marker-based	QC	tests	
We	performed	six	tests	designed	to	check,	among	other	things,	for	consistency	
across	different	experimental	factors.		Specifically,	we	tested	for	batch	effects,	plate	
effects,	departures	from	Hardy-Weinberg	equilibrium	(HWE),	sex	effects,	array	
effects,	and	discordance	across	control	replicates.		All	tests	(except	for	discordance	
across	controls)	were	applied	using	the	genotype	calls	for	a	set	of	463,844	
ancestrally	homogeneous	individuals	(see	Section	S	2.2).		The	details	of	each	test	are	
described	in	Section	S	2.3.3,	and	Figure	S3	shows	examples	of	affected	markers.			
	
Four	of	the	tests	(batch	effect,	plate	effect,	departures	from	HWE,	sex	effect)	were	
applied	to	each	marker	in	each	batch	separately.		For	markers	that	failed	at	least	one	
test	in	a	given	batch,	we	set	the	genotype	calls	in	that	batch	to	missing.		Markers	
that	failed	any	one	of	these	tests	in	every	batch	were	excluded	from	the	dataset	
altogether.		The	other	two	tests	(array	effect	and	discordance	across	controls)	were	
applied	to	each	marker	across	all	batches.		Any	marker	that	failed	at	least	one	of	
these	two	tests	was	also	excluded	from	the	dataset	altogether.		We	applied	each	of	
these	tests	independently,	so	some	markers,	or	marker/batch	combinations	may	
have	failed	more	than	one	test.		In	all	except	one	case	(array	effect)	tests	were	
applied	to	the	union	of	markers	on	the	two	arrays.	
	
In	addition	to	the	six	tests,	some	of	the	genotype	calls	for	a	small	number	of	samples	
(387)	were	likely	compromised	due	to	a	rare	artefact	involving	the	digital	
misalignment	of	features	on	the	array	during	image-capture.		The	intensities	for	
these	samples	at	a	subset	of	SNPs	were	systematically	shifted	in	a	way	that	imitated	
a	real	genotype	cluster,	so	were	not	highlighted	by	other	QC	tests	but	were	
identified	in	a	principal	components	analysis.		We	set	the	genotype	calls	to	missing	
only	for	these	samples	at	a	set	of	34,921	markers	that	Affymetrix	identified	as	likely	
affected	(0.0037%	of	all	genotype	calls).	

S	2.3.1 Choice	of	p-value	for	hypothesis-based	tests	
The	batch	effect,	plate	effect,	HWE,	sex	effect	and	array	effect	tests	are	hypothesis	
tests	with	an	associated	p-value.		Any	marker,	or	marker/batch	combination	with	a	
p-value	smaller	than	a	fixed	threshold	we	considered	as	failing	the	test.		We	used	a	
p-value	threshold	of	10-12.		This	threshold	was	chosen	so	that	we	only	set	a	
marker/batch	to	missing	if	there	is	very	strong	evidence	for	deviation	from	the	null	
hypothesis	of	any	of	these	tests.		
	
There	are	5	kinds	of	hypotheses,	106	batches,	~50	plates	per	batch	and	~800,000	
markers,	making	a	total	of	around	4.6x109	tests	(accounting	for	plate-level	and	
batch-level	tests).		A	p-value	of	10-12	can	therefore	be	thought	of	as	equivalent	to	a	
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family-wise	error	rate	of	at	most	0.005.		Many	tests	will	be	positively	correlated,	
especially	across	batches	for	the	same	marker,	so	this	is	likely	to	be	an	upper	bound	
on	the	probability	that	we	observe	an	extreme	test	statistic	just	by	chance.			

S	2.3.2 Treatment	of	haploid	markers	

For	both	the	Y	chromosome	and	Mitochondrial	markers	Affymetrix	assessed	the	
performance	of	the	assay	by	visually	inspecting	cluster	plots4.		In	addition,	we	
applied	all	of	the	tests	to	haploid	as	well	as	diploid	markers,	except	HWE,	which	only	
makes	sense	in	the	diploid	case.		For	haploid	markers	(e.g.	Mitochondria)	we	
counted	only	two	categories	of	genotypes	instead	of	three.		For	the	Y	chromosome	
we	ran	each	test	only	using	males	(as	inferred	by	Affymetrix).		For	the	sex-specific	
region	of	the	X	chromosome	we	ran	each	test	separately	using	males	only	(haploid),	
females	only	(diploid),	and	both	combined,	but	then	used	the	smallest	of	the	three	
p-values.		The	pseudo-autosomal	regions	(PAR)	of	the	X	chromosome	were	treated	
exactly	as	autosomal	markers.	

S	2.3.3 Details	of	each	test	

Batch	effect	

In	samples	drawn	from	the	same	population	we	would	not	expect	differences	in	
genotype	frequencies	between	batches	at	the	same	marker.		Such	differences	might	
indicate	that	the	marker	was	not	genotyped	as	accurately	in	the	batch	that	exhibits	
unusual	genotype	frequencies.		We	refer	to	these	cases	as	batch	effects.		Batch	
effects	can	occur,	for	instance,	when	the	sample	intensities	for	a	marker	in	one	
batch	shift	relative	to	the	intensities	in	other	batches.		In	rare	cases,	such	a	shift	can	
cause	the	Affymetrix	calling	algorithm	to	miscall	a	genotype	cluster	that	is	not	
detected	by	the	routine	Affymetrix	QC4.		To	detect	such	effects	we	tested	whether	
we	can	reject	the	null	hypothesis	that	a	given	batch	has	the	same	genotype	
frequencies	as	for	all	other	batches	combined.		We	used	a	Fisher’s	exact	test	on	the	
2×3	table	of	genotype	counts	(or	2x2	table	for	haploid	markers).		For	markers	that	
are	only	on	one	of	the	two	genotyping	arrays,	only	batches	with	samples	typed	on	
that	array	were	included	in	the	test.		For	all	other	markers,	all	106	batches	across	
both	arrays	were	included.			

Plate	effect	

Similar	to	batch	effects,	we	would	not	expect	differences	in	genotype	frequencies	
between	plates	at	the	same	marker.		We	refer	to	these	cases	as	plate	effects.		Plate	
effects	can	occur	when	the	intensities	in	one	plate	shift	relative	to	the	intensities	of	
other	plates	within	the	same	batch.		To	look	for	effects	in	a	particular	plate	we	
tested	whether	we	can	reject	the	null	hypothesis	that	the	given	plate	has	the	same	
genotype	frequencies	as	all	other	plates	within	the	same	batch	combined,	and	then	
used	the	smallest	p-value	for	that	batch.		As	with	the	batch	effect	test,	we	used	
Fisher’s	exact	test	on	the	2×3	table	of	genotype	counts	(or	2x2	table	for	haploid	
markers).		We	performed	the	test	only	using	plates	that	are	at	least	half-full	within	a	
batch,	i.e.	with	48	samples	or	more.			
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Departures	from	Hardy-Weinberg	equilibrium	

We	performed	an	exact	test	for	departures	from	HWE	within	each	batch	using	the	
exact	test	described	in	11	and	implemented	by	the	authors	of	plink12.		Since	this	is	a	
test	for	departures	from	the	expected	counts	of	genotypes,	given	a	set	of	allele	
frequencies,	we	only	tested	diploid	regions	of	the	genome,	and	females	only	on	the	
sex-specific	region	of	the	X	chromosome.	

Sex	effect	

We	don’t	expect	differences	in	genotype	frequencies	between	males	and	females	for	
all	markers	other	than	the	Y	chromosome.		For	autosomal	markers,	differences	may	
be	due	to	sequence	homology	on	the	X	or	Y	chromosome,	leading	to	different	base-
line	intensities	for	males	and	females,	and	potentially	incorrect	genotype	calls.		For	
markers	on	the	sex-specific	region	of	the	X	chromosome,	the	genotype	calling	
algorithm	was	applied	separately	for	males	and	females	because	of	the	difference	in	
chromosome	copy	number13.		This	introduces	the	possibility	of	different	allele	
frequencies	in	males	and	females	due	to	the	automated	calling	algorithm	performing	
differently	for	each	of	the	sexes,	rather	than	genuine	frequency	differences.		We	
tested	for	this	within	each	batch	for	autosomal	and	PAR	X	markers	using	a	Fisher’s	
exact	test	on	the	2x3	table	of	genotype	counts	for	males	and	females;	and	the	2x2	
table	of	allele	counts	(not	genotypes)	for	males	and	females	for	markers	on	the	sex-
specific	region	of	the	X	chromosome.			

Array	effect	

The	two	arrays	used	for	the	UK	Biobank	cohort	–	the	UK	Biobank	Axiom	array	and	
the	UK	BiLEVE	Axiom	array	–	have	a	large	number	of	markers	in	common,	but	some	
aspects	of	the	design	of	the	physical	genotyping	array	differed.		These	differences	
can	have	subtle	effects	on	the	distribution	of	observed	intensities	for	a	marker,	and	
may	result	in	differences	in	the	behaviour	of	the	genotype	calling	algorithm	across	
the	two	arrays,	for	the	same	marker.		We	refer	to	this	as	an	array	effect.		To	identify	
markers	affected	by	this	we	tested	whether	we	can	reject	the	null	hypothesis	that	
the	set	of	individuals	typed	on	the	UK	Biobank	Axiom	array	has	the	same	genotype	
frequencies	as	those	typed	on	the	UK	BiLEVE	Axiom	array.		We	used	Fisher’s	exact	
test	on	the	2×3	table	of	genotype	counts	across	the	two	arrays	(or	2x2	for	haploid	
markers).	
	
The	participants	who	were	typed	on	the	UK	BiLEVE	Axiom	array	were	selected	from	
the	whole	cohort	based	on	phenotypes	involved	in	lung	function	and	smoking	
behavior,	and	those	with	self-declared	European	ancestry1.		Consequently,	it	is	
possible	for	array	effects	to	occur	as	a	result	of	genuine	genotypic	differences	
between	the	two	sets	of	participants;	for	example,	at	loci	associated	with	smoking	
behavior	or	lung	function.		While	most	of	the	markers	with	evidence	of	an	array	
effect	are	scattered	across	the	genome,	we	found	one	set	of	markers	with	low	p-
values	clustered	within	and	around	the	gene	CHRNA3,	a	locus	known	to	be	
associated	with	smoking	behavior1.		Since	this	signal	is	likely	to	reflect	genuine	
phenotype-genotype	associations	and	not	an	experimental	artifact,	we	did	not	
exclude	any	marker	in	this	region	on	the	basis	of	the	array	effect	test.		Specifically,	
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chromosome	15,	positions	78.6	–	79.0	Mega-bases	(Mb).	

Discordance	across	control	replicates	

The	DNA	of	two	individuals	from	the	CEU	group	of	the	1000	Genomes	project	
(HG00097	and	HG00264)	were	used	as	controls	for	the	UK	Biobank	experiment.		
Specifically,	each	plate	processed	by	Affymetrix	contained	two	wells	assigned	to	the	
controls,	and	resulted	in	a	total	of	5,817	and	5,424	successfully	genotyped	replicates	
for	the	two	individuals,	respectively.		This	provides	a	further	opportunity	to	assess	
the	quality	of	the	genotype	calling	for	a	specific	marker	because	we	know	that	the	
true	underlying	genotype	for	the	replicates	should	be	the	same.		For	each	individual	
of	the	control	individuals,	and	each	marker,	we	computed	a	discordance	metric,	𝑑,	
	

𝑑 = 1−  
max (𝑛!!,𝑛!" ,𝑛!!)
𝑛!! + 𝑛!"  + 𝑛!!

	

	
where	𝑛!!,𝑛!" ,𝑛!!		is	the	number	of	times	the	genotypes	AA,	AB,	and	BB	are	called	
for	the	individual	at	that	marker.		For	haploid	markers	𝑛!"	is	always	0	and	𝑛!!	and	
𝑛𝑩𝑩	correspond	to	the	calls	A	and	B.		Any	marker	with	𝑑 ≥	0.05	(or	equivalently	<	
0.95	concordance)	for	at	least	one	of	the	two	control	individuals	was	excluded	from	
the	released	dataset.	
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Figure	S3	|	Examples	of	markers	failing	quality	control	tests.		Each	sub-figure	shows	an	example	of	a	marker	exhibiting	
the	properties	that	our	QC	tests	were	designed	to	identify	(p-value	<	10-12).	See	Section	S	2.3.3	for	details	of	each	test.		
Each	plot	shows	the	samples	within	the	stated	batch	coloured	according	to	their	inferred	genotype,	as	in	Figure	S2.		The	
limits	of	the	axes	vary	depending	on	the	range	of	intensities	observed	in	each	batch.	A)	The	top	two	plots	show	batches	
typed	on	the	UK	Biobank	Axiom	array,	and	the	bottom	two	show	batches	typed	on	the	UK	BiLEVE	Axiom	array.	The	third	
cluster	(orange;	minor	homozygotes)	has	been	called	as	homozygote	(green)	in	the	UK	Biobank	Axiom	array	batches,	
likely	due	to	the	presence	of	the	outlier	in	Batch_b072.	B)	Genotype	calls	in	the	highlighted	batch	(Batch_b001)	contain	
no	minor	homozygotes	(orange),	unlike	the	other	three	batches	shown.	C)	One	batch	is	shown	here,	but	also	with	males	
and	females	plotted	separately.	There	are	only	two	clusters	for	each	of	males	and	females,	but	they	are	shifted	relative	to	
each	other	so	form	what	appears	to	be	three	clusters	when	combined.		This	is	an	autosomal	marker,	so	males	and	
females	are	genotyped	together.	D)	The	presence	of	a	fourth	cluster	suggest	that	this	marker	involves	variation	more	
complex	than	a	bi-allelic	marker.		The	samples	in	the	fourth	cluster	that	were	called	as	major	homozygotes	causes	the	
genotype	counts	to	violate	HWE.	E)	This	batch	for	this	marker	contains	two	plates	(shown	as	dark	brown	and	pink	dots	in	
the	right-hand	plot)	that	are	systematically	shifted	in	intensity	space.	

Genotype	calls:	
●

●

●

A
B

Marker: rs7412
Position: chr19:45412079

AA
AB
BB
no call

:= C
:= T

●

●

●

A
B

Marker: rs429358
Position: chr19:45411941

AA
AB
BB
no call

:= T
:= C



14		

S	2.4 Comparison	of	allele	frequencies	in	UK	Biobank	and	
ExAC	

We	compared	allele	frequencies	between	UK	Biobank	and	ExAC	within	sets	of	
samples	of	European	ancestry.		Results	are	shown	in	Figure	2C	and	Figure	S4.			
	
We	downloaded	ExAC	data	(VCF	files)	from:	
ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/ExAC.r1.sites.vep.vcf*	
	
For	the	ExAC	data	we	used	allele	counts	for	the	non-Finnish	European	population	
group	(33,370	samples).		For	the	UK	Biobank	we	used	the	set	of	463,844	European-
ancestry	samples	(see	Section	S	2.2	for	how	these	were	identified),	and	who	did	not	
report	Finland	as	their	birthplace	(there	are	~160	Finland-born	participants	in	the	UK	
Biobank	cohort).		We	compared	a	set	of	91,298	markers,	which	are	in	the	released	
genotype	dataset,	are	on	both	genotyping	arrays,	and	have	more	than	90%	call	rate	
in	both	UK	Biobank	and	ExAC.		We	merged	data	for	the	two	studies	by	requiring	
markers	to	match	on	chromosome,	position,	and	the	reference	and	alternative	
alleles	(all	markers	in	the	UK	Biobank	released	data	are	bi-allelic).		We	report	the	
frequency	of	the	allele	that	is	minor	in	the	UK	Biobank,	so	some	markers	could	have	
allele	frequency	>	0.5	in	ExAC.		
	
We	expect	some	discrepancies	due	to	subtle	differences	in	population	structure	
within	the	two	studies,	as	well	as	differences	in	the	sensitivity	and	specificity	of	the	
two	technologies	(exome	sequencing	and	genotyping	arrays).		There	are	also	a	small	
number	of	~300	markers	that	have	very	different	allele	frequencies.		They	comprise		
~0.3%	of	all	markers	in	the	comparison,	or	~0.5%	of	all	markers	with	MAF	>	0.001	in	
at	least	one	study.		Namely,	179	markers	for	which	the	frequency	is	>	0.001	in	ExAC	
(usually	corresponding	to	more	than	60	copies	of	the	minor	allele)	but	zero	in	the	UK	
Biobank;	and	35	markers	where	the	reverse	is	the	case.		A	further	73	markers	have	
frequency	>	0.75	in	ExAC,	indicating	a	mis-annotation	of	the	alternative	allele	in	
either	the	UK	Biobank	arrays	or	ExAC.		From	visual	inspection	of	intensity	plots	(such	
as	those	shown	in	Figure	S2)	for	a	subset	of	these	markers	we	concluded	the	
following.		In	the	cases	where	MAF	is	zero	in	UK	Biobank	there	is	no	evidence	of	a	
heterozygous	cluster,	possibly	because	the	probes	for	one	or	both	of	the	alleles	are	
not	working.		In	the	cases	where	the	frequency	is	zero	(or	close	to	1)	in	ExAC,	most	
appear	to	be	genotyped	well	in	UK	Biobank.		However,	many	of	these	markers	are	
multi-allelic	(in	ExAC)	or	indels,	which	would	be	consistent	with	either	annotation	
error	on	the	UK	Biobank	arrays	or	in	ExAC,	or	mapping	errors	in	the	sequence	data	in	
regions	of	more	complex	variation.	
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Figure	S4	|	Allele	frequency	comparison	with	ExAC	at	rare	markers.		Each	hexagonal	bin	is	coloured	
according	to	the	number	of	markers	falling	in	that	bin,	as	indicated	by	the	key	(note	the	log10	scale).		
The	dashed	red	line	shows	x=y.		The	comparison	for	variants	at	all	frequencies	is	shown	in	Figure	2C.		
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S	3 Details	of	sample-based	QC	and	analysis	

S	3.1 Overview	
Our	pipeline	for	sample-based	QC	and	analysis	was	designed	to	identify	samples	with	
poor	quality	genotype	calls,	find	related	individuals,	and	provide	a	quantitative	
description	of	ancestral	diversity	of	the	cohort	based	on	information	in	the	genetic	
data.		We	used	a	set	of	621,642	high	quality	SNPs	that	were	typed	on	both	arrays	to	
ensure	that	metrics	computed	across	many	markers	reflect	properties	associated	
with	each	sample.		Several	of	the	analyses	we	conducted	were	dependent	on	each	
other.		For	example,	adjusting	the	heterozygosity	metric	to	account	for	population	
structure	first	requires	computation	of	principal	components.		Figure	S5	shows	all	
the	key	interdependences	within	the	pipeline,	and	the	relevant	sections	in	this	
document.	
	
A	small	number	of	samples	were	excluded	from	the	data	release	subsequent	to	
running	this	pipeline.		The	counts	of	samples	reported	in	this	section	are	based	on	
the	dataset	prior	excluding	those	samples,	so	some	values	may	differ	slightly	from	
that	observed	in	the	released	data.	
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Figure	S5	|	Overview	of	pipeline	for	sample-based	analyses	and	quality	control.		Rectangles	represent	data	or	
computed	variables;	diamonds	indicate	key	processes	that	link	the	different	analyses.	For	example,	the	computation	
of	“Principal	component	analysis	1”	requires	“Kinship	estimates	1”	in	order	to	exclude	related	individuals	from	the	PC	
computation.	Numbers	denote	the	relevant	section	in	Supplementary.	Data	that	is	associated	with	the	elements	
shown	in	red	are	made	available	to	researchers.	
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S	3.2 Selection	of	markers	for	sample-based	QC	and	analysis	
We	selected	621,642	markers	(605,876	autosomal;	15,766	on	X	and	Y	
chromosomes),	such	that	they	fulfil	the	following	criteria:		

• In	both	of	the	two	arrays.	
• Is	a	SNP	(not	an	Indel).	
• Passed	QC	in	all	106	batches	(see	Section	S	2.3).	
• MAF	among	all	UK	Biobank	samples	>	0.0001.	
• Is	not	in	the	list	of	SNPs	affected	by	the	‘image’	artefact†.	

	
All	analyses	described	in	Section	S	3	used	these	SNPs	only,	or	a	subset	of	these	
where	stated.		The	X	and	Y	chromosome	markers	were	only	used	for	the	sex	
chromosome-specific	sample	QC	and	analysis	(Section	S	3.6).		Wherever	possible,	the	
list	of	SNPs	used	in	a	specific	analysis	(e.g.	PCA)	is	provided	to	researchers.	
	

S	3.3 Population	structure	(PCA)	
We	used	principal	component	analysis	(PCA)	to	capture	population	structure	within	
the	UK	Biobank	cohort.	The	PCA	we	conducted	serves	two	purposes:	to	account	for	
population	structure	in	other	sample-based	QC	metrics	(such	as	heterozygosity);	and	
to	assist	the	research	community	by	computing	a	metric	that	is	widely	used	as	an	
indicator	of	genetic	ancestry	(complementary	to	self-reported	ethnicity),	and	is	
widely	used	as	a	method	for	assessing	and	potentially	controlling	for	population	
structure	in	GWAS	14,15.	
	
Principal	components	should	ideally	be	computed	using	a	subset	of	high	quality,	
unrelated	samples.		However,	the	metrics	used	to	find	related	samples,	as	well	as	
poorer	quality	samples	themselves	require	information	about	population	structure	
(see	Sections	S	3.5	and	S	3.7).		We	therefore	conducted	an	initial	round	of	PCA,	
computing	just	the	top	8	PCs,	using	a	set	of	unrelated	samples	based	on	an	initial	
round	of	kinship	estimation.		We	used	the	results	of	this	analysis	to	compute	PC-
adjusted	heterozygosity	as	well	as	refine	the	relatedness	inference.		Having	then	
identified	a	set	of	high	quality,	unrelated	samples,	we	conducted	a	second	round	of	
PCA,	computing	the	first	40	PCs.		Results	of	the	second	round	are	made	available	to	
researchers	and	visualised	in	Figure	3A,	Figure	S6-S7,	Extended	Data	Figure	3,	and	
discussed	in	the	main	text.	

S	3.3.1 Details	of	PCA	round	1	
We	first	estimated	kinship	coefficients	between	all	samples	using	the	software	
KING16,	with	the	command	“—related	–degree	3”,	and	used	these	results	to	find	a	
set	of	unrelated	individuals.		Note	this	is	separate	from	the	final	relatedness	
inference	described	in	Section	S	3.7.		Next	we	excluded	samples	with	the	following	
properties:	

																																																								
†	This	artefact	involved	a	subset	of	SNPs	and	a	very	small	number	of	samples	(~300),	so	it	only	affects	
a	very	small	proportion	of	all	the	data	(details	in	Section	S	2.3).		We	excluded	these	SNPs	in	our	
sample-based	QC	and	analysis	as	a	precaution	only.	
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• Missing	rate	on	autosomes	>	0.02.	
• Not	in	a	set	of	unrelated	individuals	(see	Section	S	3.7.4).	
• Mismatch	between	inferred	sex	and	self-reported	sex.	

	
We	also	excluded	SNPs	with	the	following	properties:	

• Missing	rate	>	0.015.	
• MAF	<	0.01.	
• In	regions	of	long-range	linkage	disequilibrium	(LD)	e.g.	inversions.		The	

boundaries	we	used	are	in	Appendix	Table	S13).	
	
We	then	pruned	the	SNPs	to	a	set	of	independent	markers	such	that	pairwise	r2	<	
0.1,	using	windows	of	1000	markers	and	a	step-size	of	80	markers.	
	
These	filters	were	applied	to	the	genotype	data	using	the	appropriate	plink	
commands	in	the	order	described,	and	resulted	in	a	set	of	147,551	SNPs	and	406,247	
samples	with	which	to	compute	PCs.		We	computed	the	top	8	PCs	using	fastPCA17	
with	options	‘numoutevec’	=	8	(otherwise	program	defaults).		We	computed	SNP-
loads	for	each	PC	by	carrying	out	the	appropriate	matrix	multiplications	based	on	
mean-centred	and	variance-scaled	genotypes,	and	the	PC	scores	computed	by	
fastPCA.		We	then	projected	all	samples	onto	the	PCs	using	the	SNP-loads.	

S	3.3.2 Details	of	PCA	for	release	
We	filtered	the	genotype	data	using	the	same	criteria	as	above,	but	with	additional	
sample	exclusion	criteria	based	on	a	second	round	of	familial	relatedness	inference	
using	a	specially	filtered	set	of	SNPs	(see	Section	S	3.7),	and	having	identified	a	small	
number	of	lower	quality	samples	(see	Section	S	3.5).		Specifically,	we	excluded	
samples	with	the	following	properties:	

• Missing	rate	on	autosomes	>	0.02.	
• Not	in	a	set	of	unrelated	individuals	(see	Sections	S	3.7.1	and	S	3.7.4).	
• In	the	list	of	outliers	based	on	heterozygosity	and	missing	rates	(see	Section	S	

3.5).	
• Mismatch	between	inferred	sex	and	self-reported	sex.	

	
These	filters	were	applied	using	plink,	and	resulted	in	a	set	of	147,606	SNPs	and	
407,599	samples	with	which	to	compute	PCs.		We	computed	the	top	40	PCs	using	
fastPCA17	with	options	‘numoutevec’	=	40;	‘fastdim’	=	50;	‘fastiter’	=	40.		We	
computed	SNP-loads	for	each	PC	by	carrying	out	the	appropriate	matrix	
multiplications	based	on	mean-centred	and	variance-scaled	genotypes,	and	the	PC	
scores	computed	by	fastPCA.		We	then	projected	all	samples	onto	the	PCs	using	the	
SNP-loads.	 	
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Figure	S6	|	All	pairs	of	the	first	6	principal	components	in	PCA	on	UK	Biobank	genotype	data.			Each	plot	shows	PC	scores	for	UK	
Biobank	samples	for	pairs	of	successive	principal	components.		Each	point	represents	a	UK	Biobank	participant	(n=488,377	samples)	
and	is	coloured	according	to	their	self-report	ethnic	background	as	defined	in	the	key.	
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Figure	S7	|	The	first	18	principal	components	in	PCA	on	UK	Biobank	genotype	data.		Each	plot	shows	PC	scores	for	UK	Biobank	samples	
for	pairs	of	successive	principal	components.	Each	point	represents	a	UK	Biobank	participant	(n=488,377	samples)	and	is	coloured	
according	to	their	self-report	ethnic	background	as	defined	in	the	key.	This	figure	shows	results	of	the	PCA	for	release	(see	Section	S	
3.3.2).		Results	for	all	40	PCs	are	visualised	in	Extended	Data	Figure	3.	
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S	3.4 Details	of	selecting	a	white	British	ancestry	subset	
Researchers	wanting	to	reduce	the	effects	of	strong	population	structure	on	their	
analysis	may	want	to	use	a	set	of	individuals	with	relatively	homogenous	ancestry.		A	
majority	of	participants	in	the	UK	Biobank	cohort	report	their	ethnic	background	as	
“British”,	within	the	broader-level	group	“White”	(88.26%)	(Extended	Data	Table	3).		
We	use	this	information,	as	well	as	the	genetic	data,	to	provide	a	list	of	409,728	
individuals	(84%)	who	self-report	as	“British”	and	who	have	very	similar	ancestral	
backgrounds	according	to	the	PCA.		We	refer	to	this	set	of	individuals	as	the	“white	
British	ancestry	subset”.			
	
We	first	selected	431,059	(88.26%)	individuals	who	report	their	ethnic	background	
as	“British”,	within	the	broader-level	group	“White”	(Extended	Data	Table	3).		We	
used	a	Bayesian	outlier	detection	algorithm	implemented	in	the	R	package	
aberrant10,	to	isolate	the	largest	cluster	of	samples	from	the	rest,	using	PCs	1	-	6.		
aberrant	takes	a	parameter	(Lambda),	which	effectively	sets	how	tight	the	'inlier'	
cluster	is.		We	set	it	at	40,	which	we	chose	to	balance	the	number	of	samples	
excluded	with	their	closeness	in	PC-space.		aberrant	works	only	in	two	dimensions,	
so	we	applied	it	separately	to	pairs	of	PCs:	1&2;	3&4;	5&6	to	find	three	sets	of	tightly	
clustered	samples.		We	then	took	the	intersection	of	all	three	sets,	and	defined	this	
set	of	individuals	as	the	“white	British	ancestry	subset”	(see	Figure	S8).	
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Figure	S8|	Selection	of	white	British	ancestry	subset	using	PCA.		Each	plot	shows	the	principal	component	scores	for	all	UK	
Biobank	samples	(n=488,377	samples),	which	we	used	to	select	the	white	British	ancestry	subset	(see	Section	S	3.4).		Non-grey	
points	indicate	participants	who	have	self-reported	ethnic	background	“British”	(within	the	broader-level	group	“White”,	see	
Extended	Data	Table	3),	and	participants	with	other	ethnic	backgrounds	are	coloured	grey,	but	with	the	same	set	of	symbols	as	
shown	in	Figure	S6.		Blue	crosses	show	participants	within	the	white	British	ancestry	subset.	
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S	3.5 Detecting	outliers	in	heterozygosity	and	missing	rates	
Extreme	heterozygosity	and/or	high	missing	rates	can	be	indicators	of	poor	sample	
quality	due	to,	for	example,	DNA	contamination18.		However,	heterozygosity	can	also	
be	sensitive	to	natural	phenomena,	including	population	structure,	recent	
admixture,	and	parental	consanguinity.		We	identified	poor	quality	samples	using	
these	metrics,	but	took	extra	measures	to	avoid	misclassifying	good	quality	samples	
because	of	these	effects.		

S	3.5.1 Details	of	computing	raw	heterozygosity	and	missing	rates	

Using	a	set	of	605,876	high	quality	autosomal	SNPs	(see	Section	S	3.2)	we	computed	
raw	heterozygosity	(ℎ)	for	each	sample.		That	is,	the	proportion	of	non-missing	
genotypes	that	are	heterozygous:	

ℎ =  
𝑁!" − 𝑁!!"

𝑁!"
	

where	𝑁!" 	is	the	number	of	non-missing	genotypes,	and	𝑁!!" 	the	number	of	
homozygous	genotypes,	both	computed	using	the	“--het”	command	in	plink.		We	
computed	missing	rates	using	the	“--miss”	command	in	plink.		

S	3.5.2 Details	of	adjusting	heterozygosity	for	population	structure	
The	proportion	of	a	sample’s	non-missing	genotypes	that	are	heterozygous	
(heterozygosity	rate)	is	sensitive	to	population	structure	because	allele	frequency	
distributions	(and	thus	expected	heterozygosity)	can	differ	between	populations,	
especially	in	array-based	genotype	data.		Extended	Data	Figure	1a	shows	the	effect	
of	SNP	ascertainment	on	heterozygosity.		We	control	for	this	by	fitting	the	following	
linear	regression	model.	

Let	h	denote	the	heterozygosity	and	let	x	be	a	set	of	features	correlated	with	
ancestry.		We	used	the	projections	onto	the	six	major	UK	Biobank	principal	
components	to	characterise	ancestry,	writing	x	=	(x1,	x2,	x3,	x4,	x5,	x6)	for	these	six	
principal	component	values.		Consider	the	following	model	for	heterozygosity	under	
population	structure:		

h(x)	=	h0	+	β(x)	

where	h(x)	is	the	raw	heterozygosity,	which	depends	on	the	features	x,	h0	is	the	
ancestry-adjusted	heterozygosity,	and	β(x)	is	a	bias	term	due	to	population	
structure.		We	chose	a	quadratic	form	for	β(x),	which	includes	all	linear	and	
quadratic	terms	xi	and	xi2	as	well	as	all	cross	terms	xixj,	and	we	estimated	h0	with	
ordinary	least	squares.		More	specifically,	the	bias	was	assumed	to	have	the	
following	functional	form:	

β(x)	=	β1x1	+	β2x2	+	β3x3	+	β4x4	+	β5x5	+	β6x6	+	β11x12	+	β22x22	+	β33x32	+	β44x42	+	β55x52	+	β66x62	+	
β12x1x2	+	β13x1x3	+	β14x1x4	+	β15x1x5	+	β16x1x6	+	β23x2x3	+	β24x2x4	+	β25x2x5	+	β26x2x6	+	β34x3x4	+	
β35x3x5	+	β36x3x6	+	β45x4x5	+	β46x4x6	+	β56x5x6	
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The	fitted	value	ĥ0	is	the	ancestry-corrected	heterozygosity.		We	plot	this	on	the	y-
axis	in	Extended	Data	Figure	1b	with	all	ethnic	background	categories	combined,	and	
in	Figure	S9	with	each	ethnic	background	category	separately.		Both	the	PC-
corrected	and	raw	heterozygosity	are	provided	to	researchers.	

S	3.5.3 Details	of	detecting	outliers	in	heterozygosity	and	missing	rates	

Some	samples	can	have	naturally	extreme	heterozygosity,	even	after	accounting	for	
population	structure.		Specifically,	individuals	with	mixed	ethnicity	tend	to	have	
higher	heterozygosity	(which	is	not	captured	by	the	principal	components),	and	
individuals	whose	parents	are	closely	related	tend	to	have	lower	heterozygosity.		We	
therefore	aimed	to	flag	as	outliers	samples	whose	extreme	heterozygosity	is	not	
explained	by	mixed	ancestry	or	increased	levels	of	consanguinity.		We	proceeded	as	
follows,	with	missing	rates	and	heterozygosity	computed	as	described	above.	

We	first	considered	individuals	within	the	four	largest	ethnic	background	categories	
(“British”,	”Any	other	white	background”,	“Irish”,	”Indian”).		To	this	combined	set	we	
applied	aberrant10	to	the	two-dimensions	of	logit-transformed	missing	rate	and	PC-
adjusted	heterozygosity	(lambda	=	120).		We	used	the	logit	transformation	of	
missing	rate	because	aberrant	uses	a	model	of	a	mixture	of	2-dimensional	Normal	
distributions,	and	the	missing	rate	distribution	is	approximately	normal	under	this	
transformation.		In	this	way	we	identified	744	outliers	and	with	PC-adjusted	
heterozygosity	above	the	mean	(0.1903).		For	all	other	ethnic	background	categories	
we	inspected	plots	of	missing	rate	and	PC-adjusted	heterozygosity	separately	for	
each	category,	looking	for	individuals	with	unusually	high	heterozygosity	within	their	
category	(Figure	S9).		This	resulted	in	zero	further	outliers.		We	computed	missing	
rates	using	plink	“--miss”	command,	and	also	flagged	any	sample	with	a	missing	rate	
>	0.05.		In	total	we	identified	968	samples	with	unusually	high	heterozygosity	and/or	
missing	rates.		These	samples	are	shown	in	red	in	Extended	Data	Figure	1c.	

Low	heterozygosity	is	expected	as	a	consequence	of	an	individual‘s	parents	sharing	
recent	ancestors.		This	would	also	result	in	long	runs	of	unbroken	homozygous	
genotypes	within	the	individual’s	genome.		We	used	this	observation	to	confirm	that	
individuals	with	unusually	low	heterozygosity	were	not	subject	to	poor	quality	
genotyping	by	checking	the	expected	(negative	proportional)	relationship	between	
heterozygosity	and	long	runs	of	homozygosity	(LROH).		We	used	plink9	to	detect	
LROH,	using	the	“--homozyg-kb”	command	with	a	homozygous	run	required	to	span	
at	least	1000	kb.		The	negative	relationship	between	the	heterozygosity	and	the	total	
length	of	all	runs	of	homozygosity	is	clear	in	Supplementary	Figure	S10.	
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Figure	S8	|	PC-corrected	heterozygosity	and	missing	rates	for	different	ethnic	background	categories.		Horizontal	lines	show	the	
mean	value	within	each	group.	The	number	of	samples	is	shown	in	brackets.	Groups	with	mixed	ancestry	(e.g.	White	and	Black	
African)	tend	to	have	higher	heterozygosity	even	after	correcting	for	PCs.		We	therefore	only	included	the	largest	ethnic	background	
categories	(shown	in	the	top	four	plots)	in	the	automated	outlier	detection	process	and	for	the	other	ethnic	background	categories	
we	visually	inspected	these	plots	(Section	S	3.5.3).	
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S	3.6 Sex	chromosome-specific	sample	QC	
Affymetrix	infers	the	sex	of	each	individual	based	on	the	relative	intensity	of	markers	
on	the	Y	and	X	chromosomes13.		Sex	is	also	reported	by	participants,	and	we	refer	to	
differences	between	these	sources	as	a	‘sex	mismatch’.		This	could	occur	because	of	
sample	mishandling,	but	also	due	to	due	to	transgender	individuals,	or	instances	of	
real	(but	rare)	genetic	variation,	such	as	sex-chromosome	aneuploidies.		
	
Using	information	in	the	measured	intensities	of	chromosomes	X	and	Y,	we	
identified	a	set	of	652	individuals	with	sex	chromosome	karyotypes	putatively	
different	from	XY	or	XX.		The	list	is	made	available	to	researchers.		These	have	not	
been	independently	validated,	but	rather	the	list	is	useful	as	a	QC	tool.		For	example,	
differentiating	between	sex-mismatches	likely	due	to	unusual	chromosomal	
configurations,	as	opposed	to	other	reasons	such	as	clerical	error.		We	also	excluded	
this	set	of	individuals	from	phasing	and	imputation	on	the	X	chromosome	only,	as	
assumptions	about	diploidy/haploidy	in	this	chromosome	may	not	hold	for	these	
individuals.	

S	3.6.1 Details	of	putative	sex-chromosome	aneuploidy	detection	

We	first	extracted	Log2	ratios	(L2R)	at	a	set	of	high	quality	SNPs	on	the	X	and	Y	
chromosomes	(see	Section	S	3.2).		L2R	are	computed	(by	Affymetrix)	for	each	sample	
at	each	marker,	and	is	the	sum	of	the	A	and	B	allele	intensities	for	the	marker,	
normalized	by	the	median	intensity	of	that	marker	in	individuals	assumed	to	
represent	the	normal	copy	number	state	at	that	site.		For	normalization,	only	
individuals	in	the	same	genotyping	batch	were	used;	and	for	markers	on	the	X	and	Y	

Figure	S9	|	Observed	relationship	between	long	runs	of	homozygosity	and	heterozygosity.		
The	colours	and	symbols	show	self-reported	ethnic	background	as	in	Figure	S9	(n=488,377	
samples).	
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chromosomes	only	(inferred)	females	and	males,	respectively,	were	used19.		For	each	
individual	we	computed	the	mean	L2R	across	each	of	the	sex-specific	region	of	the	X	
chromosome	(L2Rx)	and	the	Y	chromosome	(L2Ry).		After	visual	examination	of	a	
scatter	plot	of	these	metrics	(Figure	2d)	652	individuals	were	flagged	based	on	the	
criteria	in	Table	S2.		The	225	samples	with	a	possible	XXY	karyotype	are	heavily	
enriched	for	sex	mismatches	(79%).		All	but	one	of	the	XXY	karyotype	cases	the	
submitted	sex	was	male,	which	would	be	consistent	with	the	occurrence	of	a	Y	
chromosome,	which	contains	the	sex-determining	region.		Table	S2	shows	the	rate	in	
UK	Biobank	compared	with	data	derived	from	a	prospective	study	of	39,410	
newborn	children	at	a	single	hospital	in	Aarhus,	Denmark20.		UK	Biobank	is	a	much	
larger	study,	and	may	also	differ	in	a	number	of	respects	through	its	ascertainment,	
including	survival	to	age	40-69,	and	willingness	or	ability	to	participate	in	the	study.	
	
	

Criteria	
Putative	sex	
chromosome	
karyotype	

Sex	
match	

Sex	
mismatch	 Total	

Rate	
per	
10,000	

Sex-specific	rates	per	
10,000	

In	UK	
Biobank		
(adults)	

In	Nielsen	
and	
Wohlert	
(new-
borns)	

Inferred	female	
and	L2Rx	<	-
0.17	

X0	(complete,	
or	mosaic)	

148	 2	 150	 3.07	 5.67	(0.46)	 5.28	(1.76)	

Inferred	female	
and	L2Rx	>	
0.145	

XXX	 123	 0	 123	 2.52	 4.65	(0.42)	 10.56	(2.49)	

-1	>=	L2Ry	<	
0.23	and	L2Rx	>	
-0.2		

XXY	 47	 178	 225	 4.61	
10.06	
(0.67)	 11.75	(2.56)		

L2Ry	>=	0.23	 XYY	or	XXYY	 153	 1	 154	 3.15	 6.89	(0.56)	 11.19	(2.50)	

Not	any	of	the	
above	 XX	or	XY	 487528	 197	 487725	 9986.65	 	 	

	 Total	 487999	 378	 488377	 10000	 	 	

Table	S2	|	Criteria	used	for	identifying	putative	sex-chromosome	aneuploidy	in	UK	Biobank	and	
comparison	of	rates.		Rates	for	Nielsen	and	Wohlert	are	derived	from	Table	1	of	their	publication20,	
which	was	a	prospective	study	of	new-born	children	(17,872	boys	and	17,038	girls).		To	match	the	
reporting	of	that	study	we	estimated	sex-specific	rates	in	the	UK	Biobank	data	using	the	total	
numbers	of	self-reported	males	(223,605)	for	XXY,	XYY	or	XXYY	and	self-reported	females	(264,772)	
for	X0,	XXX.		Numbers	in	brackets	after	rates	are	the	standard	errors	of	the	estimate.	
	
	

S	3.7 Inference	of	familial	relatedness		
Close	relationships	(e.g.	siblings)	among	UK	Biobank	participants	were	not	recorded	
during	the	collection	of	other	phenotypic	information.		Indeed,	many	participants	
may	not	be	aware	that	a	relation	(such	as	an	aunt,	or	sibling)	is	also	part	of	the	
cohort.		However,	this	information	is	important	for	epidemiological	analyses,	as	well	
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as	in	GWAS,	and	the	genetic	data	provide	a	unique	opportunity	to	discover	and	
characterise	familial	relatedness	within	the	cohort.		This	analysis	is	also	useful	for	
identifying	samples	that	are	experimental	duplicates	rather	than	genuine	twins.	

We	identified	related	individuals	by	estimating	kinship	coefficients	for	all	pairs	of	
samples,	and	recorded	coefficients	for	pairs	of	relatives	who	were	inferred	to	be	3rd	
degree	or	closer.		The	kinship	coefficient	is	the	probability	that	two	alleles	sampled	
randomly	from	two	individuals	are	identical	by	descent.		Expected	kinship	
coefficients	decrease	by	a	multiple	of	1/2	for	each	degree	of	relatedness.		For	
example,	parent-offspring	pairs	(1st	degree	relatives)	have	an	expected	kinship	
coefficient	of	1/4,	and	grandparent-grandchild	pairs	(2nd	degree	relatives)	have	an	
expected	kinship	coefficient	of	1/8.		Variation	around	the	expected	values	is	a	result	
of	the	stochastic	nature	of	genetic	inheritance	or	other	effects	such	as	parental	
consanguinity. 

Kinship	coefficient	estimation	in	a	large	and	diverse	cohort	presents	unique	
challenges.		Specifically:	diverse	ancestral	backgrounds,	recent	admixture,	and	
computational	scalability.		As	such,	we	used	an	estimator	implemented	in	the	
software,	KING16,	as	it	is	robust	to	population	structure	(i.e.	does	not	rely	on	
accurate	estimates	of	population	allele	frequencies)	and	it	is	implemented	in	an	
algorithm	efficient	enough	to	consider	all	~1.20x1011	pairs	in	a	practicable	amount	
of	time.		

S	3.7.1 Details	of	relatedness	inference	
We	estimated	kinship	coefficients	for	pairs	of	individuals	using	the	following	
procedure.		We	first	selected	a	set	of	SNPs	that	are	only	weakly	informative	of	
ancestry	to	minimise	inflation	of	the	kinship	estimates	due	to	recent	admixture.		
Using	results	of	the	PCA	round	1	(see	Section	S	3.3)	we	selected	SNPs	that	only	
contribute	very	small	‘loads’	to	PCs	1-3.		That	is,	where	tk	is	the	value	of	SNP-load	for	
PC	k,	we	only	used	SNPs	with	tk	<	0.003	for	all	k	in	1,2,3.		The	threshold	was	chosen	
to	balance	the	number	of	SNPs	included	(too	few	would	lead	to	noisy	kinship	
estimates),	and	how	informative	of	ancestry	the	SNPs	are	(too	large	a	threshold	
would	lead	to	inflation	in	the	presence	of	recent	admixture).		This	resulted	in	a	set	of	
93,511	SNPs	to	use	for	the	final	kinship	inference.		The	affect	this	had	on	the	kinship	
estimates	is	shown	in	Figure	S11	and	Figure	S12.		We	also	excluded	individuals	in	the	
list	of	outliers	in	heterozygosity	and	missing	rates	(see	Section	S	3.5).	
	
With	the	genotypes	filtered	as	described	above,	we	computed	kinship	coefficients	
for	all	pairs	of	individuals	using	KING	and	recorded	the	pairs	of	degree	3	or	closer	
(kinship	coefficient	≥	1/2(9/2)		)16.		In	practice,	we	parallelised	this	computation	by	
combining	data	into	pairs	of	batches	(“--merge”	command	in	plink)	and	running	KING	
with	the	options	“--related	--degree	3”	on	all	pairs	of	batches.		We	then	merged	the	
results	into	one	pairwise	kinship	table.		
		
A	small	number	of	individuals	(9)	appeared	to	be	related	(3rd	degree)	to	a	very	large	
number	(>	200)	of	individuals.		In	some	cases	this	was	in	the	order	of	1000s,	and	
their	‘relatives’	were	usually	not	themselves	related	to	one	another.		By	considering	
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family	trees,	it	is	only	possible	for	an	individual	to	have	a	maximum	of	four	3rd	
degree	relatives	who	are	not	themselves	related.		These	individuals	also	had	slightly	
elevated	heterozygosity	and	missing	rates,	but	not	extreme	enough	to	flag	as	poor	
quality	(see	Section	S	3.5).		We	therefore	concluded	that	the	excess	related	pairs	are	
likely	to	be	false	positives,	and	being	driven	by	a	small	number	of	individuals,	so	we	
excluded	them	from	the	kinship	table.		These	9	individuals,	along	with	the	pre-
filtered	samples,	comprise	a	set	of	977	samples	that	are	effectively	excluded	from	
the	kinship	inference.		For	this	small	fraction	(0.2%)	of	the	cohort	we	therefore	
cannot	confirm	the	presence	or	absence	of	any	of	their	relatives	in	the	cohort.		A	list	
of	these	individuals	is	provided	to	researchers.		
	
The	output	of	KING	(after	the	filtering	described	above)	is	provided	to	researchers	in	
a	table,	which	contains	107,162	pairs	of	individuals,	involving	147,731	unique	
individuals.		For	each	pair	we	report	both	the	estimated	kinship	coefficient	and	the	
fraction	of	markers	for	which	they	share	no	alleles	(IBS0).		For	the	purposes	of	this	
paper	we	also	called	the	relationship	class	of	each	pair	(Extended	Data	Table	5	and	
Figure	3b-c).		That	is,	we	assigned	each	related	pair	to	one	of	twins,	parent-offspring,	
siblings,	2nd	degree	or	3rd	degree	relatives	using	the	kinship	coefficient	boundaries	
recommended	by	the	authors	of	KING	(see	Table	1	in	their	publication16).		We	used	
IBS0	only	to	distinguish	parent-child	from	sibling	pairs,	who	have	the	same	expected	
kinship	coefficient.		Specifically,	we	called	any	pair	with	IBS0	<	0.0012	as	parent-
offspring.	

We	found	large	networks	of	related	individuals,	such	as	those	shown	in	Figure	3b,	
using	the	“cluster”	function	in	the	igraph	(v1.0.1)	package21	in	R.		It	should	be	noted	
that	the	size	of	these	networks	may	change	if	participants	withdraw	from	the	
resource.	
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Figure	S10	I	Kinship	coefficient	estimates	before	and	after	filtering	SNPs.	On	each	axis	are	the	kinship	
coefficients	of	pairs	of	samples	inferred	to	be	3rd	degree	relatives	or	closer	in	either	of	the	two	analyses	
using	KING.		Colours	indicate	the	number	of	pairs	that	fall	within	the	range	of	each	hexagonal	bin	(436,359	
pairs	in	total).	Most	of	the	pairs	that	changed	relationship	class	as	a	result	of	the	SNP	filtering	were	those	
that	shifted	from	“3rd	degree”	to	unrelated	(yellow/green	hexagons	in	the	bottom	left).	
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Kinship coefficients for pairs of UK Biobank participants
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B    Kinship coefficient estimation after applying SNP filters

Kinship coefficients for pairs of UK Biobank participants
without applying SNP filters
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A    Effect of recent admixture on kinship coefficient estimation before applying SNP filters

Figure	S11	|	The	effect	of	PC-based	SNP	filtering	on	kinship	coefficient	estimation.		Both	sub-figures	show	a	histogram	(on	the	left)	of	
kinship	coefficients	estimated	by	KING	using	a	3rd	degree	cut-off,	with	vertical	lines	placed	at	the	expected	coefficients	for	different	
degrees	of	relatedness.	The	box	plots	on	the	right	show	the	distribution	of	the	number	of	3rd	degree	relatives	inferred	for	each	sample	
(excluding	zero)	within	each	ethnic	group.	A)	Plots	based	on	kinship	coefficient	estimates	using	a	set	of	autosomal	SNPs	selected	for	
genotyping	quality	(see	Section	S	3.2).		In	the	histogram	(432,379	pairs)	the	excess	of	3rd	degree	pairs	is	evident,	and	the	boxplot	shows	
how	the	ethnic	groups	involving	mixed	ancestry	are	disproportionately	affected	(n=151,130	individuals).		The	accumulation	of	points	
around	~800	and	~200	relatives	occurs	because	there	are	two	sets	of	samples	in	which	almost	all	pairs	are	‘related’	to	each	other.	
Namely,	those	with	ethnic	backgrounds	originating	in	Africa+Europe	and	Asia+Europe.		B)	Plots	based	on	kinship	coefficient	estimates	
after	excluding	SNPs	informative	of	ancestry	based	on	PCA	(see	Section	S	3.7.1).		The	reduction	in	an	excess	of	3rd	degree	relatives	
among	mixed	ancestry	ethnic	groups	is	clear	from	the	box	plot.		The	histogram	shows	107,162	pairs,	and	the	boxplot	shows	147731	
individuals.			
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S	3.7.2 Details	of	kinship	validation	
We	validated	our	kinship	estimates	by	applying	a	different	kinship	coefficient	
estimator	based	on	allele	frequencies,	implemented	in	plink’s	“--genome”	command	
9.		We	used	the	same	set	of	LD-pruned	SNPs	as	with	the	KING	analysis,	and	the	
option	“--min”	to	apply	the	same	cut-off	for	3rd	degree	(	2	x	1/2(9/2)		=	0.08838835	).		
The	multiple	of	2	accounts	for	the	fact	that	plink	actually	estimates	the	IBD-sharing	
fraction	which	is,	by	definition,	twice	the	kinship	coefficient16.		In	order	to	avoid	
population	structure	effects	we	restricted	the	analysis	to	pairs	of	related	individuals	
(according	to	the	KING	analysis	detailed	above)	where	both	are	in	the	white	British	
ancestry	subset	(see	Section	S	3.4).		These	account	for	85%	of	all	the	inferred	pairs.	
	
Of	all	the	pairs	of	relatives	in	the	subset	99.9%	were	confirmed	as	3rd	degree	or	
closer	using	plink.		The	small	fraction	of	unconfirmed	pairs	all	had	a	kinship	
coefficient	(according	to	KING)	smaller	than	0.0486,	which	is	close	to	the	cut-off	
between	3rd	and	4th	degree.		Furthermore,	all	twins,	parent-offspring	and	sibling	
pairs	were	confirmed	as	having	the	same	degree	of	relatedness	in	the	plink	analysis.		
There	was	some	discrepancy	between	the	assignment	of	2nd	and	3rd	degree	relatives.		
A	number	(5%)	of	3rd	degree	pairs	from	KING	were	called	as	2nd	degree	pairs	in	the	
plink	analysis,	although	plink	also	inferred	a	much	larger	number	(107)	of	3rd	degree	
pairs	which	is	unrealistic	for	this	dataset.	

S	3.7.3 Details	of	distinguishing	identical	twins	from	duplicated	samples	

Without	considering	phenotype	information,	a	pair	of	duplicated	samples	in	the	
genotype	data	will	be	indistinguishable	from	genuine	identical	twins	because	they	
will	all	have	kinship	coefficient	0.5.		To	resolve	this,	UK	Biobank	staff	reviewed	
phenotype	details	of	a	list	of	894	candidate	pairs	of	samples	(all	those	with	kinship	
coefficient	close	to	0.5).		Where	evidence	was	found	that	the	participants	may	be	
twins,	triplets,	or	part	of	a	multiple	birth,	the	pair	was	marked	as	twins	(188	pairs).		
Any	remaining	pairs	were	marked	as	either	“Blind	Spike	Duplicates”	(588	pairs)	or	
“unintended”	duplicates	(118	pairs).		See	S1.4.1	for	details	of	"Blind	Spike	
Duplicates".		Unintended	duplicates	were	pairs	of	samples	that	had	not	been	
included	as	Blind	Spike	Duplicates,	and	were	associated	with	phenotype	information	
from	different	participants	who	were	not	identical	twins.		Genotype	call	concordance	
rates	for	the	588	Blind	Spike	Duplicate	pairs	are	shown	in	Figure	S13.	
		
A	total	of	1,364	samples	were	identified	as	duplicates,	some	duplicated	more	than	
once.		We	excluded	793	of	these	from	the	released	genotype	data.		That	is,	we	
excluded	all	samples	within	the	unintended	duplicate	pairs	because	for	these	
samples	the	correct	link	between	the	genotype	data	and	phenotype	information	
cannot	be	guaranteed;	and	we	kept	a	single	sample	from	each	of	the	Blind	Spike	
Duplicates	(the	one	with	the	highest	call	rate).		
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The	total	number	of	twins	reported	in	the	released	kinship	table	is	179,	not	188	
(Extended	Data	Table	5).		This	is	due	to	a	pair	of	confirmed	twins,	whose	samples	
were	also	duplicated	three	times	each,	making	9	pairs	of	‘twins’.		We	kept	data	for	
just	one	instance	of	this	pair.		One	further	pair	of	confirmed	twins	involved	a	sample	
that	was	part	of	the	977	that	were	excluded	from	the	kinship	table	due	to	quality	
issues	(see	Section	S	3.7.1).	

	

S	3.7.4 Details	of	finding	a	maximal	set	of	unrelated	individuals	

We	used	the	following	procedure	for	finding	a	maximal	set	of	unrelated	individuals	
among	a	set	of	quality-filtered	samples	(for	example,	for	PCA,	Section	S	3.3).		That	is,	
the	largest	possible	subset	of	unrelated	individuals,	and	for	which	there	are	many	
possible	solutions.	An	unrelated	individual	is	one	with	no	relative	3rd	degree	or	closer	
in	our	analysis.		We	first	pruned	the	full	pairwise	kinship	table	so	that	it	only	
contained	individuals	in	the	set	of	interest.		Using	the	igraph	(v1.0.1)	package21	in	R	
we	then	converted	the	table	into	a	graph	object,	where	each	vertex	is	an	individual,	
and	edges	exist	between	pairs	of	related	individuals.		Then,	for	each	‘family’	(i.e.	a	
network	of	nodes	joined	by	edges),	we	found	the	largest	subset	of	individuals	
(vertices)	such	that	there	is	no	relatedness	(edges)	between	them.		In	the	case	of	
trios,	for	example,	the	child	would	be	excluded,	leaving	the	two	unrelated	parents.		
We	used	an	algorithm	implemented	in	the	“largest_ivs”	function	in	igraph.		When	
there	was	a	choice	of	solutions	(e.g.	within	a	set	of	3	siblings),	one	solution	was	
chosen	at	random.	

S	3.7.5 Resolving	relationships	in	networks	of	2nd-degree	relatives	
Here	we	show	that	any	set	of	individuals	that	are	all	2nd-degree	relatives	of	each	
other	contains	at	most	one	individual	who	is	not	a	half-sibling	of	all	the	others.		Thus,	

Concordance rates for 588 pairs of Blind Spike Duplicates
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Figure	S12	|	Concordance	rates	for	Blind	Spike	Duplicates.		For	each	Blind	Spike	Duplicate	pair	
(two	genotyped	samples	from	the	same	individual)	we	calculated	the	fraction	of	markers	with	
the	same	genotype	call	in	both	samples,	excluding	any	markers	missing	in	one	or	both	samples.	
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the	network	of	11	2nd-degree	relatives	in	the	UK	Biobank	(Figure	3c)	contain	at	least	
10	half-siblings	with	a	shared	parent.	
	
We	first	assume	that	parents	of	individuals	are	unrelated,	and	that	pairs	of	2nd-
degree	relatives	are	either	half-siblings,	aunt(uncle)/niece(nephew),	or	
grandparent/grandchild.		Under	these	assumptions,	there	are	only	three	possible	
configurations	of	a	3-person	network	where	all	three	are	2nd-degree	relatives	of	each	
other,	as	illustrated	in	Figure	S14,	k=3.		Any	other	configuration	requires	that	at	least	
one	pair	is	not	a	2nd-degree	relative.		For	example,	if	one	pair	is	avuncular	(uncle	and	
nephew,	say),	and	the	third	person	is	an	aunt	of	the	nephew,	then	she	is	either	
unrelated	to	the	uncle,	or	she	is	his	full	sibling.		If	we	add	a	fourth	person	to	the	
network	and	apply	the	same	3-person	rules	as	before,	then	we	are	left	with	only	
three	possibilities	(Figure	S14,	k=4).		That	is,	there	is	at	most	one	individual	who	is	
not	a	half-sibling	of	all	the	others.		Note	that	all	three	can	be	formed	starting	from	
3A,	but	only	4B	can	be	formed	from	3B,	and	only	4C	can	be	formed	from	3C.	
	
Call	the	set	of	individuals	that	are	all	half-siblings	of	each	other	H	(blue	dots	in	Figure	
S14,	and	all	the	other	individuals	J	(black	dots	in	Figure	S14).		For	k=3,	it	is	true	that	
there	is	at	most	one	individual	who	is	either	an	uncle/aunt	or	grandparent	of	all	the	
others,	and	the	rest	are	half-siblings.		That	is,	size(J)	<=	1.		We	next	show	by	
induction,	that	this	must	be	true	for	any	k>2.	
	
Consider	a	network	of	k	individuals	all	related	2nd-degree	to	each	other,	where	
size(Jk)	=	1	or	size(Jk)	=	0.		If	we	add	an	additional	individual,	m,	who	is	related	2nd-
degree	to	all	k	individuals,	we	can	show	that	size(Jk+1)	is	still	at	most	1.		
	
For	the	case	where	size(Jk)	=	1:	
	
Consider	a	4-person	set	formed	by	any	half-sibling	pair	in	Hk,	the	single	individual	in	
Jk,	and	the	additional	individual	m.		The	only	allowable	configurations	are	shown	in	
4B	and	4C.		That	is,	those	where	individual	m	is	also	a	half-sibling	of	the	existing	pair	
in	Hk.		This	is	true	for	all	the	4-person	sets	as	defined	above,	so	m	must	be	in	the	set	
Hk+1,	and	thus	size(Jk+1)=1.	
	
For	the	case	where	size(Jk)	=	0:	
	
There	are	three	possible	configurations	for	the	3-person	set	formed	by	any	half-
sibling	pair	in	Hk,	and	the	individual	m	(shown	in	Figure	S14).	

• If	the	set	has	configuration	(3A),	then	any	4-person	set	involving	this	plus	
one	of	the	other	individuals	in	Hk	must	be	in	configuration	(4A).		Thus,	the	
individual	m	must	be	half-siblings	with	everyone	in	Hk,	so	size(Jk+1)=0.	

• If	the	set	has	configuration	(3B),	individual	m	must	be	the	aunt/uncle	(since	
the	other	two	are	in	Hk).		Then,	any	4-person	set	involving	this	plus	one	of	
the	other	individuals	in	Hk	must	be	in	configuration	(4B).		Thus,	individual	m	
is	an	aunt/uncle	of	everyone	in	Hk,	so	size(Jk+1)=1.	



36		

• If	the	set	has	configuration	is	(3C),	by	the	same	argument	as	above	(replace	
3B	and	4B	with	3C	and	4C)	individual	m	must	be	a	grandparent	of	everyone	
in	Hk,	so	size(Jk+1)=1.	

	
Thus,	size(Jk+1)<=1	in	all	cases.	
	

	
	 	

Figure	S14	|	All	possible	configurations	of	sets	of	relatives	that	are	all	related	2nd-degree,	for	set	sizes	3	
and	4.		Coloured	lines	distinguish	the	different	relationships	between	individuals	(dots).		Arrows	indicate	
the	direction	of	inheritance	for	grand-parent/grandchild	and	avuncular	relationships	as	shown	in	the	key.		
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S	3.7.6 Estimating	the	theoretical	expectation	of	the	number	of	related	pairs	in	the	
cohort	

We	estimated	the	theoretical	expected	number	of	sibling	or	cousin	pairs	in	a	simple	
random	sample	of	the	population	eligible	for	UK	Biobank.		To	do	this	we	derived	the	
following	equations	with	parameter	definitions	shown	in	Table	S3.		

	
We	derived	these	equations	based	on	the	following	assumptions:	

• Most	eligible	individuals	are	descendants	of	UK	citizens	so	we	can	apply	
historical	UK	fertility	rates.	

• The	vast	majority	of	3rd	degree	pairs	in	the	cohort	are	cousins	(as	opposed	to	
great-uncle/aunts;	or	connections	involving	half-sibs).		This	is	likely	to	be	true	
given	that	the	age-range	only	spans	about	one	human	generation.	

• The	sample	size	(n)	is	small	compared	to	the	population	size	(N)	so	that	
sampling	with	replacement	can	be	assumed.	

	
Several	factors	make	estimating	these	values	challenging.		Fertility	rates	of	mothers	
that	were	having	children	during	the	time	of	the	birth	years	of	this	cohort	(1938	-	
1968)	changed	dramatically	(Office	of	National	Statistics,	UK).		Therefore,	the	mean	
family	size	is	likely	to	depend	on	the	birth-year	of	the	mothers	of	individuals	in	the	
cohort.		Secondly,	the	age-distribution	of	women	bearing	children	also	changed	over	
this	time,	affecting	the	likely	birth-year	of	the	mothers.		Instead	of	modeling	these	
factors	directly,	we	simply	computed	a	maximum	and	minimum	expected	value,	
based	on	the	maximum	and	minimum	observed	fertility	rates	for	mothers	in	the	
time	of	the	birth	years	of	this	cohort.		The	estimates	also	depend	on	the	sampling	
fraction	(n/N),	which	is	different	for	different	age-groups	in	the	cohort	(people	aged	
60-70	are	over-represented,	and	people	aged	40-44	are	under-represented22).		To	
account	for	this	we	computed	the	estimate	separately	for	5-year	age-groups	and	
summed	the	results.		Table	S4	shows	the	expected	and	observed	numbers	of	pairs	in	
the	UK	Biobank,	using	the	parameters	shown	in	Table	S3.		There	are	about	2	times	as	
many	sibling	pairs,	and	between	1.2	and	2	times	as	many	cousin	pairs	as	
theoretically	predicted	under	simple	random	sampling.	
	
	 	

Expected	number	of	pairs	within	a	sample:	

	
	
Expected	number	of	sibling	pairs	in	sample:	
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Parameter	 Description	 Range(s)	 Source	

	
	

Total	population	size	eligible	
for	the	UK	Biobank	sample.	

Total:	
21,734,300	

2006	mid-year	population	
estimate	for	people	aged	40-69	
(Office	of	National	Statistics,	UK)	

	 Size	of	UK	Biobank	sample	
(and	successfully	genotyped).	

Total:	
488,410		

UK	Biobank	

	 Average	completed	family	size	
in	sampled	generation	
(includes	childless	mothers).		
Counts	expected	number	of	
children	per	aunt/uncle.	

[1.91,	2.42]	 Completed	cohort	fertility	for	
women	born	between	1920	and	
1953	(Office	of	National	
Statistics,	UK).			

	 Average	completed	family	size	
in	sampled	generation	
(excludes	childless	mothers).		
Counts	expected	number	of	
siblings.	

[2.301,	2.75]	 Completed	cohort	fertility	for	
women	born	between	1920	and	
1953	and	have	given	birth	to	at	
least	one	child	(Office	of	
National	Statistics,	UK).	

	 Average	completed	family	size	
in	previous	generation	
(excludes	childless	mothers).		
Counts	expected	number	of	
aunts/uncles.			

[2.301,	2.75]	 No	direct	data	is	available	on	
fertility	rates	of	women	born	
before	1920	so	assume	the	
range	is	similar	to								.	

Table	S3	|	Parameters	for	estimating	number	of	expected	sibling	or	cousin	pairs	in	UK	Biobank	
cohort.	

	

	

	
Expected	number	of	pairs	
(range*)	 Observed	number	of	pairs	

1st	degree	sibling	pairs		 9,530	–	11,110	 22,667	

3rd	degree	pairs	(cousins)	 36,390	–	53,790	 66,935	

Table	S4	|	Expected	and	observed	numbers	of	pairs	of	related	individuals	in	the	UK	Biobank	cohort.		
Expected	ranges	are	based	on	using	the	minimum	(and	maximum)	parameters	for	family	sizes	given	in	
Table	S3.	
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µ̂1 = [2.5, 2.75]
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S	4 Assessment	of	the	UK	Biobank	Array	for	
imputation	

The	UK	Biobank	Axiom	array	from	Affymetrix	was	specifically	designed	to	optimize	
imputation	performance	in	GWAS	studies3.	An	experiment	was	carried	out	to	assess	
the	imputation	performance	of	the	array,	stratified	by	allele	frequency,	and	to	
compare	performance	to	a	range	of	old	and	new	commercially	available	arrays.	In	
such	an	experiment	it	is	desirable	to	use	validation	data	on	an	independent	set	of	
samples.	Therefore	performance	was	assessed	using	high-coverage,	whole-genome	
sequence	data	made	publicly	available	by	Complete	Genomics	(CG)	
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130524_cgi_combi
ned_calls/).		Data	from	10	samples	from	the	European	ancestry	(CEU)	population	
were	used.	All	markers	with	a	call	rate	below	90%	were	filtered	out	in	order	to	only	
consider	very	reliable	sites	in	the	analysis.	Only	data	from	chromosome	20	were	
used.	
	
To	mimic	a	typical	imputation	analysis,	a	pseudo-GWAS	dataset	was	constructed	by	
extracting	the	CG	marker	genotypes	at	all	the	sites	included	on	a	given	array.	All	sites	
not	on	the	array	were	then	imputed	using	either	the	HRC	reference	panel	23	or	the	
UK10K	panel24.	We	used	both	these	panels	because	both	were	used	to	impute	the	
UK	Biobank	dataset.	This	experiment	was	repeated	for	10	different	genome-wide	
SNP	arrays	(i)	Applied	Biosystems	UK	Biobank	Axiom,	(ii)	Illumina	1M-Duo3_C,	(iii)	
Illumina	HumanOmni5-4v1	(iv)	Illumina	HumanCoreExome-12v1	(v)	Illumina	Global	
Screening	Array	(vi)	Illumina	HumanHap300_v2	(vii)	Illumina	HumanHap550_v3	(viii)	
Illumina	HumanOmni2.5-8v1	(ix)	Illumina	Multi-Ethnic	Global	Array	(x)	Affymetrix	
GenomeWideSNP_6. 
	
Markers	were	stratified	into	allele	frequency	bins	and	the	squared	correlation	(R2)	
was	calculated	between	the	allele	dosages	at	variants	in	each	bin	with	the	masked	
CG	genotypes.	Since	different	arrays	contain	different	numbers	of	variants	it	is	
important	to	make	sure	that	imputation	performance	is	measured	at	the	same	set	of	
variants	when	comparing	chips.	To	achieve	this,	both	imputed	and	array	variants	
were	included	in	the	R2	analysis,	so	that	the	comparison	measures	the	overall	
performance	of	each	array.	As	a	consequence,	an	array	with	more	variants	will	gain	
an	advantage,	as	it	is	reasonable	to	expect	that	directly	genotyping	a	variant	will	
yield	more	accurate	genotypes	than	imputation.	Figure	S15	shows	the	results	of	this	
analysis	for	the	(A)	HRC,	and	(B)	UK10K	reference	panels.	The	x-axis	is	non-reference	
allele	frequency	(%)	on	a	log	scale,	which	focuses	in	on	rarer	variants.	The	y-axis	is	
imputation	performance	(R2).		
	
The	UK	Biobank	Axiom	array	(pink	line)	compares	very	well	to	other	arrays.	
Specifically,	this	array	shows	very	similar	performance	to	the	Illumina	
HumanOmni2.5	array	(bright	green	line)	which	has	~3	times	the	number	of	SNPs.	It	
is	worth	noting	that	the	UK	Biobank	Axiom	array	is	slightly	better	that	the	Illumina	
Omni	2.5M	chip	in	the	1-5%	range.	This	is	a	likely	consequence	of	the	array	design	
process	focusing	in	part	on	this	frequency	range.		Another	notable	point	is	that	the	
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Illumina	Global	Screening	array	(orange	line)	seems	to	have	non-optimal	
performance	on	common	SNPs.	Above	5%	frequency	this	array	seems	to	perform	as	
well	as	the	Illumina	HumanHap300	array,	which	is	one	of	the	oldest	arrays	in	this	
comparison.	
	
The	overall	conclusion	of	this	analysis	is	that	the	UK	Biobank	Axiom	array	is	a	very	
good	array	from	which	to	carry	out	genotype	imputation.	The	caveat	is	that	this	
analysis	is	focused	on	samples	with	European	ancestry.	
	
 

 
 
Figure	S15	|	Comparison	of	imputation	performance	of	the	UK	Biobank	Axiom	array	and	several	
other	commercially	available	genotyping	arrays.	The	x-axis	of	each	plot	shows	non-reference	allele	
frequency	on	a	log-scale,	which	accentuates	low	allele	frequencies.		The	y-axis	shows	imputation	
performance	in	terms	of	R2.	
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S	5 Imputation	of	classical	HLA	alleles	

We	imputed	11	loci	in	the	MHC	corresponding	to	the	genes	HLA-A,	-B,	-C,	-DRB5,	-
DRB4,	-DRB3,	-DRB1,	-DQB1,	-DQA1,	-DPB1	and	-DPA1.		Imputation	models	were	
constructed	using	markers	genotyped	in	both	the	reference	and	UK	Biobank	datasets	
and	within	1	Mb	either	side	of	the	HLA	locus.		Because	the	extent	of	laboratory-
based	typing	differed	for	each	of	the	reference	cohorts,	we	created	separate	
reference	panels	for	each	locus	in	order	to	retain	the	maximal	number	of	markers.		
Specifically,	for	each	locus	we	included	only	the	individuals	which	had	laboratory-
derived	HLA	types	for	that	locus,	and	only	the	markers	that	were	polymorphic	and	
were	typed	in	at	least	98%	of	that	set	of	individuals	(Table	S6).		For	each	locus	and	
chromosome	we	reported	the	allele	with	the	highest	posterior	probability.		
	
Association	analysis	was	performed	with	a	set	of	disease	terms	derived	from	the	self-
reported	diagnosis	dataset	from	the	UK	Biobank,	ascertained	through	the	
completion	of	questionnaires	and	interviews	with	study	participants	(data	field	
20002	Non-cancer	illness	code,	self-reported).		We	used	11	disease	codes,	which	
relate	to	immune-mediated	diseases	with	known	HLA	associations	(Table	S9).		For	
each	disease,	locus	and	allele	we	assumed	an	additive	model	in	logistic	regression	
with	covariates	including	25	principal	components	(Section	S	3.3.2)	to	correct	for	
population	structure,	self-reported	sex,	and	genotyping	array.		Association	tests	
were	performed	in	the	R	programming	language25.		The	results	are	shown	in	Table	
S9.		For	the	fine-mapping	replication	analysis	(Table	1)	we	included	the	same	
covariates.	
	
Dataset	 Description	
CEU+58	 Dataset	composed	of	the	British	1958	Birth	Cohort,	HapMap	CEU	individuals,	and	

CEPH	CEU+	additional	individuals26	
GSK	 Dataset	provided	by	GlaxoSmithKline	(also	known	as	'HLA_RES')26	
YRI	 HapMap	YRI	individuals26	
1000G	 1000	Genomes	Project	dataset8,27	
T1DGC	 Type	1	Diabetes	Genetics	Consortium	dataset28	
KC	 African-American	individuals	provided	by	King's	College,	London,	UK	(unpublished).	
SW	 Swedish	individuals	provided	by	Karolinska	Institutet,	Sweden	(unpublished).	
PA	 Pan-Asian	dataset	made	available	by	Pillai	et	al	(2014)29.	

Table	S5	|	Reference	datasets	utilised	for	HLA	imputation	in	the	UK	Biobank	cohort.	
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HLA	locus	 Reference	datasets	merged	
Number	
of	SNPs	
used	

Number	of	
reference	
individuals	

Number	of	
reference	
Europeans	

Number	of	
reference	

Africans/African	
Americans	

Number	of	
reference	
Asians	

Number	of	
reference	
Latinos	

HLA-A	 CEU+58,GSK,YRI,1000G,T1DGC	 661	 8,085	 7,347	 208	 307	 223	
HLA-B	 CEU+58,GSK,YRI,1000G,T1DGC	 927	 9,120	 8,112	 236	 417	 355	
HLA-C	 CEU+58,GSK,YRI,1000G,T1DGC	 908	 7,732	 6,984	 212	 313	 223	
HLA-DRB1	 CEU+58,GSK,YRI,1000G,T1DGC	 626	 8,869	 7,896	 226	 403	 344	
HLA-DRB3	 GSK,KC,SW	 849	 880	 484	 345	 17	 34	
HLA-DRB4	 GSK,KC,SW	 849	 865	 467	 346	 20	 32	
HLA-DRB5	 GSK,KC,SW	 801	 808	 408	 346	 18	 36	
HLA-DQA1	 CEU+58,GSK,YRI,T1DGC,PA	 747	 6,242	 5,640	 27	 503	 72	
HLA-DQB1	 CEU+58,GSK,YRI,1000G,T1DGC	 623	 8,491	 7,676	 217	 335	 263	
HLA-DPA1	 T1DGC,PA,SW	 794	 6,067	 5,615	 0	 452	 0	
HLA-DPB1	 GSK,T1DGC,PA,SW	 691	 6,176	 5,687	 0	 463	 26	

Table	S6	|	The	number	of	SNPs	and	samples	used	for	each	HLA	locus	in	the	imputation	analysis.	
	
	

HLA	locus	 Europeans	
Africans/African	

American	 Asians	 Latinos	

HLA-A	 97.2	 94.4	 89.2	 90.5	
HLA-B	 94	 81.7	 86.3	 74.5	
HLA-C	 97.8	 92.8	 94.4	 94.1	
HLA-DRB1	 93.9	 87.9	 87.6	 82.4	
HLA-DRB3	 97.8	 96.5	 93.1	 94.7	
HLA-DRB4	 97.7	 98.4	 100	 100	
HLA-DRB5	 99.2	 99.3	 100	 100	
HLA-DQA1	 98.4	 94	 94.8	 81.6	
HLA-DQB1	 97.8	 87.6	 95.1	 92.5	
HLA-DPA1	 99.5	 -	 98.8	 -	
HLA-DPB1	 94.5	 -	 86.2	 88.5	
Table	S7	|	Estimate	of	four-digit	(two-field)	accuracy	(%)	of	HLA	imputation	with	a	posterior	
probability	call	threshold	of	0.	
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HLA	locus	 Europeans	
Africans/African	

American	 Asians	 Latinos	

HLA-A	 97.8/98.7	 95.8/97.6	 91.7/94.3	 91.4/97.3	

HLA-B	 96.5/95.5	 89.3/87.5	 92.4/88.7	 85.8/80.7	

HLA-C	 98.2/98.9	 94.7/95.4	 95.0/98.6	 95.9/98.0	

HLA-DRB1	 96.3/95.3	 90.8/92.8	 92.6/91.0	 89.9/85.9	

HLA-DRB3	 98.0/99.5	 97.3/97.7	 93.1/100.0	 96.4/96.5	

HLA-DRB4	 98.2/98.6	 98.8/98.4	 100.0/96.8	 100.0/100.0	
HLA-DRB5	 99.5/99.0	 99.6/99.6	 100.0/96.9	 100.0/100.0	
HLA-DQA1	 98.8/99.1	 97.9/94.0	 96.2/98.0	 82.9/97.4	

HLA-DQB1	 98.4/98.6	 90.6/94.3	 95.9/97.4	 93.1/97.0	

HLA-DPA1	 99.6/99.7	 -	 99.0/99.6	 -	

HLA-DPB1	 96.1/95.1	 -	 89.5/92.8	 88.2/98.1	
Table	S8	|	Estimate	of	four-digit	(two-field)	accuracy	(%)	of	HLA	imputation/Call	rate	(%)	with	a	
posterior	probability	call	threshold	of	0.7.	The	relevant	sample	sizes	are	given	in	Table	S6.	The	
accuracy	and	call	rate	estimates	were	obtained	via	five-fold	cross	validation	
	
	

Disease	
Top	Allele	in	

UKBB	

UKBB	
Allele	

frequency	
OR	(95%	C.I.)	 p-value	

Reported	most	
significant	allele	or	

haplotype	
Note	

Number	of	
cases	

Psoriasis	 HLA-C*06:02	 0.090	 3.61	(3.45	-	3.79)	 <1	×	10−600	 HLA-C*06:02	30	 Top	allele	identified	 4802	

Malabsorption/coeliac	
disease	 HLA-DQB1*02:01	 0.150	 5.83	(5.45	-	6.23)	 <1	×	10−600	 DR3-DQ2	haplotype	31	 HLA-DQB1*02:01	is	part	of	

the	DR3-DQ2	haplotype	 1799	

Ankylosing	spondylitis	 HLA-B*27:05	 0.040	 10.13	(9.20	-	11.14)	 <1	×	10−600	 HLA-B*27:05	32	 Top	allele	identified	 1183	

Rheumatoid	arthritis	 HLA-DQA1*03:01	 0.204	 1.77	(1.70	-	1.85)	 1.50	×	10-131	

HLA-DRB1*04:01	33	 HLA-DQA1*03:01	and	HLA-
DRB1*04:01	are	in	moderate	

LD	(r2	=	0.50).	HLA-
DRB1*04:01	was	the	second	

most	significant	allele	
observed	in	UK	Biobank	

4727	

Multiple	sclerosis	 HLA-DRB5*01:01	 0.145	 2.56	(2.36	-	2.77)	 4.00	×	10-105	 HLA-DRB1*15:01	34	 HLA-DRB5*01:01	is	in	LD	with	
HLA-DRB1*15:01	(r2	=	0.95)	

1503	

Asthma	 HLA-DQA1*03:01	 0.204	 1.17	(1.15	-	1.19)	 2.00	×	10-77	
HLA-DQ	35	 Individual	alleles	in	HLA-DQ	

not	fine-mapped	in	reviewed	
literature	

47860	

Ulcerative	colitis	 HLA-DRB1*01:03	 0.017	 3.13	(2.73	-	3.58)	 2.70	×	10-45	 HLA-DRB1*01:03	36	 Top	allele	identified	 2219	

Type	1	diabetes	 HLA-DQB1*03:02	 0.104	 3.26	(2.76	-	3.84)	 3.20	×	10-37	 HLA-DQB1*03:02	37		 Top	allele	identified	 363	

Crohn’s	disease	 HLA-DRB1*01:03	 0.017	 2.81	(2.32	-	3.40)	 4.80	×	10-20	 HLA-DRB1*01:03	36	 Top	allele	identified	 1255	

Sjögren's	
syndrome/Sicca	
syndrome	

HLA-B*08:01	 0.145	 1.98	(1.68	-	2.33)	 1.10	×	10-14	

HLA-DQB1*02:01	38		 HLA-DQB1*02:01	and	HLA-
B*08:01	are	in	moderate	LD		
(r2	=	0.50).	HLA-B*08:01	was	
the	third	most	significant	

allele	in	38		

387	

Systemic	lupus	
erythematosis		 HLA-DRB1*03:01	 0.149	 1.84	(1.58	-	2.14)	 8.80	×	10-14	 HLA-DRB1*03:01	39	 Top	allele	identified	 452	

Table	S9	|	Primary	HLA	associations	with	disease	in	the	self-reported	diagnosis	data	field	(20002)	of	
the	UK	Biobank	cohort.	(n=409,724).	Association	analysis	was	performed	with	logistic	regression	
assuming	an	additive	effect	of	the	HLA	allele.	P-values	were	calculated	with	the	likelihood	ratio	test	
compared	to	the	null	model	of	no	HLA	allele	effect.	
	
	



S	6 Details	of	genome-wide	association	tests	for	QC	

To	demonstrate	the	quality	of	the	directly	genotyped	and	imputed	data,	we	
conducted	a	genome-wide	association	scan	for	a	well-studied	human	trait:	standing	
height.		Large	cohorts	and	large-scale	meta-analyses	already	exist	for	this	trait,	thus	
providing	an	independent	comparison	set	for	our	scan.		
	
We	conducted	the	scan	using	the	directly	genotyped	and	imputed	data	in	the	form	
that	they	are	made	available	to	researchers,	but	with	a	subset	of	samples.		
Specifically,	we	only	included	samples	with	all	of	the	following	properties:		

• Imputation	was	carried	out	on	them.	
• In	the	white	British	ancestry	subset	(see	Section	S	3.4).	
• Inferred	sex	matches	self-reported	sex.	

	
From	this	group	we	selected	a	set	of	344,397	unrelated	individuals	(see	Section	S	
3.7.4).		For	standing	height,	a	further	1,076	individuals	were	excluded	due	to	missing	
values	for	the	phenotype,	leaving	a	total	of	343,321	for	association	testing.	
	
We	used	the	software	BOLT-LMM	(v2.2)40	to	look	for	evidence	of	statistical	
association	between	each	marker	and	standing	height.		We	report	association	
statistics	based	on	a	linear	mixed	model	with	the	following	covariates.	

• Array	(UK	BiLEVE	Axiom	Array	or	UK	Biobank	Axiom	Array).	
• Sex	(inferred).	
• Age	when	attended	UK	Biobank	assessment	centre.	
• Principal	components	1-20.	

	
The	principal	components	scores	were	computed	using	only	individuals	within	the	
white	British	ancestry	subset,	but	otherwise	with	the	same	method	as	described	in	
Section	S	3.3.2.		We	conducted	tests	using	the	genotype	and	imputed	data	files	
separately.	
	
Results	of	this	analysis,	and	a	comparison	to	an	independent	study	of	253,288	
individuals	of	European	ancestry	carried	out	by	the	Genetic	Investigation	of	
Anthropometric	Traits	Consortium	(GIANT)41,	are	discussed	in	the	main	text	(see	also	
Figure	4,	Figure	S16).		
	
We	also	analysed	a	second	phenotype,	“Intra-ocular	pressure”,	which	has	fewer	
previously-reported	regions	of	association	than	standing	height42.		Results	of	this	
analysis	are	shown	in	Figure	S16.	
	

S	6.1 Defining	regions	of	association	for	the	comparison	with	
GIANT	

We	first	define	a	region	0.125	centimorgans	(cM)	plus	25	Kb	each	side	of	the	marker	
with	the	smallest	p-value	in	GIANT,	using	the	HapMap	recombination	map.		We	keep	
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the	region	only	if	it	also	contains	a	marker	with	a	p-value	<	5x10-8	in	the	UK	Biobank	
imputed	data.		We	consider	the	marker	with	the	next	smallest	p-value	in	GIANT	that	
is	not	in	that	region,	define	a	new	region	around	it	using	the	same	criteria,	and	keep	
the	new	region	unless	it	overlaps	with	any	of	the	previously	accepted	regions	in	the	
sequence.		We	consider	the	marker	with	next	smallest	p-value	outside	any	
previously	considered	region,	and	so	on	until	there	are	no	more	genome-wide	
significant	markers	in	GIANT.		This	procedure	resulted	in	575	non-overlapping	
associated	regions.		There	were	725	regions	if	we	allowed	overlaps	and	ignored	the	
UK	Biobank	data.		Of	these,	57	were	not	genome-wide	significant	in	UK	Biobank	and	
a	further	93	were	excluded	due	to	overlaps.  
 
We	used	these	regions	for	the	credible	set	analysis	detailed	in	Methods	“Comparison	
of	GIANT	and	UK	Biobank	GWAS	results”	(see	also	Extended	Data	Figure	6).		To	
compute	marker-specific	Bayes	factors	in	favour	of	association	with	standing	height	
we	used	the	effect	sizes	and	standard	errors.		That	is,	the	reciprocal	of	equation	(4)	
in	43.	
	
	
	
	
		

Figure	S16	|	Comparison	of	p-values	for	UK	Biobank	and	GIANT	in	standing	height	GWAS.		Each	point	is	
a	marker	on	chromosome	2	that	was	included	in	both	UK	Biobank	imputed	data	(n=343,321	samples)	
and	GIANT	(2014)	(n=253,288).	UK	Biobank	p-values	we	calculated	using	a	linear	mixed	model.	We	
identified	markers	common	to	both	studies	by	matching	on	chromosome,	position,	and	the	two	alleles.	
The	red	line	shows	x=y.	
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S	7 Multiple	trait	GWAS	and	PheWAS	

To	facilitate	the	running	of	GWAS	for	multiple	continuous	traits	and	fast	phenome	
wide	association	studies	(PheWAS)	we	have	provided	a	new	tool	called	BGENIE	
https://jmarchini.org/bgenie/	that	is	built	upon	the	BGEN	library	
http://www.well.ox.ac.uk/~gav/bgen_format/	
		
	
BGENIE	is	designed	to	work	well	when	analysing	multiple	phenotypes.	The	program	
takes	bgen	files	as	input	and	avoids	repeated	decompression	and	conversion	of	
these	files	when	analysing	multiple	phenotypes.	In	contrast,	although	PLINK1.9	and	
PLINK2.0	can	carryout	GWAS	of	multiple	traits,	when	presented	with	bgen	files	they	
will	first	convert	the	bgen	files	to	temporary	files	in	the	bed	or	pgen	format	before	
running	the	GWAS	separately	on	those	temporary	files	for	each	phenotype,	which	
can	use	a	lot	of	disk	space.	Plink	2.0	reads	bgen	files	directly.	
	
We	assessed	the	performance	of	BGENIE,	PLINK1.9	and	PLINK2.0	on	bgen	files	on	
both	the	interim	release	(152,249	subjects)	and	the	full	release	(487,409	subjects)	
and	by		analysing	25,000	SNPs	from	a	single	chromosome.	We	created	simulated	
phenotype	files	with	P=1,	50,	500	phenotypes	to	explore	the	performance	as	the	
number	of	phenotypes	increases.	All	of	the	analysis	was	run	on	a	16	core	machine	
with	Xeon	E5-2690	2.90GHz	CPUs.	All	programs	were	run	using	8	threads.	The	results	
are	presented	in	Table	S10	and	shows	that	that	BGENIE	can	be	considerably	faster	
that	PLINK	1.9	in	all	settings	and	faster	than	PLINK	2.0	when	the	number	of	
phenotypes	is	large.	
	
	 Interim	release	152,249	subjects	 Full	UKB	release	487,409	subjects	
P	 PLINK	

v1.9b4.4	
PLINK	
v2.0a	

BGENIE	
v1.1	

PLINK	
v1.9b4.4	

PLINK	
v2.0a	

BGENIE	
v1.1	

1	 173s	 25s	 85s	 603s	 65s	 439s	
50	 8,600s	 317s	 165s	 24,206s	 1,397s	 752s	
500	 78,064s	 3,023s	 835s	 227,622s	 13,507s	 5,861s	
Table	S10	|	Run	time	comparison	of	PLINK	and	BGENIE.	Results	are	run	time	in	seconds	for	
processing	25,000	SNPs	for	different	numbers	of	phenotypes	(P).	
	
Not	all	of	the	computations	in	BGENIE	are	currently	carried	out	using	multiple	
threads	so	researchers	should	be	aware	of	how	scaling	works.	Table	S11	shows	the	
results	from	analyzing	a	single	phenotype	using	the	interim	release	dataset	with	
152,249	subjects	using	different	numbers	of	threads.	
	

	
	
	

Table	S11	|	Run	time	analysis	of	BGENIE	when	varying	the	number	of	threads	used.	
	
	
	

Threads	 1	 2	 4	 8	 10	 12	 14	
SNPs/s	 93	 116	 215	 283	 322	 355	 373	
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	BGEN	files	can	be	indexed	using	the	BGENIX	tool	
	
(https://bitbucket.org/gavinband/bgen/wiki/bgenix)		
	
This	facilitates	fast	access	of	individual	SNPs	and	regions	using	BGENIE	and	this	is	
useful	when	researchers	wish	to	investigate	a	single	SNP	or	region	for	association	
with	a	single	phenotype	or	for	carrying	out	PheWAS.	We	found	that	using	PLINK	2.0	
took	~2,500	seconds	to	read	and	analyze	a	single	SNP	from	the	interim	release	
(152,249	subjects)	for	analysis	of	500	phenotypes.	For	the	same	analysis	BGENIE	
took	~83	seconds.	
	
To	illustrate	this	type	of	analysis	we	carried	out	a	GWAS	of	brain	imaging	derived	
phenotypes	(IDPs)	using	the	interim	release	dataset.	We	identified	SNP	rs35430475	
as	potentially	associated	with	an	IDP	derived	from	the	diffusion	weighted	imaging	
which	measures	different	aspects	of	the	brain	white	matter	microarchitecture.	The	
specific	phenotype	was	the	intra-	cellular	volume	fraction	in	the	right	Cingulum	
hippocampus	and	was	measured	using	tract	based	spatial	statistics	(TBSS).	The	
PheWAS	for	this	SNP	with	all	951	IDPs	is	shown	in	Figure	S18,	and	suggests	that	this	
SNP	maybe	associated	with	various	phenotypes	related	to	white	matter	
microarchitecture.	
		
	
	

Figure	S18	|	Results	of	a	PheWAS	analysis	for	SNP	rs35430475	identified	as	interesting	from	a	
GWAS	of	a	brain	imaging	derived	phenotypes	(IDP)	44.	The	PheWAS	was	carried	out	using	951	IDPs	
measured	on	2,807	subjects.	IDPs	have	been	colour	coded	by	type	in	the	plot.	
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S	9 Appendix	

Genotyping	array	 Batch	 Batch	size	
Number	of	
processed	
plates	

Median	plate	
size	within	a	

batch	
Applied	
Biosystems™	UK	
BiLEVE	Axiom™	
Array	

UKBiLEVEAX_b1	 4536	 52	 90	
UKBiLEVEAX_b2	 4545	 53	 90	
UKBiLEVEAX_b3	 4520	 56	 89	
UKBiLEVEAX_b4	 4542	 52	 89	
UKBiLEVEAX_b5	 4524	 58	 88	
UKBiLEVEAX_b6	 4524	 60	 89	
UKBiLEVEAX_b7	 4524	 60	 88.5	
UKBiLEVEAX_b8	 4551	 53	 90	
UKBiLEVEAX_b9	 4530	 54	 89	
UKBiLEVEAX_b10	 4559	 58	 88	
UKBiLEVEAX_b11	 4595	 71	 86	

Applied	
Biosystems™	UK	
Biobank	Axiom™	
Array	

Batch_b001	 4683	 52	 92	

Batch_b002	 4646	 74	 68.5	

Batch_b003	 4642	 83	 59	

Batch_b004	 4642	 91	 53	

Batch_b005	 4655	 84	 59.5	

Batch_b006	 4675	 64	 78.5	

Batch_b007	 4670	 74	 67	

Batch_b008	 4743	 186	 19	

Batch_b009	 4679	 73	 82	

Batch_b010	 4691	 85	 58	

Batch_b011	 4692	 96	 63.5	

Batch_b012	 4686	 83	 86	

Batch_b013	 4679	 56	 84	

Batch_b014	 4689	 201	 10	

Batch_b015	 4677	 465	 4	

Batch_b016	 4552	 171	 7	

Batch_b017	 4526	 132	 8	

Batch_b018	 4578	 108	 32.5	

Batch_b019	 4573	 129	 11	

Batch_b020	 4611	 86	 68.5	

Batch_b021	 4548	 134	 9	

Batch_b022	 4695	 79	 84	

Batch_b023	 4660	 97	 53	

Batch_b024	 4650	 112	 19.5	

Batch_b025	 4664	 88	 72.5	

Batch_b026	 4662	 91	 64	

Batch_b027	 4652	 50	 93.5	

Batch_b028	 4659	 74	 89	
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Genotyping	array	 Batch	 Batch	size	
Number	of	
processed	
plates	

Median	plate	
size	within	a	

batch	
Batch_b029	 4658	 51	 93	

Batch_b030	 4650	 58	 92.5	

Batch_b031	 4659	 54	 92	

Batch_b032	 4690	 72	 88	

Batch_b033	 4667	 50	 93.5	

Batch_b034	 4628	 50	 93	

Batch_b035	 4631	 50	 93	

Batch_b036	 4658	 50	 93.5	

Batch_b037	 4651	 50	 94	

Batch_b038	 4638	 79	 91	

Batch_b039	 4602	 74	 91.5	

Batch_b040	 4665	 50	 94	

Batch_b041	 4622	 61	 80	

Batch_b042	 4643	 50	 93	

Batch_b043	 4648	 62	 89.5	

Batch_b044	 4677	 51	 93	

Batch_b045	 4661	 53	 93	

Batch_b046	 4656	 70	 90	

Batch_b047	 4642	 84	 74	

Batch_b048	 4643	 91	 70	

Batch_b049	 4635	 64	 90	

Batch_b050	 4633	 59	 91	

Batch_b051	 4631	 64	 92	

Batch_b052	 4586	 136	 7.5	

Batch_b053	 4613	 100	 40.5	

Batch_b054	 4608	 80	 87.5	

Batch_b055	 4626	 70	 92	

Batch_b056	 4615	 69	 92	

Batch_b057	 4617	 54	 93	

Batch_b058	 4652	 58	 93	

Batch_b059	 4652	 52	 93	

Batch_b060	 4610	 55	 92	

Batch_b061	 4616	 57	 92	

Batch_b062	 4619	 67	 91	

Batch_b063	 4625	 63	 91		

Batch_b064	 4627	 84	 86	

Batch_b065	 4646	 55	 93	

Batch_b066	 4630	 55	 92	

Batch_b067	 4622	 59	 92	

Batch_b068	 4641	 60	 90	

Batch_b069	 4634	 64	 91	
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Genotyping	array	 Batch	 Batch	size	
Number	of	
processed	
plates	

Median	plate	
size	within	a	

batch	
Batch_b070	 4657	 56	 92.5	

Batch_b071	 4610	 52	 92	

Batch_b072	 4618	 56	 92	

Batch_b073	 4640	 64	 92	

Batch_b074	 4641	 54	 91	

Batch_b075	 4644	 59	 92	

Batch_b076	 4632	 59	 90	

Batch_b077	 4643	 53	 91	

Batch_b078	 4638	 58	 90	

Batch_b079	 4647	 61	 91	

Batch_b080	 4660	 60	 86	

Batch_b081	 4636	 64	 85	

Batch_b082	 4647	 64	 84	

Batch_b083	 4629	 68	 84	

Batch_b084	 4664	 65	 82	

Batch_b085	 4649	 66	 84.5	

Batch_b086	 4651	 69	 87	

Batch_b087	 4660	 61	 88	

Batch_b088	 4664	 69	 88	

Batch_b089	 4647	 71	 88	

Batch_b090	 4658	 60	 90	

Batch_b091	 4626	 66	 86.5	

Batch_b092	 4663	 58	 92	

Batch_b093	 4626	 70	 87.5	

Batch_b094	 2203	 59	 10	

Batch_b095	 4468	 258	 1	
	 All	batches	 488377	 5625	 84	
Table	S12	|	Number	of	participants	genotyped	within	each	batch.		Intensities	for	each	marker	were	
measured	on	96-well	plates	in	groups	of	94	UK	Biobank	samples	and	two	control	samples.		The	
intensity	data	for	multiple	plates	were	combined	to	form	batches	of	~4,700	UK	Biobank	samples,	and	
genotypes	were	called	in	silico	within	each	batch.		In	some	cases	samples	from	the	same	plate	were	
genotyped	in	different	batches,	so	the	total	number	of	unique	plates	is	smaller	than	the	sum	of	
column	3,	and	the	median	plate	size	within	each	batch	is	often	less	than	94.		Batches	labelled	with	the	
prefix	“UKBiLEVEAX”	contain	only	samples	typed	using	the	UK	BiLEVE	Axiom	array,	and	those	with	the	
prefix	“Batch”	contain	only	samples	typed	using	the	UK	Biobank	Axiom	array.	
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Chromosome	
Start	position	

(bp)	
End	position	

(bp)	
1	 48000000	 52000000	
2	 86000000	 100500000	
2	 134500000	 138000000	
2	 183000000	 190000000	
3	 47500000	 50000000	
3	 83500000	 87000000	
3	 89000000	 97500000	
5	 44000000	 51500000	
5	 98000000	 100500000	
5	 129000000	 132000000	
5	 135500000	 138500000	
6	 25000000	 33500000	
6	 57000000	 64000000	
6	 140000000	 142500000	
7	 55000000	 66000000	
8	 8000000	 12000000	
8	 43000000	 50000000	
10	 37000000	 43000000	
11	 45000000	 57000000	
11	 87500000	 90500000	
12	 33000000	 40000000	
12	 109500000	 112000000	
20	 32000000	 34500000	
Table	S13	|	Regions	of	long-range	LD	excluded	from	PCA.		These	regions	are	based	on	those	reported	
in	45.		Positions	are	in	coordinates	of	human	genome	build	GRCh37.	
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