Supplementary Figures

maltered	A1		^A9	All Al3	A17 المليلانين السب	A21	A25	A29	A33	A37	A41	Luburten A45
	B1	B5	B9	B13	B17	B21	B25	B29	B33	B37	B41	B45
	C1	CS	Julu 0	Luddle C13	C17	C21	C25	C29	C33	June C37	July C41	Lulu C45
	A1	A5	^A	Allen Ala	A17. المسللساس	A21	A25	A29	Juli A33	A37	A41 مىلىدىد	Later A45
	B1	B5	B9	aldele B13	B17	B21	B25	B29	B33	B37	B41	July B45
ll	C1	C5	S mhu co	Link Cla	C17	C21	C25	LUM	C33	land C37	Lunder C41	Lulu C45
سالماس	A2	٨٥		A14	A18	4 1 1 1 1 1 1 1 1 1 1	A26	A30	Mullin A34	July March A38	Juli A42	A46
	B2	B6	B10	B14	B18	MALL B22	B26	B30	B34 B34	B38	B42	Jul B46
melle	C2	C6		C14	C18	JAA . C22	C26	C30	Mullin C34	C38	C42	C46
ulle	A2	A6	A10	A14	A18	M. A22	A26	A30	Mum A34	438 A38	A42	A46
ull	B2	B6	B10	B14	B18	B22	B26	B30	B34	B38	B42	B46
Julilier	C2	C6	C10	C14	C18	Julia La C22	C26	C30	ulu Mun C34	C38	C42	C46
	A3	^7		A15	A19	A23		A31	A35	Mr. A39	Julmile A43	A47
	B3	B7	B11	B15	B19	B23	B27	B31	B35	B39	Judian B43	B47
_uld_k_	C3	<u>97</u>	C11	C15	C19	C23	C27	C31	C35	C39	C43	La de C47
ساللىب	A3	A7	A11	A15	A19	A23	A27	A31	A35	A39	A43	A47
ulilie	B3	B7	B11	B15	B19	B23	B27	B31	B35	B39	B43	B47
	C3	C7	L	C15	C19	C23	C27	C31	C35	C39	C43	C47
سلالب	A4			A16	A20	M. A24	Juli A28	A32	A36	A40	A44	ALW A48
	B4		B12	B16	B20	B24	B28	B32	B36	B40	B44	B48
ulla	C4	C8	C12	C16	C20	C24	C28	C32	Mr. A C36	C40	C44	C48
ulle	A4			A16	A20	Mulu A24	A28	A32	A36	A40	A44	A48
	B4	B8	B12	B16	B20	B24	B28	B32	B36	B40	B44	B48
	C4	Ca	G12	C16	C20	C24	C28	C22	A4 1 C26	C40	C44	C49

replicate	bacterium	strain	replicate	bacterium	strain
A1 B1 C1	Streptoccocus thermophilus	S0	A25 B25 C25	Lactobacillus amylovorus	DSM20531T
A2 B2 C2	Salmonella enterica subsp. enterica serovar Typhimurium	u292	A26 B26 C26	Lactobacillus acidophilus	LMG 9433T, T30
A3 B3 C3	Salmonella enterica subsp. enterica serovar Typhimurium	4//74	A27 B27 C27	Escherichia coli	DSM1058
A4 B4 C4	Salmonella enterica subsp. enterica serovar Typhimurium	C5	A28 B28 C28	Bifidobacterium pseudocatenulatum	LMG10505
A5 B5 C5	Salmonella enterica subsp. enterica serovar Oranienburg	0112F	A29 B29 C29	Bifidobacterium longum subsp. infantis	DSM20090
A6 B6 C6	Pediococcus pentosaceus	DSM20336T	A30 B30 C30	Bifidobacterium longum	LMG13196
A7 B7 C7	Pediococcus claussenii	DSM14800T	A31 B31 C31	Bifidobacterium catenulatum	LMG11043
A8 B8 C8	Listeria monocytogenes	EGDe	A32 B32 C32	Bifidobacterium breve	DSM20091
A9 B9 C9	Listeria monocytogenes	L028	A33 B33 C33	Bifidobacterium bifidum	LMG11041
A10 B10 C10	Listeria monocytogenes	N53-1	A34 B34 C34	Bifidobacterium animalis	DSM10140
A11 B11 C11	Listeria monocytogenes	12067	A35 B35 C35	Bifidobacterium adolescentis	DSM20083
A12 B12 C12	Listeria monocytogenes	42222/180	A36 B36 C36	Bacteroides thetaiotaomicron	DSM2079
A13 B13 C13	Leuconostoc mesenteroides mesenteroides	DSM20343T	A37 B37 C37	Bacteroides fragilis	DSM2151
A14 B14 C14	Lactococcus lactis subsp. cremoris	MG1363	A38 B38 C38	Bacteriodes vulgatus	LMG17263
A15 B15 C15	Lactococcus lactis subsp. cremoris	Wg2	A39 B39 C39	Bacteriodes thethaiotaomicron	DSM2079
A16 B16 C16	Lactobacillus sakei subsp. sakei	DSM20017T	A40 B40 C40	Bacteriodes intestinalis	DSM17393
A17 B17 C17	Lactobacillus rhamnosus	DSM20021T	A41 B41 C41	Bacteriodes finegoldii	DSM17565
A18 B18 C18	Lactobacillus plantarum	ATCC14917T, LLFH15	A42 B42 C42	Bacteriodes eggerthii	DSM20697
A19 B19 C19	Lactobacillus plantarum	DSM20174T	A43 B43 C43	Bacteriodes cellulosilyticus	DSM14838
A20 B20 C20	Lactobacillus paracasei subsp. paracasei	NCFB151T, LLFH13	A44 B44 C44	Bacillus subtilis	own
A21 B21 C21	Lactobacillus fermentum	DSM20052T	A45 B45 C45	Bacillus lichniformis	CMG19409
A22 B22 C22	Lactobacillus paracasei	own	A46 B46 C46	Bacillus cereus	15
A23 B23 C23	Lactobacillus casei	DSM20011T, LLFH4	A47 B47 C47	Bacillus cereus	38 (GR177)
A24 B24 C24	Lactobacillus brevis	GGUC30670T, LLFH24	A48 B48 C48	Akkermansia muciniphila	DSMZ 22959

Supplementary Figure 1. LCp generated for 48 bacterial isolates using Oxford Nanopore Technology based rep-PCR amplicon sequencing (ON-rep-seq). The black, blue and green profiles indicate data collected during run A, B and C respectively for which each technical replicate received different barcode. All isolates were analysed in duplicates within each run. The list of bacterial taxa matching given LCp is given in the table.

Supplementary Figure 2. Row/Column clustering according to "Ward.D2" hierarchical clustering on D_KLsym distance of all 48 isolates. Heatmap showing similarity (exp(-ln(b)*D_KLsym), b=10), and clustering according to cutoff=0.09. The detailed analysis using varying cutoff value (no single cutoff achieves exact separation between all and only different LCp, see Supplementary Figure 4 C, D ROC curves) and LCp visual inspection allowed for accurate differentiation between all except two pairs of bacterial strains described thoroughly in the results section (see Figure 3 and Supplementary figure 2 for details). Technical replicates from the third run "repC" were removed from the analysis due to higher short/long reads imbalance.

Supplementary Figure 3

A) Top panel presents distribution of lengths of reads obtained in 3 separate consecutive sequencing runs A, B, C on the same flow cell. Third run C obtained less short reads, some differences are also visible in second run B, compared to the first run A. Bottom 3 panels show LCps of Bacillus_cereus_38 (GR177) strain obtained from runs A,B,C.

B) Regression analysis of mean read length from LCp vs read count in LCp, data shown in separate panels for each strain replicates. Red dashed line is regression line obtained in all samples analysis, blue lines are regression lines for each strain only. Green markers mark runs A, C for Bacillus_cereus_38(GR177) (panels 2 and 4 in A).

Supplementary Figure 4. Peaks profiles comparison

A-F) Receiver operating characteristic (ROC) curves of pairwise "same/not-the-same" strain discrimination in various cutoffs c (diff. step=0.005), for various subsets of data: "all", "wo.rep*C" dataset without the third sequencing run "C" on twice used flow cells, "50%.wo.rep*C" subsample half the size of original, "20%.wo.rep*C" five subsamples 1/20th of reads, "10%.wo.rep*C" seven subsamples 1/10th of reads and "2%.wo.rep*C" 1/50th of reads. On x-axis specificity, the percentage of correctly identified "not-the-same strain" pairs out of all such pairs (36096 for wo.rep*C), on y-axis sensitivity, the percentage of correctly identified "same strain" pairs, out of all such pairs (768 for wo.rep*C). A) Clustering according to sample strain label, viewed as a whole method performance, in contrast to B. B) Clustering according to sample strain similarity derived from visual inspection of profiles, thus these curves correspond more to D KLsym-based profile comparison performance, than to the whole method. Values on the plot: c=0.09 (sp 0.9947, se 0.9583), c=0.014 (sp 0.9982, se 0.8490). All cutoffs "c" values marked for "wo.rep*C". C) Clustering according to sample strain label using 5 iterations of 10% subsets. D) Clustering according to sample strain similarity derived from visual inspection of profiles using 5 iterations of 20% subsets. The

analysis shows that 20% subsets perform similarly to the whole dataset what indicates the theoretical throughput of ON-rep-seq to range from 960 (for ~1.5M reads) to 1440 (for ~2.5M reads) isolates per flow cell. The analysis on panels E), F) shows that 20% subsets perform similarly to the whole dataset, what indicates the theoretical throughput of ON-rep-seq to range from 960 (for ~1.5M reads) to 1440 (for ~2.5M reads) isolates per flow cell. G) mean jitter of all profiles dependence on smoothing moving average "ma" window size. Jitter was defined as an average number of times when profile's discrete derivative changes sign (change to 0 was counted as 0.5). H) discrete derivative (diff lag=1) of the (top) mean jitter. Sizes of ma.window > 20 change mean jitter slowly and steadily suggestive of stabilization (noise decoupling) of information content in higher smoothing window results.

Supplementary Tables

Salmonella enterica subsp. enterica serovar Typhimurium and Listeria monocytogenes								
Strain	Gene	Allele type	Strain	Gene	Allele type			
	aroC	10		abcZ	6			
	dnaN	7		bglA	5			
	hemD	12	Listeria	cat	6			
Salmonella enterica	hisD	9	monocytogenes	dapE	20			
U292	purE	5	EDGe	dat	176			
	sucA	9		ldh	4			
	thrA	2		lhk	1			
	aroC	10		abcZ	6			
aroC 10 dnaN 7 hemD 12 Salmonella enterica hisD 9 Description		bglA	5					
Salmanalla antoriaa	hemD 12	Listaria	cat	6				
	hisD	9	LISIEITA	dapE	51			
05	purE	5	L 028	dat	176			
	sucA	9	L020	ldh	4			
	thrA	2		lhk	1			
	aroC	10						
	dnaN	7						
	hemD	12						
	hisD	9						
4//4	purE	5						
	sucA	9						
	thrA	2						

Supplementary Table 1. Identification of MLST genes alleles among selected strains of

Supplementary Table 2. Details regarding benchmarking of two R9.4.1 flow cells.

	Flow cell 1				Flow cell 2		
Run ID	Α	В	С	D	Α	В	С
Run Time (h)	4	4	4	4	4	4	12
Break between the next run (day)	1	4	3	7	1	1	1
Active pores at start	1347	1324	1098	925	1034	779	615
Voltage at start (mV)	-180	-180	-190	-195	-180	-180	-190
Initial sequences in strand	~300	~200	~150	~50	~200	~120	~70
Total number of high quality reads collected	9.4×10 ⁵	7.9×10 ⁵	5.7×10 ⁵	2.2×10⁵	10.5×10⁵	5.7×10 ⁵	8.7×10 ⁵
Library concentration loaded in 12 µl (ng/ µl)	2.5	1.8	3.0	1.6	3.2	2.1	2.4

Both flow cells generated in total similar amount of data, although flow cell 1 was in much better condition and had more active pores at start what allowed to perform four consecutive runs. Flow cell 2 had lower number of active pores at arrival and seemed to deteriorate faster therefore only three runs were conducted. Last run was elongated to 12 h in order to collect maximum amount of data from declining flow cell. The data from the first benchmarked flow cell were used solely to test the optimal concentration of DNA needed and viability of the flow cell while data from the second flow cell are presented herein