
Online Appendix

Appendix A.

Estimating GS and λ

A.1. Adding and Removing Edges

To estimate GS , it is helpful to have a recipe for generating compatible subgraphs. Let
C(GR,d) denote the set of all recruitment-induced subgraphs that are compatible with
the observed data GR and d under Definition 4. To obtain a new compatible subgraph
ĜS from a current compatible subgraph GS = (VS, ES), we randomly choose two ver-
tices i and j, where i 6= j. If {i, j} /∈ ES , ui > 0, and uj > 0, then we propose
to add the edge {i, j} to ES . Alternatively, if {i, j} ∈ ES and {i, j} /∈ ER, then we
propose to remove the edge {i, j} from ES . If neither of these conditions hold, we pick
another pair {i, j} and try again. This procedure is described formally in the following
algorithm.

1: loop
2: Choose two vertices i and j at random, with i < j.
3: if {i, j} /∈ ES and ui ≥ 1 and uj ≥ 1 then
4: let E+

S = {i, j} ∪ ES and G+
S = (VS, E

+
S )

5: let u+
k = uk for all k 6= i, j and u+

i = ui − 1, u+
j = uj − 1.

6: return G+
S and u+

7: else if {i, j} ∈ ES and {i, j} /∈ ER then
8: let E−S = ES \ {i, j} and G−S = (VS, E

−
S )

9: u−i = ui + 1 and u−j = uj + 1
10: return G−S and u−

11: end if
12: end loop
This procedure chooses a vertex pair {i, j} uniformly at random from all pairs whose
change (addition or removal of the edge between i and j) would result in a compatible
graph. The space of compatible subgraphs C(GR,d) is connected via proposals of this
type. To see why this is so, consider two compatible graphs G1

S and G2
S in C(GR,d). Let

Gr
R = (VS, E

r
R) be the undirected recruitment graph obtained by making each edge in the

directed recruitment graphGR reciprocal. By definition,Gr
R is a subgraph of every graph in
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C(GR,d). From G1
S , we can obtain Gr

R by successively removing non recruitment edges,
one at a time and each of these steps occurs with positive probability. From Gr

R we can
obtain G2

S by adding non recruitment edges, one at a time. Since we can reach G2
S from G1

S

in a similar manner, C(GR,d) is connected via the given proposal algorithm.

A.2. Monte Carlo Sampling

To decide whether to accept a proposal G∗S as a sample from the conditional distribution
p(GS|λ,Y), we form the Metropolis-Hastings acceptance probability

ρ = min

{
1,
L(w|G∗S, λ)

L(w|GS, λ)
· Pr(GS|G∗S)

Pr(G∗S|GS)

}
, (A.1)

and we accept the proposed graph G∗S with probability ρ. Section A.3 below gives a simple
and computationally efficient expression for the likelihood ratio, and Section A.3.1 gives a
derivation of the proposal ratio Pr(GS|G∗S)/Pr(G∗S|GS).

To sample λ conditional on GS , we employ a Metropolis-Hastings step based on an
approximation to the conditional distribution of λ. From the likelihood, we can easily find
the maximum likelihood estimator of λ,

λ̂ =
n− |M |
s′w

(A.2)

with asymptotic variance σ2 = λ2/(n− |M |). Let

g(λ|GS) =
1√
2πσ

exp[−(λ− λ̂)2/σ2] (A.3)

be a normal approximation to the conditional distribution of λ given GS . Suppose λ is the
current value and we propose a new value λ∗ from g(λ|GS). We accept the proposal with
probability

ρ = min
{
L(w|GS, λ

∗) π(λ∗)

L(w|GS, λ) π(λ)
· g(λ|GS)

g(λ∗|GS)

}
. (A.4)

A.3. Computing the Likelihood Ratio

The ratio of likelihoods for two different compatible subgraphs can be computed very effi-
ciently. Suppose we have generated a new subgraph by either adding or removing an edge
between vertices i and j, where ti < tj . Since i was recruited before j, we have ti < tj .
Let t∗i be the minimum of the time that vertex i used its last coupon and tn, the end of the
study. Let s = lt(AC)′1 + C′u where A is the adjacency matrix of a particular realization
of GS and let s+ be the susceptible vector after addition of an edge between i and j, where
i < j. Likewise let s− be the susceptible vector after removal of an edge between i and j.
The following result will be useful in computing the likelihood ratio in a simple way.
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Lemma 1. Given s, i, and j, where ti < tj , the vectors s+ and s− are given by

s+k = sk − 1{k > j}Cik − Cjk (A.5)

s−k = sk + 1{k > j}Cik + Cjk (A.6)

for k = 1, . . . , n.

A proof of Lemma 1 is given in Section D.5. The following Proposition establishes likeli-
hood ratios for addition and removal of edges in GS .

Proposition 1. Suppose GS = (VS, ES) has {i, j} /∈ ES , ui ≥ 1, and uj ≥ 1. For a
proposal G+

S = (VS, E
+
S ) identical to GS except that {i, j} ∈ E+

S , the likelihood ratio is

L(w|G+
S , λ)

L(w|GS, λ)
=

(∏
k/∈M

s+k
sk

)
eλ(t

∗
i−min{tj ,t∗i }+t∗j−tj). (A.7)

Now suppose GS = (VS, ES) has {i, j} ∈ ES and {i, j} /∈ ER. For a proposal G−S =
(VS, E

−
S ) identical to GS except that {i, j} /∈ E−S , the likelihood ratio is

L(w|G−S , λ)

L(w|GS, λ)
=

(∏
k/∈M

s−k
sk

)
e−λ(t

∗
i−min{tj ,t∗i }+t∗j−tj). (A.8)

A proof of Proposition 1 is given in Section D.6. Note that the change in susceptible edge
time, t∗i −min{tj, t∗i } + t∗j − tj , does not depend on any unknown parameters and can be
computed in advance for every i and j > i. Likewise, sk can be updated at each step using
(A.5) and (A.6) without computing s = lt(AC)′1 + C′u explicitly.

A.3.1 Proposal Ratio

To define the subgraph proposal ratio in (A.1), consider a given subgraph GS . The number
of possible vertex pairs between which an edge can be added is

Add(GS) =
n−1∑
i=1

n∑
j=i+1

1{{i, j} /∈ ES and ui ≥ 1 and uj ≥ 1}. (A.9)

Likewise, for a proposed removal of an edge, the number of possible vertex pairs is

Remove(GS) =
n−1∑
i=1

n∑
j=i+1

1{{i, j} ∈ ES and {i, j} /∈ ER}. (A.10)

Then the proposal probability for obtaining G∗S from GS is

Pr(G∗S|GS) = 1/(Add(GS) + Remove(GS)), (A.11)

and the ratio of backward and forward proposal probabilities for an addition is

Pr(GS|G∗S)

Pr(G∗S|GS)
=

1/(Add(G∗S) + Remove(G∗S))

1/(Add(GS) + Remove(GS))
=

Add(GS) + Remove(GS)

Add(G∗S) + Remove(G∗S)
. (A.12)
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A.4. Maximum Likelihood and Maximum A Posteriori Estimation

We have described a Markov chain Monte Carlo algorithm for drawing from the posterior
distribution ofGS . It is often faster to find a single “most likely” pair (GS, λ) by a stochastic
optimization algorithm known as “simulated annealing.” To illustrate, let γ > 0 be a scale
factor and let

Lγ(w|GS, λ) = exp

[
−

(
λs′w +

∑
k/∈M

log(λsk)

)
/γ

]
(A.13)

Define a sequence γ1, γ2, . . . such that limi→∞ γi = 0. At each iteration i, we propose G∗S
and compute (A.1) with Lγi(w|G∗S, λ) to accept the proposal with probability ρ. Once GS

is sampled, the most likely λ is obtained by (A.2). The joint sequence of sampled subgraphs
and λ’s tends toward the maximum likelihood estimates very rapidly.

A simple illustrative example of MAP estimation with λ = 1, n = 50, |M | = 1 seed,
and three coupons per subject is shown in Figure A.1. The prior distribution of λ has mean
1 and SD 0.1. The population network is derived from the Project 90 network data. The top
row shows the true subgraph GS with the recruitment graph GR overlaid (arrows indicate
recruitment edges), adjacency matrices of GR, GS , and an estimate ĜS . The bottom row
shows the number of edges |ÊS| in the estimated subgraph at each iteration, the trace of λ,
log posterior values, and accuracy.

Appendix B.

B.1. Validation Using Simulations

We analyze the performance of reconstruction on simulated Erdős-Rényi networks and a
real-world network derived from a network study heterosexuals at high risk of contracting
HIV in Colorado Springs, CO, from 1988-1990 called Project 90 [Woodhouse et al., 1994,
Klovdahl et al., 1994, Rothenberg et al., 1995, Potterat et al., 2004]. We also evaluate
reconstruction under mis-specification of the waiting time model, in which Assumption 5
is violated.

Let Â be the adjacency matrix of the estimated subgraph ĜS and let A be the adjacency
matrix of the true subgraphGS . We measure the accuracy, true positive rate (TPR), and true
negative rate (TNR) of each estimated subgraph. These measures are defined as follows:

Accuracy(Â,A) =
∑
i<j

1{Âij = Aij}

/(
n

2

)

TPR(Â,A) =
∑
i<j

1{Âij = 1 and Aij = 1}

/∑
i<j

1{Âij = 1}

TNR(Â,A) =
∑
i<j

1{Âij = 0 and Aij = 0}

/∑
i<j

1{Âij = 0} .

(B.1)
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In every simulation, we generate an RDS sample of n = 500 subjects, starting from
|M | = 10 seeds with three coupons per recruit. Since the choice of time scale is arbitrary,
we set λ = 1 for every simulation. We first evaluate reconstruction accuracy by simulating
RDS on random undirected networks G = (V,E) generated according to the Erdős-Rényi
random graph model with with total population size N = 1000, 5000, and 10000 vertices
and densities p = 5/N , 10/N , and 15/N . In addition, we evaluate the performance of
reconstruction on a real-world network: Project 90 surveyed networks of heterosexuals at
high risk of contracting HIV in Colorado Springs, CO, from 1988-1990 [Woodhouse et al.,
1994, Klovdahl et al., 1994, Rothenberg et al., 1995, Potterat et al., 2004]. The network
data G in the Project 90 data consist of |V | = 5492 individuals and |E| = 43288 edges.
Network edges represent social, sexual, or drug use links between individuals. The Project
90 data have been used in other simulation studies to evaluate the performance of RDS
estimators [Goel and Salganik, 2010].

Table B.1 shows estimate summaries; each row aggregates the results of 100 simula-
tions on distinct networks. Conditional on each simulated network, we simulate the recruit-
ment process and report the mean and SD of estimated quantities over the 100 repetitions.
We report the parameters N and p used in the network simulation, the prior standard de-
viation (SD) of λ, the mean and standard deviation (SD) of accuracy, TPR, and TNR for
reconstruction of GS , and the mean and SD of estimates of λ. Accuracy and TNR are
generally very high, with lower values of TPR. The high values of accuracy and TNR indi-
cate that the reconstruction method recovers the true density of GS fairly well on average.
Assignment of the non-recruitment edges is more difficult, and TPR is lower. Figure A.1
shows an example in which the general structure of the adjacency matrix is recovered, but
individual edges (shown as black entries in the adjacency matrix) may not always be cor-
rectly placed. The overall accuracy of edge inference depends on the pattern of coupon
use and the structure of the recruitment graph. Accuracy is strongly affected by the pro-
portion of recruitment edges in GS: GR is always a subgraph of GS , so these edges are
always present in estimates of GS . Therefore simulated data sets with low edge density
contain very few non-recruitment edges in GS and hence reconstructions of GS enjoy very
high accuracy and high TNR, while TPR is lower. More dense subgraphs generally have
higher TPR. Some estimates of λ exhibit small upward bias, which is reduced under more
informative priors for λ.

In real-world RDS studies, Assumption 5 may be violated. It is therefore impor-
tant to assess the performance of subgraph reconstruction and estimation of λ when the
waiting time distribution is mis-specified and Assumption 5 does not hold. To this end,
we draw random edge-wise waiting times Tij from the Gamma distribution with density
f(t) = λδtδ−1e−δt/Γ(δ) with shape and rate parameters δ > 0. Setting δ = 1 recovers the
Exponential(λ = 1) distribution. When 0 < δ < 1, the Gamma density decays monotoni-
cally with the waiting time. When δ > 1, the density has a nonzero mode. In simulations
under this waiting time distribution, we fix the mean waiting time at E[Tij] = 1 and vary
δ. In this way, δ provides a convenient continuous parameter to change the magnitude of
mis-specification of the waiting time model.
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Simulated
Network Prior Accuracy TPR TNR λ
N Np SDλ Mean SD Mean SD Mean SD Mean SD

1000 5 1.00 0.994 2.9E-4 0.574 1.3E-2 0.997 2.1E-4 1.292 9.8E-2
0.10 0.994 3.1E-4 0.589 1.5E-2 0.997 2.4E-4 1.093 2.6E-2
0.01 0.994 2.8E-4 0.600 1.7E-2 0.997 2.1E-4 1.001 4.1E-4

10 1.00 0.985 5.4E-4 0.429 1.4E-2 0.994 5.7E-4 1.401 1.0E-1
0.10 0.986 4.9E-4 0.455 1.2E-2 0.994 4.8E-4 1.103 2.3E-2
0.01 0.986 5.5E-4 0.468 1.5E-2 0.994 3.9E-4 1.001 3.8E-4

15 1.00 0.977 7.2E-4 0.374 1.6E-2 0.991 8.2E-4 1.409 1.1E-1
0.10 0.979 7.0E-4 0.403 1.4E-2 0.990 7.5E-4 1.104 2.6E-2
0.01 0.980 8.3E-4 0.421 1.7E-2 0.990 6.3E-4 1.001 4.3E-4

5000 5 1.00 0.996 4.7E-4 0.542 3.2E-2 0.999 7.7E-5 1.401 9.7E-2
0.10 0.997 5.0E-4 0.617 4.8E-2 0.999 8.2E-5 1.141 2.6E-2
0.01 0.998 5.7E-4 0.717 7.3E-2 0.999 6.7E-5 1.002 7.4E-4

10 1.00 0.990 1.0E-3 0.339 2.6E-2 0.999 1.3E-4 1.540 1.1E-1
0.10 0.993 1.1E-3 0.440 4.8E-2 0.999 1.3E-4 1.149 2.3E-2
0.01 0.995 1.1E-3 0.537 8.2E-2 0.999 1.1E-4 1.003 6.1E-4

15 1.00 0.984 1.5E-3 0.258 2.0E-2 0.998 1.7E-4 1.576 1.4E-1
0.10 0.989 1.7E-3 0.355 4.5E-2 0.998 1.7E-4 1.150 2.5E-2
0.01 0.992 1.9E-3 0.472 9.0E-2 0.998 1.5E-4 1.003 8.0E-4

10000 5 1.00 0.996 4.4E-4 0.546 3.2E-2 1.000 5.5E-5 1.434 1.1E-1
0.10 0.997 5.2E-4 0.635 5.0E-2 1.000 5.4E-5 1.146 2.9E-2
0.01 0.998 5.9E-4 0.727 7.7E-2 1.000 5.7E-5 1.003 6.7E-4

10 1.00 0.991 1.2E-3 0.337 3.8E-2 0.999 7.7E-5 1.541 1.4E-1
0.10 0.994 1.0E-3 0.441 4.7E-2 0.999 7.9E-5 1.158 2.6E-2
0.01 0.996 1.2E-3 0.569 9.4E-2 0.999 7.8E-5 1.003 7.3E-4

15 1.00 0.986 1.6E-3 0.246 2.3E-2 0.999 1.1E-4 1.578 1.1E-1
0.10 0.991 1.8E-3 0.354 5.7E-2 0.999 1.0E-4 1.161 2.7E-2
0.01 0.994 1.8E-3 0.481 1.1E-1 0.999 9.0E-5 1.003 7.4E-4

Project 90 1.00 0.973 1.6E-3 0.376 2.6E-2 0.989 1.1E-3 1.263 1.0E-1
0.10 0.974 1.3E-3 0.370 2.5E-2 0.988 9.5E-4 1.085 3.6E-2
0.01 0.974 1.5E-3 0.374 2.3E-2 0.987 9.3E-4 1.001 4.1E-4

Table B.1: Simulation results for RDS on Erdős-Rényi random networks and the Project
90 network. The recruitment rate λ in every simulation is 1. Each row summarizes 100
simulations of RDS on different random networks under the given network parameters N
and p. The prior SD of λ is given in the next column. The mean and SD of accuracy, TPR,
and TNR for reconstruction of GS and the mean MAP estimate and SD of λ are in the last
three columns. Table B.2 shows simulation results for RDS on the Project 90 network.
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Prior Accuracy TPR TNR λ
δ SDλ Mean SD Mean SD Mean SD Mean SD

0.5 1.00 0.974 1.6E-3 0.394 2.9E-2 0.990 1.0E-3 19.816 3.4E-0
0.10 0.986 1.1E-3 0.969 6.0E-2 0.986 9.1E-4 3.872 2.3E-1
0.01 0.986 9.3E-4 1.000 3.3E-4 0.986 9.4E-4 1.043 8.8E-4

0.6 1.00 0.974 1.5E-3 0.387 3.0E-2 0.990 1.0E-3 8.748 1.4E-0
0.10 0.985 1.9E-3 0.814 1.2E-1 0.986 9.2E-4 2.698 1.7E-1
0.01 0.986 9.6E-4 0.998 8.2E-3 0.986 9.6E-4 1.037 1.3E-3

0.7 1.00 0.973 1.5E-3 0.385 2.6E-2 0.989 1.0E-3 4.390 5.9E-1
0.10 0.981 2.2E-3 0.596 9.1E-2 0.986 1.0E-3 1.885 9.4E-2
0.01 0.986 1.1E-3 0.977 4.6E-2 0.986 1.0E-3 1.026 2.4E-3

0.8 1.00 0.973 1.4E-3 0.383 2.5E-2 0.989 9.4E-4 2.710 2.6E-1
0.10 0.978 2.0E-3 0.464 4.3E-2 0.987 1.0E-3 1.441 7.7E-2
0.01 0.984 2.3E-3 0.794 1.4E-1 0.986 1.1E-3 1.013 2.6E-3

0.9 1.00 0.974 1.6E-3 0.380 2.5E-2 0.989 1.0E-3 1.736 1.6E-1
0.10 0.975 1.6E-3 0.399 2.3E-2 0.987 9.3E-4 1.197 3.9E-2
0.01 0.978 2.3E-3 0.458 6.2E-2 0.987 1.0E-3 1.004 1.1E-3

1.1 1.00 0.974 1.7E-3 0.379 2.7E-2 0.989 1.1E-3 0.929 7.2E-2
0.10 0.973 1.5E-3 0.380 2.7E-2 0.989 1.0E-3 0.970 3.6E-2
0.01 0.973 1.6E-3 0.374 2.5E-2 0.989 1.0E-3 0.999 8.2E-4

1.2 1.00 0.973 1.5E-3 0.373 2.4E-2 0.988 1.0E-3 0.731 5.3E-2
0.10 0.974 1.7E-3 0.394 2.8E-2 0.990 9.4E-4 0.834 3.3E-2
0.01 0.974 2.0E-3 0.405 3.3E-2 0.991 1.0E-3 0.995 1.6E-3

1.3 1.00 0.973 1.5E-3 0.370 2.3E-2 0.988 1.2E-3 0.587 4.4E-2
0.10 0.974 1.9E-3 0.401 3.2E-2 0.990 1.0E-3 0.724 3.0E-2
0.01 0.976 2.1E-3 0.436 3.4E-2 0.993 1.0E-3 0.987 2.4E-3

1.4 1.00 0.973 1.5E-3 0.366 2.4E-2 0.988 1.1E-3 0.488 3.6E-2
0.10 0.974 1.8E-3 0.404 2.9E-2 0.990 1.0E-3 0.626 2.4E-2
0.01 0.977 1.9E-3 0.460 3.3E-2 0.994 9.8E-4 0.978 3.1E-3

1.5 1.00 0.973 1.6E-3 0.352 2.2E-2 0.988 1.1E-3 0.412 3.0E-2
0.10 0.974 2.1E-3 0.400 3.4E-2 0.990 1.0E-3 0.542 2.1E-2
0.01 0.978 2.1E-3 0.481 3.6E-2 0.995 9.1E-4 0.968 3.4E-3

Table B.2: Simulation results for RDS on the Project 90 data under mis-specification
of the waiting time distribution. The mean waiting time to recruitment is distributed as
Gamma(δ, δ), for the given values of δ. When δ = 1, the waiting time distribution is
correctly specified; these results are given in the last three lines of Table B.1.
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Table B.2 gives the results for Gamma-distributed waiting times, where δ is specified.
The prior SD of λ, accuracy, TPR, TNR, and the mean and SD of estimates of λ are given.
In general, accuracy, TPR, and TNR are roughly the same as in the Exponential(λ = 1)
case. But as expected, estimates of λ under a mis-specified waiting time distribution ap-
pear to be subject to bias. When δ < 1, λ is typically overestimated; when δ > 1, λ is
usually underestimated. We can explain the relative robustness of reconstruction by recall-
ing two features of the proposed framework. First, the compatibility conditions (Definition
4) impose strong constraints on the topology of GS when GR and d are observed. These
constraints are in effect regardless of whether the waiting time model is correctly specified,
and serve to ensure that all edges in GR are correctly estimated. Second, under any model
in which the recruitment times across edges are independent, the rate of new recruitments
is positively associated with the number of susceptible edges. Under the exponential model
this relationship is linear, and under other waiting time models the relationship may be
non-linear (and in general depends on time waited along each susceptible edge up to the
current time).

Appendix C.

C.1. Prior for λ in the St. Petersburg Application

To obtain a sensible prior distribution for the edge-wise recruitment rate λ, we adopt an
empirical Bayesian approach based on bounding the maximum likelihood estimate of λ
given by (A.2). First, observe that the maximum number of susceptible edges that can
be added by a vertex i with degree di is di minus 1 if i was recruited by another subject,
di−1{i /∈M}. Then the maximum number of susceptible edges at step k in the recruitment
process is sk =

∑k−1
i=1 (di − 1{i /∈M}). Therefore a minimum estimate of λ is

λlo =
n− |M |∑n

k=1 wi

∑k−1
i=1 (di − 1{i /∈M})

.

Now let ni be the number of subjects recruited by subject i. The minimum number of
susceptible edges at step k is sk =

∑k−1
i=1 (ni − 1{i /∈ M}), and the maximum estimate of

λ is

λhi =
n− |M |∑n

k=1wi

∑k−1
i=1 (ni − 1{i /∈M})

.

Applying these bounds to the St. Petersburg data yields λlo = 9.8 × 10−4 and λhi =
4.2 × 10−2. We therefore specify a prior distribution for λ that takes most of its mass in
the interval [λlo, λhi]. Let λmean = (λlo + λhi)/2 = 0.022. Suppose η > 0 is given and let
ξ = η/λmean. Now by varying η, we obtain a family of Gamma prior distributions with
mean λmean.
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Appendix D.

D.1. Proof of Proposition 1

Let u ∈ R be a particular recruiter and let Su be the set of susceptible vertices that are
neighbors of u at a given time in the recruitment process. Let Wux be the waiting time for
u to recruit its susceptible neighbor x ∈ Su. By Assumption 5, Wux ∼ Exponential(λ)
independently for each x ∈ Su. Given that u recruits a random vertex X in Su before any
other recruiter, define the first recruited vertex to be

X = argmin
x∈Su

Wux. (D.1)

We follow the competing risks perspective of Lange [2010, 188] and consider the joint
probability

Pr(X = x,Wux ≥ t) = Pr(Wux ≥ t,Wuk > Wux for all k 6= x)

=

∫ ∞
t

λe−λs Pr(Wuk > s for all k 6= x) ds

=

∫ ∞
t

λe−λs
∏
k∈Su
k 6=x

e−λs ds

=
1

|Su|
e−λ|Su|t.

(D.2)

Therefore X is recruited uniformly at random from Su, the waiting time to this recruitment
has distribution Exponential(λ|Su|), and X and WuX are independent.

D.2. Proof of Proposition 2

Let Wu = minx∈Su Wux be the waiting time to the first recruitment by recruiter u ∈ R
and let W = minu∈R minx∈Su Wux be the waiting time to the first recruitment by any
recruiter. The first recruiter is U = argminu∈RWu and the first recruited vertex is X =
argminx∈SU

WUx. We again consider the joint probability of the recruited vertex X = x

10



and the waiting time Wux,

Pr(X = x,WUx ≥ t) =
∑
u∈R

Pr(Wux ≥ t, Wjk > Wux for all k ∈ R, j ∈ S, {u, x} 6= {j, k}) 1{u ∈ Rx}

=
∑
u∈Rx

∫ ∞
t

λe−λs Pr(Wjk > s for all k ∈ R, j ∈ S, {u, x} 6= {j, k}) ds

=
∑
u∈Rx

∫ ∞
t

λe−λs
∏
j∈R

∏
k∈Sj

{j,k}6={u,x}

e−λs ds

=
∑
u∈Rx

1∑
j∈R |Sj|

exp

[
−λt

∑
j∈R

|Sj|

]

=
|Rx|∑
k∈S |Rk|

exp

[
−λt

∑
j∈R

|Sj|

]
(D.3)

where the last line is obtained because
∑

j∈R |Sj| =
∑

k∈S |Rk|. Therefore X ∈ S is the
first recruit with probability proportional to the number of recruiters it has (equivalently, the
number of susceptible edges incident to it), the waiting time WUX to the first recruitment
is Exponential(λ

∑
j∈R Sj), and X and WUX are independent.

D.3. Proof of Corollary 1

Proposition 2 shows that the probability that a given vertex x ∈ S is recruited at the next
step in the sampling process under the model described in this paper is |Rv|/

∑
k∈S |Rk|.

Gile and Handcock [2010] describe a recruitment process in which the recruiter u is chosen
first, without regard to the number of susceptible vertices linked to it. Then, conditional on
the identity of the chosen u, a susceptible neighbor x ∈ Su is recruited with uniform prob-
ability 1/|Su|. Marginalizing over the recruiter u, we find that the probability of recruiting
vertex x ∈ S in the model of Gile and Handcock [2010] is

Pr(x ∈ S is recruited) =
∑
u∈R

Pr(u is recruiter) Pr(x is recruited|u is recruiter)

=
∑
u∈R

1

|R|
1{x ∈ Su}
|Su|

=
1

|R|
∑
u∈Rx

1

|Su|
,

(D.4)

where the last line is obtained because x ∈ Su if and only if u ∈ Rx. In general, this
probability distribution is not equal to |Rv|/

∑
k∈S |Rk|.
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D.4. Proof of Proposition 3

We first give a rigorous definition of the coupon matrix C. Define the function Ci(t) to be
1 if subject i has at least one coupon just before time t, and zero otherwise. The function
Ci(t) is left-continuous. Let tj be the time of the jth recruitment event. Then define the
i, jth element of C as

Cij = lim
t→t−j

Ci(t). (D.5)

where t → tj− means that t approaches tj from the left. Recall that A is the adjacency
matrix of the recruitment-induced subgraph, with rows and columns in the order of vertices’
recruitment into the study. The i, jth element of the matrix product AC is the number of
recruiters connected to i just before the time tj of the jth recruitment. Then

{AC}ij =
n∑
k=1

AikCkj (D.6)

is the number of possible recruiters of subject i at time t−j , and

n∑
i=j

n∑
k=1

AikCkj (D.7)

is the number of susceptible edges at time t−j connecting recruiters to vertices that will
eventually be sampled. Recruiters may also have connections to vertices that are never
recruited into the study. The ith element of the n × 1 vector u is the number of pendant
edges connecting vertex i to unknown/unsampled vertices. Each of these pendant edges is
susceptible while i is a recruiter, so the number of susceptible pendant edges just before
time tj is

n∑
i=j

Cijui. (D.8)

Finally, the total number of susceptible edges just before time tj is the sum of (D.7) and
(D.8),

sj =
n∑
i=j

(
n∑
k=1

AikCkj

)
+ Cijui (D.9)

and in vector form, s = lt(AC)′1 + C′u . Now let w = (0, t2 − t1, . . . , tn − tn−1) be the
n× 1 vector of waiting times between recruitments. By Proposition 2, the random waiting
time between recruitment of subject j − 1 and j has distribution Exponential(λsj). For
recruited vertices j, this waiting time wj is fully observed and has density λsj exp[−λsjwj]
where j /∈ M , where M is the set of seeds. In contrast, seeds are recruited not by other
vertices, but by another mechanism. If a seed j shares edges with any recruiters before it is
chosen as a seed, we observe that the actual waiting time to its recruitment must be greater
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than the waiting time actually observed, so the density of the waiting time wj of a seed is
exp[−λsjwj]. Therefore, the full likelihood of the recruitment time series is

L(w|GS, λ) =
n∏
i=1

(λsi)
1{i/∈M} exp[−λsiwi]

=

(∏
i/∈M

λsi

)
exp[−λs′w],

(D.10)

where M is the set of seeds, as claimed.

D.5. Proof of Lemma 1

Consider the adjacency matrix A of the current estimate of the recruitment-induced sub-
graph GS and suppose we would like to add an edge between i and j, where ti < tj ,
Aij = Aji = 0, ui ≥ 1, and uj ≥ 1. Define the proposal graph as G+

S with adjacency
matrix A+ to be a matrix identical to A, except that A+

ij = A+
ji = 1, with u+ identical to

u except u+
i = ui − 1 and u+

j = uj − 1. By (D.9),

s+k =
n∑
x=k

(
n∑
y=1

A+
xyCyk

)
+ Cxku

+
x

=
n∑
x=k

(
n∑
y=1

(Axy + 1{x = i, y = j}+ 1{x = j, y = i})Cyk

)
+ Cxkux

−Cxk(1{x = i}+ 1{x = j})
= sk + 1{i ≥ k}Cjk + 1{j ≥ k}Cik − 1{i ≥ k}Cik − 1{j ≥ k}Cjk

= sk + 0 + (1− 1{j < k})Cik − (1− 1{i < k})Cik − (1− 1{j < k})Cjk

= sk −Cik1{k > j} −Cjk,

(D.11)

where the last line is obtained because Cjk = 0 for k < j.
Now we consider removing an edge between i and j, where ti < tj . Suppose the

current estimate of the recruitment-induced subgraph is A with Aij = Aji = 1 with no
recruitment taking place across this edge, {i, j} /∈ ER. Define the proposal graph as G−S
with adjacency matrix A− to be a matrix identical to A, except that A−ij = A−ji = 0, with
u− identical to u except u−i = ui + 1 and u−j = uj + 1. Then the number of susceptible
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edges just before the time tk of the kth recruitment is

s−k =
n∑
x=k

(
n∑
y=1

A−xyCyk

)
+ Cxku

−
x

=
n∑
x=k

(
n∑
y=1

(Axy − 1{x = i, y = j} − 1{x = j, y = i})Cyk

)
+ Cxkux

+ Cxk(1{x = i}+ 1{x = j})
= sk − 1{i ≥ k}Cjk − 1{j ≥ k}Cik + 1{i ≥ k}Cik + 1{j ≥ k}Cjk

= sk + 1{k > j}Cik + Cjk.

(D.12)

D.6. Proof of Proposition 1

For the addition of an edge between i and j with ti < tj , the likelihood ratio is

L(w|G+
S , λ)

L(w|GS, λ)
=

(∏
k/∈M

s+k
sk

)
exp

[
− λ(s+ − s)′w

]
=

(∏
k/∈M

s+k
sk

)
exp

[
λ

n∑
k=1

(Cik1{k > j}+ Cjk)wk

]
.

(D.13)

We have
n∑
k=1

Cik1{k > j}wk = t∗i −min{t∗i , tj} (D.14)

and
n∑
k=1

Cjkwk = t∗j − tj. (D.15)

Then the ratio becomes

L(w|G+
S , λ)

L(w|GS, λ)
=

(∏
k/∈M

s+k
sk

)
exp

[
λ(t∗i −min{tj, t∗i }+ t∗j − tj)

]
. (D.16)

For the removal of an edge between i and j with ti < tj , the same arguments apply. The
likelihood ratio is

L(w|G−S , λ)

L(w|GS, λ)
=

(∏
k/∈M

s−k
sk

)
exp

[
− λ(s− − s)′w

]
=

(∏
k/∈M

s−k
sk

)
exp

[
−λ

n∑
k=1

(Cik1{k > j}+ Cjk)wk

]

=

(∏
k/∈M

s−k
sk

)
exp

[
−λ(t∗i −min{tj, t∗i }+ t∗j − tj)

]
,

(D.17)
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as claimed.
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