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Calculation of mobility and threshold voltage

The field effect mobilities were obtained from the output current versus voltage in the saturation
region. In this regime, we fitted the plot of the /I, versus Vg and extracted the mobilities based
on following equation

wWc;
las = (522 s Vs — Ven)? (S1)
where L, W, and C; are the channel length, the width, and the gate capacitance per unit area,
respectively. The x-intercept of the extrapolation of the fitted curve define the threshold voltage
(Vin).

Fabrication of deformable neurologically integrated tactile sensory skin

The fabrication for the stretchable tactile sensory skin started with the fabrication of transistor
array followed the procedure for the individual synaptic transistor as described in Materials and
Methods. The backside of the rubbery synaptic transistor array was placed on a pressure sensitive
rubber sheet (ZL45.1, Zoflex). Conductive rubber paste was used to connect the transistor gate
and rubber sheet, which was solidified at 50 °C for 5 hours. PDMS (10:1, prepolymer/curing
agent) was spin coated on the rubbery synaptic transistor array as an encapsulation layer. Finally,
the rubbery synaptic transistor array with pressure sensitive rubber sheet was laminated onto an
elastic sheet with patterned gated electrodes to complete the tactile sensory skin.

Design and fabrication of the soft pneumatic robot

The design of the soft pneumatic robot (SPR) employs the large deformation capability of
silicone elastomer. The SPR consists of two identical rectangular-shape pneumatic actuators
(RPAs). Each RPA contains the main body part and the end cap part. The geometry parameters of
the two parts are shown in fig. S16. The two RPAs are arranged side by side and winded with the
much stiffer fibers. The fibers serve to limit the excessive radial expansion of the RPAs while
preserve the axial extension of the RPAs. The SPR can realize straight walking and bi-directional
steering movements with the cooperation of its two RPAs (see Fig. 5F). While the RPA on the
left and the RPA on the right are inflated with the same pressure simultaneously, the two RPAs
generate same amount of axial extension and the SPR realize straight walking motion. When the
left RPA is inflated and the right RPA is deflated, the left side of the SPR achieves axial
extension while the right side does not. Therefore, the SPR bends to right side and realizes right
turn movement. Similarly, the SPR can also realize left turn movement.

The SPR was fabricated by first casting the RPAs, then assembling the RPAs and finally winding
the fibers. Specifically, the RPAs were fabricated using the molding approach (46-49). Molds
were designed for the main bodies and end caps of the RPAs. All the molds were 3-D printed.
Commercial silicone elastomer M4601 (Wacker) was employed to cast the RPAs. The
component A and component B of the elastomer were mixed by mass ratio of 9:1 and degassed
before casting. In the casting process, the release agent was first sprayed on the surfaces of the
molds for ease of demolding. The mixed elastomer was the gently injected into the molds. The
filled molds were then placed in the oven at 70 °C until the elastomer is cured. After demolding,



the casted end caps were inserted into the main bodies to form the complete RPAs. The interfaces
of the end caps and the main bodies were sealed with the liquid elastomer. Subsequently, the
RPAs were placed into the oven at 70 °C to solidify. To form one SPR, two RPAs were arranged
side by side. The RPAs were winded with fibers. After winding, the fabrication of the SPR is
completed. The end caps of the two RPASs connect the tubing for pneumatic actuation by air.

Fabrication of robotic skin

The fabrication of the robotic skin with TENGsS, resistors, diodes and synaptic transistors started
with creating rubbery electrodes based on AgNWs/PDMS as described in Methods. The skin
components on top, right, and left sides are identical. Then the processes continued with the
fabrication of diodes. One electrodes of the diodes was AuNPs-AgNWs/PDMS, where the
AUNPs coating on AgNWs electrodes were created by galvanic replacement. The other is Al-Cr-
AgNWs/PDMS, which was accomplished by treating the AgNWs/PDMS with UVO for 10 min,
and then sequentially deposit Cr (5 nm) and Al (40 nm). A layer of P3HT-NFs/PDMS was then
coated to create diodes, resistors and synaptic transistors. The channel length and width of the
synaptic transistors are 60 pm and 2 mm, respectively. The resistor from P3HT-NFs/PDMS is
~110 MQ. A layer of PDMS was spin coated at 400 rpm for 30 s on the TENG electrode to
complete the robotic skin. Finally, the elastic skin was wrapped on soft robot to finalize the soft
adaptive neurorobot.
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Fig. S1. Optical image of fully rubbery electronic materials. (A) P3HT-NFs/PDMS

semiconductor on PDMS. (B) ion gel dielectric. (C) AuNPs-AgNWs/PDMS conductor. (Photo
Credit: Hyunseok Shim, University of Houston).
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Fig. S2. Frequency-dependent capacitance per unit area.



A B

AgNWs/PDMS PDMS \ ’ D “ Vs ,‘
\ Gate {

At
> l
G
lon-gel 7 @ _\r‘
4 W

P3HT-NFs/PDMS
GND

Source
Drain

Fig. S3. Schematic information of synaptic transistor. (A) Schematic illustration in top view.
(B) Schematic operational diagram.
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Fig. S4. Transfer curve and mobilities of the rubbery synaptic transistor. (A) Transfer curve

depending under mechanical strains. (B) Mobility and threshold voltage under mechanical
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Fig. S5. EPSC results with respect to different pulse widths without (0%) and with 50%
strain. (A) 1000. (B) 500. (C) 250. (D) 100. (E) 50. (F) 25. and (G) 20 ms.
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Fig. S6. EPSC results triggered by two successive synaptic pulses with respect to different
Atpre Without (0%6) and with 50% strain. (A) 2000. (B) 1000. (C) 500. (D) 200. (E) 100. (F) 50.
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Fig. S7. EPSCs under mechanical strain along the channel width direction. (A) Single
presynaptic pulse induced EPSC under different levels of mechanical strain. (B) The EPSC
triggered by two successive presynaptic pulses under different levels of mechanical strain.

EPSC (A)

Fig. S8. EPSCs induced by 20 successive presynaptic pulses with different frequencies
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Fig. S9. Memory characteristics from 20 successive presynaptic pulses with different widths
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Fig. S11. Schematic illustration of the major fabrication steps for the tactile sensory skin.
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Fig. S13. Resistance change of the pressure-sensitive rubber sheet with respect to the
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Fig. S16. Measurement setup for EPSP mapping. (Photo Credit: Hyunseok Shim, University
of Houston).
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Fig. S17. Design, fabrication, and optical image of soft pneumatic robot. (A) The main body
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Fig. S22. Input pulse and output EPSC during cyclic tapping.
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