
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The author introduces a new variant calling method, Longshot, for calling SNVs from single-molecule 
sequencing (SMS) reads. Longshot achieves higher SNV calling precision and recall than other SMS 
variant callers, in both Pacbio reads and Oxford Nanopore reads. Compared to variant calling using 
Illumina reads, Longshot (using SMS reads) performs well especially in repetitive regions (e.g. 
segmental duplications). Besides variant calling, Longshot also phases the variants into long haplotype 
blocks with high accuracy and completeness (compared to using Illumina reads alone).  
 
 
While these results may advance the use of SMS technologies in various scenarios, I have concern 
about the novelty of the method.  
 
(A) The method has 3 major steps. Step 1 is candidate variant identification, which uses the standard 
pileup approach to determine which sites are potential variants. Step 2 is allelotyping via local 
realignment. In this step, each read (fragment) is being classified as coming from the REF sequence or 
the ALT sequence, by realigning the read fragment to both sequences using HMM forward algorithm. If 
there are multiple potential variants nearby, they will be considered together, and an exponential 
number of ALT sequences will be generated for realignment. For example, if 3 nearby potential 
variants are clustered, then all 2^3=8 haplotype combinations will be compared to pick out the best 
one. This might not be a standard technique, but it can be found in other similar tools, such as 
Nanopolish (a HMM-based Nanopore variant caller). Although the objective of Nanopolish is not to find 
long haplotypes, it can as well output the per-read “local haplotype” in a short window just like Step 2 
of Longshot.  
 
(B) In my opinion, Step 3 of Longshot is what differentiates Longshot from Nanopolish. In Step 3, the 
called alleles (and quality values) at the potential variant sites for each read are taken as input. An 
existing haplotype assembly tool HapCUT2 is used to estimate the most probably haplotypes over a 
long region. The estimated haplotypes are then further refined to maximize likelihood. The authors 
compared the haplotypes obtained using this 3-step Longshot workflow to those using HapCUT2 alone 
(given a raw list of variants found using Illumina reads), and concluded that their accuracy and 
completeness were very similar. This makes me wonder if the power of Longshot in fact comes from 
HapCUT2. It would be interesting to see what happens if the first 2 steps of Longshot is replaced by 
other SMS variant callers (plus some simple methods to assign called alleles to individual reads).  
 
 
Other minor concerns and issues:  
 
(1) In Table S7, Longshot is compared to other SMS variant callers. However, the benchmark figures 
of all variant callers except Longshot were obtained from paper preprints, not from benchmarking runs 
by the authors. To my knowledge, these variant callers used a variety of mapping tools when doing 
their own benchmarks -- e.g., some chose Minimap2 over BLASR for speed concern. It is not entirely 
fair to compare a variant caller with Minimap2 against another caller with BLASR. (According to Figure 
S2, Longshot+Minimap2 indeed had worse recall than Longshot+BLASR.) Moreover, it is not 
uncommon that evaluation methods in different papers (even using the same dataset) have small 
discrepancies due to thresholding, filtering, or other customizations. It would be great if the authors 
can evaluate the existing tools again on their own, giving a more up-to-date and fair benchmark 
comparison.  
 



(2) One of the major claims in the paper is that Longshot (and SMS sequencing) has excellent recall 
rate in repetitive regions (e.g. segmental duplications) compared to Illumina-based methods. 
According to Figure S2 (bottom right), the excellent recall rate in fact relies very much on the 
mapping tool used. This suggests that the SMS read mapping tool plays a much bigger role than the 
variant caller in repetitive regions -- which makes sense. It would be interesting to include a 
comparison of Longshot against other SMS variant callers in repetitive regions.  
 
(3) It is not obvious whether the run time in Table S1 refers to wall-clock hours or CPU hours. Main 
memory requirement (which can be a headache for other variant callers) and server configuration 
were not mentioned either.  
 
(4) The iterative genotype-haplotype algorithm on page 8 is not clear enough. In each iteration, H 
gets updated, and the likelihood L is recomputed. In the next iteration, H gets reassigned as 
HapCUT2(R,V), but neither R nor V was updated in the previous iteration. I assume that there is some 
hidden parameter to HapCUT2() which is modified along with H. The hidden parameter might be H 
itself.  
 
 
Experiments are well-designed and appropriate in general. They are also reproducible as the authors 
provided the relevant workflow scripts.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Review of Edge and Bansal, Longshot: accurate variant calling in diploid genomes using single-
molecule long read sequencing.  
 
 
The authors present a method to detect SNVs using long-read sequences. The method makes sense, 
although some of the methods that incorporate information from multiple reads (e.g. the pacbio 
consensus tools) may outperform this for recall. The results demonstrate that, when combined with 
filtering on variants near indels, have only about twice the false positive rate of SNV calls versus 
Illumina. This is close to feasible for precision medicine/Mendelian studies. The section mentioning 
Longshot’s performance versus machine learning methods sells the results short. For disease studies, 
swapping precision with false discovery rate is a more informative metric for two reasons: one will 
look for genes mutated in multiple individuals, or one tests (Sanger) all the variants in one individual. 
The performance of longshot is actually **considerably** better than the other methods when 
considering FDR, and this should be highlighted.  
 
 
The software runs quite easily. It will increase use by the community if multithreading is enabled.  
 
The major suggestion is to compare against the quiver method produced by PacBio, which can also 
perform variant calling. It does not perform well on heterozygous variants, and the expectation is that 
longshot will outperform the PB method for this type of variant. It may be a little worse for 
homozygous variants, but those are less frequent. The release of the consensus methods via bioconda 
will help make this analysis feasible, whereas before it was pretty much impossible to install. The 
authors state that quality values are less meaningful for SMS reads than Illumina, however they are 
used in the PacBio consensus tools.  
 



Also, it would be useful to compare the Longshot SNV + WhatsHap phasing, since this tool is quite 
popular for long read phasing, although the results will likely not be significantly different.  
 
 
There are some minor suggestions, in no particular order.  
 
Figure 2 is nice to see, but not terribly informative and should probably be a supplementary figure. 
However, this can be at the discretion of the authors.  
 
The Nanopore analysis should be careful to note the exact date of the sequencing and the version of 
the basecaller used on the data -- ideally even the parameters of the basecaller. All of these have 
considerable effect on variant calling.  
State in the text the FDR of Longshot versus the ML methods.  
List how many GIAB “high-confidence” calls are not supported by Longshot. Some of the high 
confidence calls will be false positives, and it will be help for the reference variant panel community to 
know which ones. This will probably just be a few thousand, but they are aiming at 0 false positives, 
so this will help.  
How many coding bases are you able to call variants on with longshot in segdup regions (e.g. 
potential for precision medicine)?  
It is worth discussing the gap between Illumina analysis for disease studies, and what Longshot 
enables in the discussion.  



Response to reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The author introduces a new variant calling method, Longshot, for calling SNVs from 
single-molecule sequencing (SMS) reads. Longshot achieves higher SNV calling precision and 
recall than other SMS variant callers, in both Pacbio reads and Oxford Nanopore reads. 
Compared to variant calling using Illumina reads, Longshot (using SMS reads) performs well 
especially in repetitive regions (e.g. segmental duplications). Besides variant calling, Longshot 
also phases the variants into long haplotype blocks with high accuracy and completeness 
(compared to using Illumina reads alone). 
 
While these results may advance the use of SMS technologies in various scenarios, I have 
concern about the novelty of the method. 
 
(A) The method has 3 major steps. Step 1 is candidate variant identification, which uses the 
standard pileup approach to determine which sites are potential variants. Step 2 is allelotyping 
via local realignment. In this step, each read (fragment) is being classified as coming from the 
REF sequence or the ALT sequence, by realigning the read fragment to both sequences using 
HMM forward algorithm. If there are multiple potential variants nearby, they will be considered 
together, and an exponential number of ALT sequences will be generated for realignment. For 
example, if 3 nearby potential variants are clustered, then all 2^3=8 haplotype combinations will 
be compared to pick out the best one. This might not be a standard technique, but it can be 
found in other similar tools, such as Nanopolish (a HMM-based Nanopore variant caller). 
Although the objective of Nanopolish is not to find long haplotypes, it can as well output the 
per-read “local haplotype” in a short window just like Step 2 of Longshot. 
 
(B) In my opinion, Step 3 of Longshot is what differentiates Longshot from Nanopolish. In Step 
3, the called alleles (and quality values) at the potential variant sites for each read are taken as 
input. An existing haplotype assembly tool HapCUT2 is used to estimate the most probably 
haplotypes over a long region. The estimated haplotypes are then further refined to maximize 
likelihood. The authors compared the haplotypes obtained using this 3-step Longshot workflow 
to those using HapCUT2 alone (given a raw list of variants found using Illumina reads), and 
concluded that their accuracy and completeness were very similar. This makes me wonder if the 
power of Longshot in fact comes from HapCUT2. It would be interesting to see what happens if 
the first 2 steps of Longshot is replaced by other SMS variant callers (plus some simple 
methods to assign called alleles to individual reads). 
 
Most variant callers for high-throughput sequence data follow a similar paradigm: identify 
candidate alleles at a locus, allelotype the reads, and call variant sites and genotypes. As 
observed by the reviewer, the key novelty of our method LongShot lies in the third step. Unlike 
variant callers for Illumina data or deep-learning based variant callers, LongShot attempts to 
estimate phased genotypes across multiple variants sites jointly using a maximum likelihood 



model. To demonstrate the value of the phased genotyping (using HapCUT2) and other 
components of LongShot for variant calling accuracy, we have added a figure (Supplementary 
Figure 6) where we show the precision-recall curves for SNV calling comparing the full Longshot 
algorithm and the algorithm without phased genotyping  (skipping step 3 of the algorithm).  We 
have add the following text in the results:  
 
“We investigated the importance of the phased genotyping for the accuracy of Longshot by 
running it on the NA12878 PacBio dataset (downsampled to 30x coverage) without phased 
genotyping (essentially skipping step 3 of the algorithm). We found that skipping the phased 
genotyping reduced Longshot's recall significantly from 0.959 to 0.905 (genotype quality 
threshold of 30) while the precision remained virtually unchanged (0.994). Therefore, the 
HapCUT2-based phased genotyping step is indeed an important contributor to the accuracy of 
the LongShot algorithm”.  
 
For comparison, we also used the "WhatsHap Genotype" method to genotype the same data 
using the potential SNVs identified in step 1 of the Longshot algorithm and with Longshot's read 
depth and SNV density filters applied. We found that the precision and recall using Whatshap 
were lower than the those with Longshot (precision=0.984 and recall=0.952).  
 
Other minor concerns and issues: 
 
(1) In Table S7, Longshot is compared to other SMS variant callers. However, the benchmark 
figures of all variant callers except Longshot were obtained from paper preprints, not from 
benchmarking runs by the authors. To my knowledge, these variant callers used a variety of 
mapping tools when doing their own benchmarks -- e.g., some chose Minimap2 over BLASR for 
speed concern. It is not entirely fair to compare a variant caller with Minimap2 against another 
caller with BLASR. (According to Figure S2, Longshot+Minimap2 indeed had worse recall than 
Longshot+BLASR.) Moreover, it is not uncommon that evaluation methods in different papers 
(even using the same dataset) have small discrepancies due to thresholding, filtering, or other 
customizations. It would be great if the authors can evaluate the existing tools again on their 
own, giving a more up-to-date and fair benchmark comparison. 
 
We agree that a fair comparison should be based on evaluating each tool using the same set of 
aligned BAMs. However, we were unable to successfully call variants using Clairvoyante on the 
BLASR-aligned BAMs that we used in our study. We communicated with the developer of 
Clairvoyante who informed us that they don’t have a BLASR model for Clairvoyante and BLASR 
performs worse than NGMLR and minimap2 for their method. In the Clairvoyante paper, the 
authors used datasets that have been aligned with the NGMLR tool and have provided trained 
models using the same alignment tool. Therefore, we have added a new direct comparison of 
Longshot, WhatsHap and Clairvoyante by running these tools on the NGMLR-aligned BAMs 
obtained from the Clairvoyante paper (table 1). For WhatsHap, the tool doesn’t support 
end-to-end variant calling but only ‘genotyping’, therefore, we used the candidate variants 
identified by LongShot (Step 1) as input to WhatsHap. The second paragraph on page 5 



describes the comparison of LongShot with the other tools (summary in Table 1). We find that 
LongShot had significantly better precision as well as recall than Clairvoyante and WhatsHap on 
multiple PacBio sequenced genomes.  
 
For Deepvariant, we have updated Supp Table 4 to show the accuracy on three chromosomes 
from the NA12878 PacBio BLASR-aligned bams that were used in our study.  In the 
DeepVariant paper, the remaining 19 chromosomes were used for training and therefore, 
comparison of the precision/recall values on the 3 chromosomes represents a direct 
comparison. We decided not to benchmark against Deepvariant on other datasets because the 
open-source version of Deepvariant does not support CLR reads (as communicated by the 
authors of DeepVariant:  https://github.com/google/deepvariant/issues/174).  
 
 
(2) One of the major claims in the paper is that Longshot (and SMS sequencing) has excellent 
recall rate in repetitive regions (e.g. segmental duplications) compared to Illumina-based 
methods. According to Figure S2 (bottom right), the excellent recall rate in fact relies very much 
on the mapping tool used. This suggests that the SMS read mapping tool plays a much bigger 
role than the variant caller in repetitive regions -- which makes sense. It would be interesting to 
include a comparison of Longshot against other SMS variant callers in repetitive regions. 
 
 We agree that this would be a useful comparison, however, as mentioned in the previous 
comment, we were unable to run Clairvoyante on the BLASR aligned bams and were also 
unsuccessful in running DeepVariant due to the lack of support for CLR data. NGMLR 
performed poorly for variant calling in segmental duplications on simulated data (Figure S2) and 
therefore, we did not analyze the NGMLR-based variant calls in segmental duplications.  
 
(3) It is not obvious whether the run time in Table S1 refers to wall-clock hours or CPU hours. 
Main memory requirement (which can be a headache for other variant callers) and server 
configuration were not mentioned either. 
 
We have specified that the runtime is the total wallclock hours over all chromosomes, using a 
single core. We have also described the CPU configuration in more detail in the caption of Table 
S1, and described the server configuration in more detail in the methods section. 
 
(4) The iterative genotype-haplotype algorithm on page 8 is not clear enough. In each iteration, 
H gets updated, and the likelihood L is recomputed. In the next iteration, H gets reassigned as 
HapCUT2(R,V), but neither R nor V was updated in the previous iteration. I assume that there is 
some hidden parameter to HapCUT2() which is modified along with H. The hidden parameter 
might be H itself. 
 
The hidden parameter that changes between iterations is V’, the set of heterozygous variants. 
V’ changes in step 4 when the individual genotypes H[v] are updated. We have updated 

https://github.com/google/deepvariant/issues/174


pseudocode (line 3) to make it clear that HapCUT2 only updates the haplotypes for the 
heterozygous variants: H(V’) = HapCUT2(R,V’).  
We have also added additional text after the pseudocode to make this more clear: “In Step 3, 
HapCUT2 is used to phase the current set of heterozygous variants. Then, the haplotype 
scaffold is used to refine the genotypes of each variant in the loop in step 4. This serves to 
remove false heterozygous variants and identify new heterozygous variants that can be phased 
by HapCUT2 in the next iteration.” 
 
Experiments are well-designed and appropriate in general. They are also reproducible as the 
authors provided the relevant workflow scripts. 
 
We thank the reviewer for appreciating our work.  
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors present a method to detect SNVs using long-read sequences. The method makes 
sense, although some of the methods that incorporate inforlmation from multiple reads (e.g. the 
pacbio consensus tools) may outperform this for recall. The results demonstrate that, when 
combined with filtering on variants near indels, have only about twice the false positive rate of 
SNV calls versus Illumina. This is close to feasible for precision medicine/Mendelian studies. 
The section mentioning Longshot’s performance versus machine learning methods sells the 
results short. For disease studies, swapping precision with false discovery rate is a more 
informative metric for two reasons: one will look for genes mutated in multiple individuals, or one 
tests (Sanger) all the variants in one individual. The performance of longshot is actually 
**considerably** better than the other methods when considering FDR, and this should be 
highlighted.  
 
We thank the reviewer for the positive feedback and recognizing the high precision of our 
method. We have updated the text to highlight the low FDR of our method:  
 
Results: “In particular, Longshot achieved very high precision or a low false discovery rate 
(FDR) of 0.5%. In comparison, the FDR for Clairvoyante was 3-fold higher, 1.6%.” 
 
Discussion: “Our method has a very low false discovery rate (0.5-0.8%) across multiple 
whole-genome PacBio datasets that is 2-4 fold lower than other variant calling methods.  
Furthermore, we find that the FDR can be reduced further to 0.3% by filtering out known 
common indels.” 
 
The software runs quite easily. It will increase use by the community if multithreading is enabled. 
 
The software can be parallelized at the process level by running on individual chromosomes or 
even sub-chromosomal chunks. We plan to release a script that will automate this process.  



 
 
The major suggestion is to compare against the quiver method produced by PacBio, which can 
also perform variant calling. It does not perform well on heterozygous variants, and the 
expectation is that longshot will outperform the PB method for this type of variant. It may be a 
little worse for homozygous variants, but those are less frequent. The release of the consensus 
methods via bioconda will help make this analysis feasible, whereas before it was pretty much 
impossible to install. The authors state that quality values are less meaningful for SMS reads 
than Illumina, however they are used in the PacBio consensus tools. 
 
We installed Genomicconsensus 2.3.3 from bioconda which supports both Arrow and Quiver. 
We attempted to use Quiver to call variants for the NA24385 genome (the tool does not support 
the NA12878 dataset’s older BAM format, and the more recent algorithm Arrow does not 
support the AJ trio’s older P5-C3 chemistry). The tool crashed on several of the chromosomes 
with a cryptic error message that has been described previously in pbbioconda’s github issues 
(https://github.com/PacificBiosciences/pbbioconda/issues/130) but not resolved, therefore, we 
were unable to compare against Quiver.  
 
Also, it would be useful to compare the Longshot SNV + WhatsHap phasing, since this tool is 
quite popular for long read phasing, although the results will likely not be significantly different. 
 
We have added the results from running WhatsHap to Supp. Fig S8. The switch and mismatch 
error rate for WhatsHap phasing were comparable to those using Longshot and HapCUT2. Both 
LongShot and HapCUT2 provide a phasing quality (PQ) value and the pruned haplotypes (PQ > 
30) had lower switch and mismatch error than those assembled using WhatsHap. WhatsHap 
does not provide a confidence metric for its phased SNVs.  
 
There are some minor suggestions, in no particular order. 
 
Figure 2 is nice to see, but not terribly informative and should probably be a supplementary 
figure. However, this can be at the discretion of the authors. 
 
We have removed Figure 2 from the main text. The extended version of Figure 2 is already in 
the supplement and contains the same results as well as the results for other variant callers. We 
have changed the order of the paragraphs in that section to make it consistent with this change.  
 
The Nanopore analysis should be careful to note the exact date of the sequencing and the 
version of the basecaller used on the data -- ideally even the parameters of the basecaller. All of 
these have considerable effect on variant calling.  
 
We have added the ranges of the dates of sequencing, the version of Guppy, and what is 
known of the Guppy parameters to the data availability section.  
 

https://github.com/PacificBiosciences/pbbioconda/issues/130


State in the text the FDR of Longshot versus the ML methods. 
 
We have added the following line to the results: “In particular, Longshot achieved very high 
precision or a low false discovery rate (FDR) of 0.5%. In comparison, the FDR for Clairvoyante 
was 3-fold higher, 1.6%.” 
 
List how many GIAB “high-confidence” calls are not supported by Longshot. Some of the high 
confidence calls will be false positives, and it will be help for the reference variant panel 
community to know which ones. This will probably just be a few thousand, but they are aiming at 
0 false positives, so this will help.  
 
The false negative rate of LongShot is 3-4%, so we cannot say with high confidence that any 
GIAB variant that is not supported by Longshot is a false positive. However, we can identify 
potential false negatives in GIAB data using LongShot variant calls that don’t overlap indels. We 
find 5903 variants called by Longshot inside GIAB confident regions that are not within 5 bp of 
any GIAB variant, and have added this finding to the Discussion.  
 
“Furthermore, some of the false positives calls by LongShot may actually correspond to false 
negatives in the GIAB high-confidence call sets. A recent graph-based read alignment approach 
identified several thousand variants that were absent in the GIAB call-sets. Many of these 
variants are located in repetitive and variant-dense genomic regions that are problematic for 
mapping using short reads but should be callable using long single-molecule reads. In the 
NA12878 genome, LongShot identified ~5900 SNVs that are located in GIAB high-confidence 
regions and do not overlap indels present in the GIAB variant calls. Further analysis of these 
variants will be helpful in improving the recall of gold-standard variant call-sets for human 
genomes.” 
 
 
How many coding bases are you able to call variants on with longshot in segdup regions (e.g. 
potential for precision medicine)? 
 
We have added this analysis to the section “Analysis of SNV calls in repetitive regions”: 
“We found that in total, 1.66 Mb of the bases in segmental duplications with >= 95% similarity 
overlap with coding exons and 90.3% of these bases were well-mapped in the 45x PacBio 
dataset (each position having at least 20x coverage and >= 90% of reads aligned to the position 
having MAPQ  >= 30).” 
 
It is worth discussing the gap between Illumina analysis for disease studies, and what Longshot 
enables in the discussion. 
 
We have added the following text to the discussion: “As the cost of SMS technologies continues 
to decrease, these technologies are likely to see widespread use in human disease studies in 
the near future. In particular, whole-genome SMS can enable the detection of 



disease-associated structural variants and variants in repetitive regions of the genome that 
cannot be identified using standard Illumina WGS [41,42,43]. Tools such as LongShot will be 
valuable for realizing the potential of SMS technologies for the comprehensive detection of all 
forms of genetic variation in such studies.” 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed most of my concerns, with the follows remaining:  
 
1. It is necessary also to benchmark "Nanopolish" as it is the de facto standard for variant calling 
using ONT reads.  
2. In the newly added Table 1, Longshot and WhatsHap's run times are proportionate to the read 
coverage of the genome, but Clairvoyant is not. We had a problem running Clairvoyant but later sped 
up by using bioconda automatic environment configuration. We suggest the authors double check if all 
tools are properly configured and are using up the number of cores assigned to them.  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have thoroughly addressed my comments.  







REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed all my concerns.  
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