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Supplementary Figure 1. Device fabrication. a AFM height image of a device pre-electroburn showing metal
contacts for source, drain and gate. b A zoom of the graphene constriction in a. RMS-roughness: 1.75 nm
(graphene), 1.95 nm (HfO2). c Typical feedback-controlled electroburning traces of a graphene nanoribbon. d AFM
image of an electroburned constriction. A cleaning circle is observed due to Joule heating during the process: high
temperature occurring in the central region during the electroburning procedure effectively removes the
contamination. RMS-roughness: 1.52 nm (graphene), 1.89 nm (HfO2), 0.82 nm (Joule-heated part). e IV traces
before and after electroburning, and the fit to the Simmons model.1–3 All scale bars are 1 µm.
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Supplementary Figure 2. Chemical structures of molecules deposited on graphene nanogaps. THS:
trihexylsilyl.

Supplementary Note 1 Chemical structures
The chemical structures of the five molecules deposited from solution to form single-molecule transistors are given
in Supplementary Figure 2. The porphyrin central unit (P) is functionalised with different groups designed to act as
π-anchors, interfacing the molecule with the graphene electrodes. The synthesis of all five compounds has been
reported previously.4 (TDP)2P is molecule M, and is the molecule in devices A-D in the main text, and device E in
Section Supplementary Note 6. Devices F-N are displayed in Section Supplementary Note 7 and contain either one
of (1-pyrene)2P, (2-pyrene)2P, (TBF)2P or (HBC)2P.

As stated in the main body of this work, during the oxidation of these compounds the charge density is
predominantly withdrawn from both the anchor groups and the porphyrin ring, as opposed to the aryl side groups.
This is shown in Supplementary Figure 3 which shows the single-particle molecular orbitals in various charge states
most likely involved in the investigated resonant charge transport (where N corresponds to the neutral molecular
species).
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Supplementary Figure 3. Schematic plots of the frontier molecular orbitals calculated in Gaussian095 using
B3LYP functional and 6-31G(d) basis set.
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Supplementary Figure 4. Schematic of the theoretical model used here. The arrows illustrate the direction of
various electron hopping processes.

Supplementary Note 2 Theory
In this section we outline the theoretical approach used to describe the transport properties of the molecular junctions.
We describe the molecular structure within the junction as a single ‘site’ that is coupled to two (source S, and drain
D) electrodes and is additionally interacting with a collection of (molecular and broader environmental) vibrational
modes, as schematically pictured in Supplementary Figure 4. The molecular system is modelled as a single energy
level with the energy µ (which depends on the gate voltage Vg). As described in the main body of this work,
we assume that the vibrational modes interacting with the molecular energy level can be found in their thermal
equilibrium state at all times.

Reduction and oxidation rates
As discussed in the main body of this work, we model the overall charge transport as a sequence of electron hoppings
(oxidations and reductions) at the source and drain interfaces. We denote the rates of oxidation and reduction
processes as γ l

ox and γ l
red , respectively, the molecular electrode couplings are given by Γl , where l = S,D. The

reduction and oxidation rates at the source and drain interfaces are given by:

γ
l
red = (2−Ω)

Γl

h̄

∫
∞

−∞

dε fl(ε) kred(ε) ; (Supplementary Equation 1)

γ
l
ox = (1+Ω)

Γl

h̄

∫
∞

−∞

dε[1− fl(ε)] kox(ε) , (Supplementary Equation 2)

respectively, as given in the main body of this work. In the above, fl(ε) denotes the Fermi-Dirac distribution:
fl(ε) = (exp[(ε−µl)/kBT ]+1)−1 where µl is the chemical potential of the lead l. The parameter Ω depends on the
degeneracy of the molecular electronic level and takes the value of 0 in the case of even N and Ω = 1 otherwise. To
understand the physical meaning of the (2−Ω) and (1+Ω) factors let us consider a system which (for a given Vg)
is found in an even-N charge state at zero bias. As Vb is increased, the resonant transport (charging and de-charging
of the molecule) becomes possible. Since the N +1 charge state is doubly degenerate (it possesses an odd number of
electrons), the reduction rate is twice what would have been in the absence of this degeneracy – both spin-up and
spin-down electrons can charge the molecule. The efficiency of an electron hopping off the molecule, on the other
hand, is not affected since the N charge state is singly-degenerate. The opposite is true for an odd N.
The physical meaning of Supplementary Equation 1 and Supplementary Equation 2 is as follows. They describe the
effective hopping rate between a donor and an acceptor system, one of which is represented by a single (molecular)
energy level with the other one comprising a continuum of energy levels. To obtain an effective hopping rate, one
must therefore integrate over this continuum of energy levels (each of which can act as a donor/acceptor) weighted
by the Fermi distribution [or 1− fl(ε)] which describes the population of the above donor [acceptor] levels.
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In Supplementary Equation 1, Supplementary Equation 2, kred(ε) and kox(ε) are the molecular density of states
(DOS), and are given by:6

kred(ε) =
1
π

Re

[∫
∞

0
dt e+i(ε−µ)t/h̄e−t/τB(t)

]
; (Supplementary Equation 3)

kox(ε) =
1
π

Re

[∫
∞

0
dt e−i(ε−µ)t/h̄e−t/τB(t)

]
. (Supplementary Equation 4)

The above rates were derived using a second-order quantum master equation in the polaron-transformed frame. In
order to go beyond the conventional Born approximation (which does not capture the lifetime broadening) the free
system evolution was replaced with an effective one obtained through the equations of motion, see Ref.6 for details.
Therein, Γl = 2π|Vl|2ρl where Vl is the molecule-lead coupling strength (with the electrode l), ρl is the constant
density of states in the lead l (wide-band approximation), and τ−1 = (ΓS +ΓD)/2h̄ is the lifetime of the molecular
energy level. Overall, the damping term e−t/τ induces lifetime broadening in our description (the origins of which
can be traced back to the uncertainty principle which relates the uncertainty in energy of a quantum state to its
lifetime). Finally, B(t) is the phononic correlation function:

B(t) = exp
[∫

∞

0
dω

J (ω)

ω2

(
coth

(
βω

2

)
×
(

cosωt−1
)
− i sinωt

)]
, (Supplementary Equation 5)

where J (ω) is the phononic spectral density which describes the distribution of the vibrational modes weighted by
the strength of the electron-vibrational coupling. It is formally defined as:

J (ω) = ∑
q
|gq|2δ (ω−ωq) , (Supplementary Equation 6)

where gq is the strength of the coupling between the molecular electronic energy level and the mode with frequency
ωq. The phononic correlation function B(t) describes the nuclear (vibrational) dynamics accompanying the non-
adiabatic electron transfer. Semi-classically, it can be understood as a time-dependent Franck-Condon factor, see
Ref.7 for a detailed discussion.

Rate Equation model
In the present case, the overall quantum master equation describing the dynamics of the system pictured in
Supplementary Figure 4 can be reduced to a simpler rate equation model for the population of the empty PN and
charged molecular state PN+1:6

dPN

dt
=−

(
γ

S
red + γ

D
red
)

PN +
(
γ

S
ox + γ

D
ox
)

PN+1 ; (Supplementary Equation 7)

dPN+1

dt
=−

(
γ

S
ox + γ

D
ox
)

PN+1 +
(
γ

S
red + γ

D
red
)

PN . (Supplementary Equation 8)

We solve the above in the steady-state limit:
dPN

dt
=

dPN+1

dt
= 0. This yields:

PN =
γS

ox + γD
ox

γS
red + γD

red + γS
ox + γD

ox
; (Supplementary Equation 9)

PN+1 =
γS

red + γD
red

γS
red + γD

red + γS
ox + γD

ox
. (Supplementary Equation 10)

The overall current is given by:

I = |e|
(

γ
D
redPN− γ

D
oxPN+1

)
, (Supplementary Equation 11)
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which gives the expression given in the main body of this work:

I = |e|
γD

redγS
ox− γS

redγD
ox

γS
red + γD

red + γS
ox + γD

ox
. (Supplementary Equation 12)

Origin of Ω factors
To additionally justify the presence of the Ω prefactors in Eqs. (2) and (3) in the main body of this work let us
consider the N/N +1 transition in detail (where N corresponds to a non-degenerate neutral charge state with an
overall spin of zero). The set of rate equations for this scenario should account for the populations of three possible
states: the non-degenerate N charge state (for simplicity referred to as P0), and two degenerate N +1 charge state
with an overall spin of (+1/2) and (−1/2), denoted by P↑ and P↓, respectively. Then, this set of rate equations can
be compactly written as:

d
dt

P0
P↑
P↓

=

−2γ γ̄ γ̄

γ −γ̄ 0
γ 0 −γ̄

P0
P↑
P↓

 , (Supplementary Equation 13)

where γ is the overall reduction rate (for the spin-up or spin-down electrons):

γ = ∑
l=S,D

γl = ∑
l=S,D

Γl

h̄

∫
dε fl(ε)kred(ε) , (Supplementary Equation 14)

and γ̄ is the overall oxidation rate (again for the spin-up or spin-down electrons):

γ̄ = ∑
l=S,D

γ̄l = ∑
l=S,D

Γl

h̄

∫
dε[1− fl(ε)]kox(ε) . (Supplementary Equation 15)

We note that P0 +P↑+P↓ = 1 and that in the absence of magnetic field, P↑ = P↓. The steady-state populations can
now be easily found:

P0 =
γ̄

γ̄ +2γ
; (Supplementary Equation 16)

P↑ = P↓ =
γ

γ̄ +2γ
. (Supplementary Equation 17)

The electric current can be found at either molecule-lead interface. Considering, for instance, the source interface,
the electric current is given by:

I = e[2γSP0− γ̄SP↑− γ̄SP↓] , (Supplementary Equation 18)

which trivially leads to an expression equivalent to the one in the main body of this work (for Ω = 0).

High-temperature limit: Marcus theory
A number of simplifications to the above expressions can be made in the high-temperature limit.6 Firstly, we note
that the damping term e−t/τ in Supplementary Equation 3, Supplementary Equation 4 induces only broadening of the
IV characteristics. The broadening of the Fermi distributions in the leads will have the same effect on the transport
properties of the junction, and we can therefore ignore this damping factor for τ−1� kBT . Secondly, we can take the
high-temperature limits in the phononic correlation function in (Supplementary Equation 5): coth(ω/(2kBT ))≈
2kBT/ω; sin(ωt)≈ ωt, and cos(ωt)−1≈−ω2t2/2. This yields

B(t)≈ exp
(
−λ t2/β − iλ t

)
, (Supplementary Equation 19)
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where

λ =
∫

∞

0
dω J (ω)/ω (Supplementary Equation 20)

is the reorganisation energy. The above assumptions give the well-known Marcus expressions8–10 for the energy-
dependent hopping rates:

kl
red/ox(ε) =

√
1

4πλkBT
exp
(
−(λ ± (ε−µ))2

4λkBT

)
, (Supplementary Equation 21)

as discussed in the main body of this work, see Ref.6 for details.
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Supplementary Note 3 DFT calculations
Gaussian 095 was used to carry out geometry optimisations and frequency calculations for different charge states of
the molecules studied; B3LYP/6-31G(d) functional/basis set combination was used. From the results it is possible to
calculate ab initio values for electron-vibration couplings and generate a spectral density that accounts for the inner
sphere reorganisation of the molecules we have studied in nanogaps. For each vibrational mode an electron-vibration
coupling constant, Λq, can be obtained from

Λq = K
√

ωq

2h̄
, (Supplementary Equation 22)

where ωq is the vibrational frequency of mode q, and K is the Duschinsky shift vector.11 The shift vector is obtained
from (Supplementary Equation 23)

K = (mL′V−1/2)T (B−1x0− x′0) , (Supplementary Equation 23)

where x0 and x′0 are optimised coordinates in final and initial states, respectively. L′ is the (3N×3N−6) normal
mode matrix of the initial state outputted by Gaussian09, m is a (3N×3N) matrix that contains the masses of the
atoms along the diagonal three times, and V is a (3N− 6× 3N− 6) matrix that contains the reduced masses of
each vibration along the diagonal. The purpose of m and V is to mass-weight the normal mode matrix; B is the
axis-switching matrix.12

The total inner sphere reorganisation energy, λi, obtained by this method is given by the sum over the reorganisa-
tion energy for each mode:

λi = h̄∑
q

ωqSq , (Supplementary Equation 24)

where Sq = Λ2
q is the Huang-Rhys parameter.

Molecular structures
For the DFT work presented here, the molecular structures have been simplified in two ways. Firstly, the 3,5-
bis(trihexylsilyl)phenyl groups (used to enhance the solubility of our porphyrins) have been replaced by hydrogens.
Secondly, the long alkoxy chains on the anchors of (TDP)2P and (HBC)2P have also been replaced by -OH groups.
The 3,5-bis(trihexylsilyl)phenyl groups are twisted to an angle of 70◦ with respect to the porphyrin ring, and therefore
only weak conjugation will be present between the π-systems of these groups. The electrons of the alkyl chains are
localised in σ -bonds. Therefore the substitutions will have a minimal influence on the electronic properties of the
porphyrins, whilst greatly reducing the computational cost of the ab initio calculations presented in the following
sections. One additional step was added to the analysis – it was assumed that the anchor groups of the molecule are
bound to graphene and this ‘clamping’ suppresses vibrations that exhibit large out-of-plane motions of the anchor
groups. Therefore the vibrations that contain large out-of-plane motions of the anchor atoms (z > 0.02 Å amu1/2)
are filtered from the vibrational analysis.13 The sliding energy (the change in energy when moving the molecule
parallel to the substrate) is significantly lower than the change in energy associated with moving the molecule in
the perpendicular direction (DFT calculations suggest the sliding energy is around 1% of the binding energy in the
perpendicular direction) and therefore vibrations in which there are in-plane motions (e.g. x & y) are retained.13, 14

This filtering did not make a difference to the (pyrene-2)2P, (HBC)2P, (TBF)2P coupling constants, however filters
some vibrations from the analysis of (pyrene-1)2P and (TDP)2P as there are changes in the angle between the
π-anchors and central porphyrin unit depending upon the charge state of the molecule.

Ab initio electron-vibration coupling constants
In Supplementary Figures 5 to 11 we plot the electron-vibration coupling constants of the above DFT calculations
for the molecular compounds pictured in Supplementary Figure 2. Supplementary Table 1 shows the resulting
(inner-sphere) reorganisation energies.
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Anchor λi (N−1→ N) (meV) λi (N→ N +1) (meV)
TDP 67 55

Pyrene-1 88 124
Pyrene-2 72 56

TBF 27 50
HBC 132 61

Supplementary Table 1. DFT-calculated reorganisation energies for various charge transitions of the
zinc-porphyrins coupled with anchors used in the experiments. N is the number of electrons on the molecule in the
neutral state.

Molecule M – (TDP)2P

Supplementary Figure 5. (TDP)2P electron-phonon coupling constants. Top: optimised neutral geometry of
molecule M – (TDP)2P. Bottom: electron-phonon coupling constants, and inner reorganisation energies for the
N−1/N and N/N +1 transitions.
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Supplementary Figure 6. Electron-phonon couplings constants below 50 meV, showing the presence of a single
mode around 6 meV that is strongly coupled to the N−2/N−1, N−1/N, and N/N +1 transitions.
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(1-pyrene)2P

Supplementary Figure 7. (1-pyrene)2P electron-phonon coupling constants. Top: optimised neutral geometry
of (1-pyrene)2P. Bottom: electron-phonon coupling constants, and inner reorganisation energies for the N−1/N
and N/N +1 transitions.
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(2-pyrene)2P

Supplementary Figure 8. (2-pyrene)2P electron-phonon coupling constants. Top: optimised neutral geometry
of (2-pyrene)2P. Bottom: electron-phonon coupling constants, and inner reorganisation energies for the N−1/N
and N/N +1 transitions.
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(HBC)2P

Supplementary Figure 9. (HBC)2P electron-phonon coupling constants. Top: optimised neutral geometry of
(HBC)2P. Bottom: electron-phonon coupling constants, and inner reorganisation energies for the N−1/N and
N/N +1 transitions
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(TBF)2P

In the (TBF)2P structure there is an sp3-hybridised carbon between the acetylene and the π-anchor, and the
anchor rotates with respect to the porphyrin upon geometry optimisations of different charge states. This leads to
unphysically large values of Λq and λi. Supplementary Figure 10 shows the HOMO/LUMO are localised upon the
porphyrin moiety, therefore we assume geometric changes will also be localised to this portion of the molecule, and
to calculate the electron-phonon couplings of the charge transitions of (TBF)2P we can replace the TBF anchors
with hydrogen atoms.

Supplementary Figure 10. Simplification of (TBF)2P. a HOMO and b LUMO of neutral (TBF)2P, c the
sp3-carbons are highlighted by the red asterisks on the optimised neutral geometry. d The optimised neutral
geometry of truncated molecule used for calculating the electron-phonon couplings for (TBF)2P transitions.
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Supplementary Figure 11. (TBF)2P electron-phonon coupling constants. Top: optimised neutral geometry of
(TBF)2P, electron-phonon coupling constants. Bottom: inner reorganisation energies for the N−1/N and N/N +1
transitions.
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Supplementary Figure 12. Schematic representations of two vibrational modes (with frequencies of 6 and 175
meV) that are relatively strongly coupled to the electronic degrees of freedom in the (TDP)2P structure.

Examples of vibrational modes
We finish this section by schematically plotting in Supplementary Figure 12 two relatively strongly coupled
modes calculated for the N−1/N transition of the molecule M [(TDP)2P]. The low-frequency mode (at 6 meV)
corresponds to a collective twist of the anchor groups with respect to the porphyrin core. The higher-frequency
mode is a combination of various bond stretches, atom rockings and wagings. We note, however, that the exact
nature of the considered vibrational modes is inconsequential to the conclusions of this work.

The effect of bulky side-groups
In the above, to make our calculations tractable, we have ignored the bulky side groups (shown in Section Supple-
mentary Note 1). This can be justified by the fact that, as shown in Section Supplementary Note 1, the frontier
orbitals have very little electron density on the aforementioned side groups. Consequently, the charging of the
molecule is not expected to alter the equilibrium nuclear positions of atoms in these bulky side-groups.
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Supplementary Note 4 Substrate reorganisation energy
As discussed in the main body of this work, besides the molecular vibrational modes, the molecular electronic energy
level can be also coupled to the phononic modes of the substrate. Here, we limit ourselves to a phenomenological
description of these interactions, and assume that they can be accounted for the following spectral density:

J (ω) =
λo

2

(
ω

ωc

)3

e−ω/ωc , (Supplementary Equation 25)

where λo is the reorganisation energy for this (outer-sphere) interaction, and ωc is the cut-off frequency. The average
frequency is given by 〈ω〉= 4ωc.

One should anticipate that the cut-off frequency an intrinsic property of the substrate while the reorganisation
energy (which quantifies the molecule-substrate vibrational coupling strength) depends on the orientation and
position of the zinc-porphyrin on the substrate and should be expected to vary between different devices.

The aforementioned (surface-induced) reorganisation energy can be estimated (for a given molecule-surface
distance d) as:15, 16

λo

2
≈
(

εr0−1
εr0 +1

− εr∞−1
εr∞ +1

)
Q̃2

F

16πε0d
+

(
4εr0

(εr0 +1)2 −
4εr∞

(εr∞ +1)2

)
Q̃2

M

16πε0(d +atot)
(Supplementary Equation 26)

In the above, εr0 is the static dielectric constant of the insulator (SiO2) film: εr0 = 3.9; εr∞ is the optical dielectric
constant: εr∞ = 2.3. Q̃F,M are the effective charges (fractions of the electric charge e) defined in (B8) of Ref.16 which
depend on the porphyrin-substrate separation, d. We approximate the porphyrin as a 7×7 Å square with a uniformly
distributed charge (assuming the additional charge density is not localised on the anchor groups). Furthermore,
atot is the total width of the insulator film, atot = 300 nm. Consequently, the second term on the right-hand side of
(Supplementary Equation 26) can be largely ignored.

We estimate that the porphyrin-substrate distance is roughly d∼ 0.6 nm (as inferred from the AFM measurements
of the porphyrin compounds deposited on highly oriented pyrolytic graphite, see SI of Ref.4). Using formula
(Supplementary Equation 26) we therefore estimate the outer-sphere reorganisation energy as λo ∼ 200 meV.

When modelling the 77 K data, we set ωc to 25 meV which results in an excellent match of the model used here
to the experimental data for all considered devices (vide infra), as well as yielding λo values which correspond to
porphyrin-substrate distances of between roughly 0.5 and 1 nm (in agreement with the AFM studies), see Section
Supplementary Note 7.

We note however that the effectiveness of our model (quality of the fit of the IV characteristics) is largely
unaffected by the exact choice of ωc (within the range of roughly 10 to 50 meV). In Supplementary Figure 13 we
compare the experimental and fitted IV characteristics for different values of ωc. A reasonable qualitative agreement
can be reached regardless of the exact value of ωc. Quantitatively, the model used here performs best for ωc ∼ 25
meV. This is further shown in Supplementary Figure 14 where we compare the experimental and calculated stability
diagrams (for the molecule-lead couplings and λo extracted in Supplementary Figure 13) again for different values
of ωc.
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Supplementary Figure 13. Comparison of fits for different ωc values. Bottom: Experimental and fitted IV
characteristics for devices B–D. The latter were obtained with fixed values of ωc (as specified). Top: differences
between the experimental and fitted IV characteristics. All extracted values in units of eV.

Supplementary Figure 14. Experimental and calculated stability diagrams for devices B–D. The latter were
obtained through fitting of the IV characteristics with the values of ωc between 5 and 100 meV, as specified.
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Supplementary Figure 15. Full stability diagram for device A. a,c Stability diagrams and b,d conductance
maps for device A measured at T = 7 K. N denotes the neutral molecular structure.

Supplementary Note 5 Supporting data for device A
Supplementary Figure 15 shows the full stability diagram for device A measured within a larger bias and gate voltage
range at T = 7 K. The charge states are assigned using the method outlined in Ref 17 The highest-current corners of
the resonant transport regions are the bottom-left of N−1/N transition and the top-right of the N−2/N−1 charge
transition. Supplementary Figure 15(d) clearly shows that the lowest-energy excited state lines run parallel to the
edges of the Coulomb diamond. They are therefore very likely to be a result of the electron-vibrational interactions.

Furthermore, Supplementary Figure 16 shows the experimental, as well as calculated, zero-bias conductance of
device A at T = 5 K. The two theoretical results were obtained with and without lifetime broadening respectively,6, 18

and using the parameter values extracted in the main body of this work. As can be seen in Supplementary Figure 16,
the zero-bias conductance is overestimated by ∼ 30% in the absence of lifetime broadening.
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Supplementary Figure 16. Experimental and calculated zero-bias conductance of device A at T = 5 K.
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Supplementary Note 6 Supporting 5 K data (device E)
Supplementary Figure 17 shows the conductance map (left) and the averaged conductance peaks (right) of device
E which comprises the molecule M [(TDP)2P structure]. The observed conductance peaks very well match those
observed in device A, c.f. Figure 1(c) in the main body of this work, which confirms their molecular (vibrational)
origin.

Supplementary Figure 17. Device E. Left: Conductance map of device E at 5 K, Right: the conductance of the
resonant triangles as an average of the lines running parallel to the edge of the triangle. The modes correspond very
well to those of device A.
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Supplementary Note 7 Supporting 77 K data
In order to enable a more detailed comparison of the experimental and theoretically-predicted transport behaviour, in
Supplementary Figures 18 to 20 we plot a number of experimental gate traces and compare them to those predicted
by the quantum model and Marcus transport theories.

Supplementary Figure 18. Device B. Left: Experimental and theoretical stability diagrams at 77 K (from the
main body of this work). Right: Comparison of experimental and theoretical gate traces.
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Supplementary Figure 19. Device C. Left: Experimental and theoretical stability diagrams at 77 K (from the
main body of this work). Right: Comparison of experimental and theoretical gate traces.
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Supplementary Figure 20. Device D. Left: Experimental and theoretical stability diagrams at 77 K (from the
main body of this work). Right: Comparison of experimental and theoretical gate traces.
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Devices F-N

Supplementary Figure 21. Charge transport data and comparison of fits for devices F–N. Left: IV traces at
resonance of the devices at 77 K (data from Ref. 1) and the fit to the Marcus model (orange) and the quantum model
(green). Right: charge stability diagrams of the devices at 77 K, and the reconstructed stability diagrams from the
fits on the left according the quantum model, or the Marcus model.
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device Molecule ΓS (eV) ΓD (eV) λo (eV) distance (Å)
B (TDP)2P 2.19×10−2 5.65×10−3 0.18 7.1
C (TDP)2P 4.33×10−6 2.51×10−3 0.24 5.1
D (TDP)2P 1.61×10−3 5.28×10−5 0.22 5.8
F (2-pyrene)2P 1.41×10−5 5.43×10−6 0.11 13
G (2-pyrene)2P 1.06×10−5 7.26×10−5 0.19 6.7
H (HBC)2P 3.32×10−7 5.55×10−4 0.14 9.7
I (HBC)2P 1.76×10−6 1.06×10−5 0.13 10.4
J (HBC)2P 3.44×10−6 1.51×10−6 0.20 6.3
K (TBF)2P 7.60×10−6 3.04×10−3 0.14 9.9
L (TBF)2P 2.57×10−6 1.61×10−5 0.13 9.3

2.74×10−6 2.04×10−5 0.13 10.5
M (TBF)2P 2.99×10−6 1.23×10−5 0.17 7.7
N (1-pyrene)2P 7.60×10−4 1.41×10−3 0.25 4.8

Supplementary Table 2. Fitting parameters for all the 77 K devices (with ωc = 25 meV):

In the above, the distance of the porphyrin from the surface (SiO2) was approximated in accordance with
Refs.15, 16 (see Section Supplementary Note 4), by modelling the porphyrin as a 7×7 Å square with a uniformly
distributed charge and an infinitely thick dielectric. The distances obtained from the fitted values of λo are plotted in
Supplementary Figure 22.

Supplementary Figure 22. Substrate reorganisation energy λo as a function of the porphyrin distance to the
substrate. The porphyrin was modelled as a 7×7 Å square with a uniformly distributed charge. The extracted
porphyrin-substrate distances are in agreement with the AFM studies of Limburg et al.4
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Supplementary Note 8 Alternative intermediate-temperature models
As discussed in the main body of this work, Marcus theory (MT) fails to correctly describe the transport behaviour
of considered molecular junctions at the liquid-nitrogen temperature, T = 77 K. Here, we attempt to account for the
empirical data with two low-temperature extensions of the conventional Marcus theory.

Firstly, we consider the Low-Temperature Corrected MT (LTC-MT) derived in Ref.6. It is derived from the
phononic correlation function in (Supplementary Equation 5) by retaining higher-order terms while taking the
high-temperature limit. The molecular DOS are given by:6

kl
red/ox(ε) =

1
π

√
π

4λkBT +χ/3kBT
exp
(
− (λ ± (ε−µ))2

4λkBT +χ/3kBT

)
, (Supplementary Equation 27)

where the low-temperature correction is introduced through the presence of additional parameter

χ =
∫

∞

0
dω ω×J (ω) , (Supplementary Equation 28)

which accounts for the coupling to high-frequency vibrational modes for which the high-temperature assumption of
the conventional Marcus theory is not justified.

Secondly, we shall make use of Marcus-Jortner theory.19 It separates the low-frequency environmental coupling
(which is treated as in the conventional Marcus theory with the reorganisation energy λo) and the high-frequency
molecular modes. The latter are approximated by a single effective mode with frequency ω0 which couples to the
electronic degrees of freedom with the Huang-Rhys parameter S. The molecular DOS are then given by:19

kl
red/ox(ε) =

1
π

√
π

4λkBT

∞

∑
m=0

e−S exp
−(λo +mω0± (ε−µ))2

4λokBT
Sm

m!
(Supplementary Equation 29)
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Supplementary Figure 23. Charge transport data and comparison of fits to intermediate-temperature models for
devices F–N. Bottom: IV traces at resonance of devices at 77 K and the fit to the quantum model from the main
body of this work (red) and the LTC-MT (blue), and Marcus-Jortner theory (green). Top: Differences between the
fitted and experimental IV characteristics.
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Supplementary Figure 23 shows the experimental IV traces on resonance as well as the theoretical fits to
the quantum approach (from the main body of this work), LTC-MT and Marcus-Jortner theory. LTC-MT yields
comparable fits to the (more sophisticated) quantum approach. On the other hand, the Marcus-Jortner approach tends
to, in general, perform worse than the above methods as it gives rise to artefacts akin to those of the usual Marcus
treatment. The artefacts are visible most clearly in 5 out of 12 devices - D, F, G, I, and L. Despite this, it still performs
better than the conventional Marcus approach although at the cost of two additional fitting parameters. We then use

Supplementary Figure 24. Experimental and calculated stability diagrams for devices B–D, F–M at 77 K.

the parameters from these fits to reconstruct the full stability diagrams and compare these to experimental data, this
is shown in Supplementary Figure 24. Despite reproducing the IV traces well, LTC-MT overestimates the degree of
vibrationally-induced broadening of the IV characteristics off resonance, in agreement with earlier predictions.6.
This can be seen most evidently in the stability diagrams of devices such as B, C, F, G, and H. The performance of
Marcus-Jortner approach is comparable to that of the conventional Marcus theory as it again predicts early plateaus
in the IV characteristics, c.f. Supplementary Figure 21. Overall, Marcus-Jortner and LTC-MT approaches both
have drawbacks when fitting certain devices to IV traces and stability diagrams respectively, as described above.
Therefore, by considering both Supplementary Figure 23 and Supplementary Figure 24, we conclude our quantum
approach provides the most robust description of the device B-M dataset.
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