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S1. Additional results of T-dependence of phonon modes  

 Figure S1 shows T-evolution of the P1, P2 and P3 modes. With increasing 

temperature, the intensity of P1, P2 and P3 modes decrease gradually, disappearing for T > 

Ts, thus confirm that these three modes exist only in the low-T ferroelectric phases. For 

example, the P1, P2 and P3 modes disappear in the spectra collected at 140 and 145 K 

(see Fig. S1B). It should be noted that the broad and small hump (below P3 mode) are 

irrelevant to the phase transition discussed here since it located at the same position with 

no change for all measured temperatures (Fig. S1C). A zoom plot of the P2 mode can be 

found in the inset of Fig. S1B, which clearly show that the mode disappears when T > Ts. 

The intensities shown in Fig. 1C have been normalized with respect to the intensities at 

10 K and by a Bose-Einstein factor. 

Based on the above observation (gradually decreasing of the intensity of P1, P2 and 

P3 modes and the non-observation of these modes for T > Ts), along with the behavior of 

order parameter extracted from the intensity of these modes, we conclude that the 

ferroelectric phase transition is a second-order order-disorder transition. 

 

Figure S1. T-dependence of Raman spectra for P1, P2 and P3 modes displayed (A) with and (B) 

without an equal amount of vertical shift for each spectrum. The inset is the T-dependence of P2-mode 

near the phase transition temperature Ts ~137K. (C) The Raman spectra above Ts in the energy range 

where P1, P2 and P3 modes appear. There is a T-independent mode marked by arrow. 

Figure S2 provides the detailed evolution of the three Eg modes with temperature 



across the ferroelectric phase transition. Although both 2Eg and 3Eg are the modes 

involved with the vibration of Li, it is 3Eg mode which is associated with the vibration of 

Li like the Au mode (Fig. 1 in the main text) and couples with the Au mode. Thus, 3Eg is 

the best candidate to monitor the ferroelectric phase transition due the polar instability 

related to the Au mode. Figure S2A displays the Raman spectra as a function of 

temperature, from T = 10 to 300 K for an energy range covering all phonon modes (three 

P and three Eg modes). P1, P2 and P3 appears only below Ts when the system is in 

ferroelectric phase, while three Eg modes appear in both paraelectric and ferroelectric 

phase. The evolution of measured phonon energy and linewidth for three Eg modes are 

displayed in Fig. S2B-G. Anomalies of these quantities near Ts are evident with the 

largest changes for the 3Eg mode. It should be noted that these figures are obtained by 

fitting the spectra with Fano line shape, where the detail fitting procedure can be found in 

section S2. 

 In order to provide the frequency shift intrinsically due to the ferroelectric phase 

transition, the ordinary T-dependent phonon frequency 0(T) without any phase transition 

has to be subtracted from measured data. Considering the contributions due to the thermal 

effects, 0(T) can be expressed as ω0(T) = ω0 − C (1 +
2

e

ℏ𝜔0
2𝑘𝐵𝑇−1

) and obtained by 

fitting the measured frequency data ph(T) for T > 180 K to the expressed function, where 

0 is the extrapolated frequency at T = 0 K. The fitting results of 0(T) for these three Eg 

modes are shown as dashed curves in Fig. S2B-2D as compared with the measured ph(T) 

(blue circles). The frequency shift intrinsically due to the phase transition,   

ph(T)-0(T), can be obtained and the results of the relative Raman shift (/0(Ts) for 

the three Eg modes are presented in Fig. 1E in the main text. The T-evolution of phonon 

linewidth (red circles) for these modes are shown in the same scale and the thermal 

contribution (dashed lines) are modeled with function Γ0(T) = Γ0 (1 +
2

e

ℏ𝜔
2𝑘𝐵𝑇−1

), where 

Γ0 is the linewidth at 10 K (precisely, it should be at T = 0K). Compared with the 

linewidth of 1Eg and 
2Eg modes, the linewidth of 3Eg mode exhibits the largest changes 

with a diverge feature near Ts. The above quantitative analysis of these three Eg modes 

(frequency and linewidth) suggest that the 3Eg mode, which is dominated by the Li 

vibration, is unique. 



 

Figure S2. Overview of observed Eg modes and the uniqueness of the 3Eg modes. (A) T-dependent 

Raman spectra of the observed Eg modes. (B-G): T-dependence of the frequency and linewidth of 

(B) 1Eg, (C) 2Eg, and (D) 3Eg mode, respectively. The ordinary T-dependent phonon frequency 

0(T) (linewidth 0(T)) are depicted by the dashed blue (black) curves.  

S2. Details of the fitting procedure 

To quantify the observed changes of the 3Eg mode, we have fitted the temperature 

evolution of the spectrum with Fano function (𝐼ω =
𝐼0(𝑞+𝜀)2

1+𝜀2 ) plus a linear background 

(𝐼back = 𝐴𝜔 + 𝐶), where 𝜀 = (𝜔 − 𝜔0)/Γ with 𝜔0 is the bare phonon frequency and 

Γ is the linewidth. q is the asymmetry parameter and 1/q is the asymmetry factor. To 

subtract a reliable background, we used the high-energy spectrum section between 560 

and 590 cm-1 (far away from any peak) for the background fitting. The obtained slope (A) 

of the linear background monotonically changes with temperature from almost zero at 10 

K to ~ -0.4 at 300 K. 

In Figure S3, we show the Raman spectra and the corresponding fitted line shapes at 

several selected temperature, 10 K, 90 K, 140 K and 300 K, from which one can see that 

the Fano function gives a good description of the line shape of 3Eg mode.   



 

Figure S3. Raman spectra and the corresponding Fano-fitted line shape (solid black lines) of the 3Eg 

mode at 10 K, 90 K, 140 K and 300 K. The dashed lines represent the fitted linear background. And 

the fitting parameters are shown in the table below.  

Temperature 

T (K) 

Frequency 

𝜔0 (cm-1) 

Linewidth 

Γ (cm-1) 

Asymmetry 

factor |1/q| 

Slope of 

background 

10 488.3 8.4 0.006 0.0153 

90 488.4 11.1 0.005 -0.0811 

140 496.5 26.2 0.06 -0.1961 

300 493.0 27.2 0.07 -0.3782 

Table 1: Fitting parameters for the 3Eg spectra at 10 K, 90 K, 140 K and 300 K. 

S3. Pseudospin-phonon interaction 

According to the pseudospin-phonon interaction model developed by Schaack and 

Winterfeldt [1], the Hamiltonian 𝐻𝜎−𝑝ℎ is given by 

𝐻𝜎−𝑝ℎ = 𝐻𝐿 +  𝐻𝑆 +  𝐻𝐿,𝑆 

where H𝐿 is the harmonic lattice Hamiltonian, H𝑆 is the pseudospin Hamiltonian and 

H𝐿,𝑆 is the term describing the interaction between phonons and pseudospins, which can 

be expressed as 

H𝐿,𝑆 =  ∑ 𝑈(𝑘)

𝑘

Q(𝑘)S(𝑘) +  ∑ 𝑈(𝑘, 𝑘 ,

𝑘,𝑘′

)Q(𝑘)Q∗(𝑘, 𝑘 ,)S(𝑘 ,) + ⋯ 

Here, Q(𝑘) represents the normal coordinate of a given normal mode with the wave 

vector 𝑘, 𝑈(𝑘) a coupling constant and 𝑆(𝑘) the Fourier transform of the z projection 

of the pseudospin operator. 

In order to account for the frequency shifts, we need to include the terms that are at 



least quadratic in the normal mode coordinates. In such a case, the renormalization of the 

phonon frequencies for k′ = 0 can be expressed as 

ω𝑝ℎ
2 = 𝜔0

2 + 2𝑈(𝑘)〈𝑆(0)〉, 

where 0 is the phonon frequency without coupling to pseudospin and 𝑈(𝑘) represents a 

coupling constant. By assuming that the mean value of 𝑆(0) is proportional to the order 

parameter, i.e., 𝑃𝑠 ∝ 〈𝑆(0)〉, we obtain the Eq. (1) given in the main text. 

On the other hand, in this model, the critical broadening of the linewidth of phonon is 

due to the energy fluctuations of the phonon modes and can be expressed as 

Γ𝑠𝑝
2  =  〈(𝜔𝑝ℎ − 〈𝜔𝑝ℎ〉)

2
〉 ∝  〈𝑆2(0)〉 − 〈𝑆(0)〉2  ∝  〈𝑃2〉 − 〈𝑃〉2 =  

𝑘𝑇𝜒(0)

𝑉
      

where 𝑉 is the volume of the crystal, 𝜒(0) is the dielectric susceptibility and 〈𝑃〉, 

〈𝑃〉2 represents the mean and mean square of the polarization, respectively. The above 

equation is exactly Eq. (2) in the main text. 

 

S4. Magnetoresistance measurements 

To further investigate the electronic scattering and the message of the Fermi surface, 

we performed magnetoresistance (MR) measurements for the present sample at 

representative temperatures (Fig. S4A). One can see that the MRs increase monotonically 

with decreasing temperature, where the magnetoresistance MR =
𝜌(𝐻)−𝜌(0)

𝜌(0)
, 𝜌(𝐻) and 

𝜌(0) represents the transverse magnetoresistance at a magnetic field H and that at zero 

field at a given temperature, respectively. Although the MRs are very weak, i.e., less than 

3% at 14 T and 2 K, they exhibit a well 𝐻2 dependence for the whole field range. The 

semiclassical transport theory [2] has predicted that if only one isotropic relaxation time 

is present in a solid-state system, Kohler’s rule will hold. it can be written as 

MR =  
𝜌(𝐻) − 𝜌(0)

𝜌(0)
=  

Δ𝜌

𝜌(0)
= 𝐹(𝐻𝜏)             (5) 

where, 𝜏 represents the relaxation rate. If the factor 𝑚∗

𝑛𝑒2⁄  does not change with 

temperature, equation (5) can be simplified (since 𝜌(0) =  𝑚∗

𝑛𝑒2𝜏⁄ ) 

MR =  
𝜌(𝐻) − 𝜌(0)

𝜌(0)
=  

Δ𝜌

𝜌(0)
= 𝐹 (

𝐻

𝜌(0)
)              (6) 

Then the magnetoresistance MR ∝
𝐻2

𝜌2(0)
 because of the 𝐻2 dependence of the MRs 

in the present system (see Fig. S4A). Therefore, a plot of MR versus 
𝐻2

𝜌2(0)
 (Kohler’s plot) 



is expected to collapse into a single T-independent curve if the Kohler’s rule is obeyed. 

Figure S4B presents the Kohler’s plot of our data at several representative temperatures. 

Clearly, the MR data measured at different temperatures do not collapse into a single 

T-independent curve, and thus, the Kohler’s rule is not obeyed in LiOsO3. 

We now consider four possible explanations for the violation of Kohler’s rule in 

LiOsO3, within the framework of semi-classical transport theory. 

(i) The electronic structure varies with temperature due to the structure transition. This 

can explain the violation of the Kohler’s rule and the strong temperature dependence of 

the RH. However, to the best of our knowledge, almost all calculations find little changes 

of the band structure between the two phases [3, 4, 5]. What’s more, if the violation of 

Kohler’s rule is due to the change of electronic structure, the Kohler’s rule should hold 

when the temperature is far below Ts because of the stability of electronic structure at the 

low temperatures. However, this is inconsistent with our observations. 

(ii) There is more than one type of carrier and their mobility have different temperature 

dependences (multiband effect). To illustrate how this can lead to the violation of the 

Kohler’s rule we consider the case of two band model [2]. In this model, MR can be 

expressed as follows by omitting the higher-order term of 𝜇0𝐻 

Δρ 𝜌(0)⁄ ≃  
𝜎1𝜎2(𝜇1 − 𝜇2)2𝐵2

(𝜎1+𝜎2)2
                      

where 𝜎𝑖 = 𝑛𝑖𝑒
2𝜏 𝑚𝑖⁄  and 𝜇𝑖 = 𝑒𝜏 𝑚𝑖⁄  are the conductivity and the mobility of the 

ith-band, respectively, with 𝑛𝑖 and 𝑚𝑖 are the charge-carrier density and the effective 

mass of the ith-band, respectively. The negative value and linear field dependence of ρxy 

(Fig. 3A) indicates that all carriers should be electron type and the small 

magnetoresistance (Fig. S4A) at the whole temperatures suggest that these electrons 

should have similar mobility. Thus, the multiband effect is also unlikely the cause of the 

violation of Kohler’s rule. 

(iii) The density of charge carrier varies with temperature. For this case, equation (6) 

will not be held, and then a plot of MR versus 
𝐻2

𝜌2(0)
 will not collapse into a single curve. 

However, equation (5) is still to hold, and through which we get that 1 𝜏⁄  ∝ 𝑀𝑅−
1

2  ∝

 𝑇2.4, as shown in the Fig. S4C. And then we get that the density of carrier n changes as 

𝑇−1.1 , since 𝜌(0) =  𝑚∗

𝑛𝑒2𝜏⁄  and ρ  T3.5 (Fig. S4D). The resultant T1.1-dependence 

of the density of carrier means that the absolute value of 𝑅𝐻  will increases with 

increasing temperature, which is inconsistent with our observations. 



 

Figure S4. Anisotropic electron scattering rate evidenced by magnetoresistance measurements. (A) 

Field-dependence of magnetoresistance 
Δ𝜌

𝜌(0)
. The solid lines are a H2 fit to the measured data at 

corresponding temperatures. (B) Kohler’s plot [see Eq. (6)] of the magnetoresistance. (C) 

T2.4-dependence of the MR−1/2 at 14 T. The magnetoresistance (MR) at 14 T was obtained through the 

fitting lines in (A). (D) T3.5-dependence of the electrical resistivity ρ for T < Ts. The lines in (B) and (C) 

are a linear fit to the corresponding data and the line in (D) is a T3.5 fit to the electrical resistivity.  

 (iv) The T-dependence of scattering rate varies significantly at different points over 

the Fermi surface. In this case, the only one isotropic relaxation time assume of Kohler’s 

rule will not be held and leading to the violation of the Kohler’s rule. The strong 

T-dependence of anisotropic scattering can also give rise to a strong temperature 

dependence of Hall coefficient 𝑅𝐻, since it is given by [2] 

𝑅𝐻 =  
1

𝑛𝑒

〈𝜏2〉

〈𝜏〉2
    

where 〈… 〉 denotes an average over the Fermi surface. This explanation is consistent 

with our observations. 



Figure S4 displays the T-dependence of the magnetoresistance 
Δ𝜌

𝜌(0)
 and the graphic 

evidence of the violation of Kohler’s rule. As shown in Fig. S4A, LiOsO3 has a rather 

small magnetoresistance (< 3%) even at very low temperature. Figure S4B presents a plot 

of 
Δ𝜌

𝜌(0)
 versus 

𝐻2

𝜌2(0)
. The data at different temperatures do not collapse into a single line, 

indicating the violation of Kohler’s rule. By analyzing the T-dependent 

magnetoresistance and electrical resistivity data, we conclude that the scattering rate of 

electron over the Fermi surface are anisotropic. 

 

S5. Details of the theoretical model 

   In this section, we discuss some details of the pseudospin-fermion model we 

proposed. The Hamiltonian is given in Eq. 4 of the main text. To construct this model, we 

first note that in the ferroelectric phase compared to the Li ion displacement, the shifts of 

Os and O ion positions are negligible [4, 5]. We thus assume zero displacement of Os and 

O ions in the ferroelectric phase and describe the Li ion displacement by an Ising 

pseudospin variable 𝜎𝑧, since a Li ion could take either of two possible positions. The 

long-range Coulomb repulsion between two Li+ ions generates an effective ferroelectric 

coupling between two pseudospins (𝐽𝑖𝑗 > 0 in Eq. 4 of the main text). 

   As another simplification we adopted, we assume that besides the positively charged 

Li+ ions, all charges are distributed around the Os positions (so that the Os ions are 

effectively negatively charged). This can be achieved theoretically by symmetrizing the 

electron wave functions on O ions. With these assumptions, we can construct a 

tight-binding model for the electrons located on Os ions that are responsible for the 

metallicity of the system. The model generally includes both Os 5d and O 2p orbitals, and 

the tight-binding parameters can be obtained by fitting to DFT band structure [4, 5]. 

   The Coulomb interaction between the Li+ ions and electrons in the system gives rise 

to couplings between the pseudospins and itinerant electrons. To a first-order 

approximation, the Li+ displacement acts a static electric field proportional to 𝜎𝑧 on the 

itinerant electrons. Such an electric field leads to a Stark effect to the electrons, which 

mixes electron wavefunctions in orbitals with different parities. This effect, in particular 

the hybridization between the Os 5d and O 2p orbitals, has been taken into account by the 

second term of Hamiltonian in Eq. 4 of the main text. Because of the broken inversion 

symmetry by the ferroelectric distortion, the hybridization gives rise to a 

noncentrosymmetric distribution of the electron wave functions, as shown in Fig. 4A of 

the main text. The electron density then has a spatially inhomogeneous distribution, with 

higher electron density closer to the displaced Li+ ions (see Fig. 4B of the main text). In 

this way, the ferroelectric polarization generated by the Li+ distortion is partially screened 

by the itinerant electrons. 



   To see how the itinerant electrons interplay with the local electric dipoles 𝜎𝑧, we first 

define a hybridized basis of the itinerant electrons 

                    𝑐𝑖± =  
1

√2
(𝑐𝑖𝑑  ± 𝑐𝑖𝑝)         

The Hamiltonian in Eq. 4 of the main text is then rewritten to  

 𝐻 =  ∑ 𝑡𝑖𝑗
𝛼𝛽

〈𝑖𝑗〉𝛼𝛽

𝑐𝑖𝛼
† 𝑐𝑗𝛽 −

𝐾

2
 ∑(𝑐𝑖+

† 𝑐𝑖+ − 𝑐𝑖−
† 𝑐𝑖−)

𝑖

(𝜎𝑖+𝛿
𝑧 + 𝜎𝑖−𝛿

𝑧 ) − ∑ 𝐽𝑖𝑗

〈𝑖𝑗〉

𝜎𝑖+𝛿
𝑧 𝜎𝑗+𝛿

𝑧   

+ 𝐻𝜎−𝑝ℎ                                        

Here we can define a orbital pseudospin operator 𝜎𝑐𝑖
𝑧 =  𝑐𝑖+

† 𝑐𝑖+ − 𝑐𝑖−
† 𝑐𝑖−. The itinerant 

electrons interact with the local electric dipoles via a dipole-dipole interaction 𝜎𝑐𝑖
𝑧 𝜎𝑖±𝛿

𝑧 . 

𝐻𝜎−𝑝ℎ refers to the pseudospin-phonon coupling that accounts for the phonon anomaly 

at Ts discussed in the main text. Its explicit expression can be found in Sec. S3 or Ref. [1]. 

It is irrelevant to the interaction between itinerant electrons and pseudospins and is hence 

dropped in the following discussion. We can then integrate out the itinerant electrons 

from the Hamiltonian, and obtain an effective Hamiltonian for the local electric dipoles 

𝜎𝑖±𝛿
𝑧  : 

𝐻𝑒𝑓𝑓 = − ∑(𝐽𝑖𝑗 + 𝐽𝑖𝑗
𝑐 )𝜎𝑖+𝛿

𝑧 𝜎𝑗+𝛿
𝑧

〈𝑖𝑗〉

      

where 𝐽𝑖𝑗
𝑐  ∼  [2𝑘𝐹𝑟𝑖𝑗 cos(2𝑘𝐹𝑟𝑖𝑗) − sin(2𝑘𝐹𝑟𝑖𝑗)] 𝑟𝑖𝑗

4⁄  is the effective dipole-dipole 

interaction mediated by itinerant electrons. It has a form similar to the RKKY interaction 

[6], and depending on the inter-dipole distance, it can be either ferro-electric (𝐽𝑖𝑗
𝑐 > 0) or 

anti-ferroelectric (𝐽𝑖𝑗
𝑐 < 0). In particular, for small Fermi momentum 𝑘𝐹, 𝐽𝑖𝑗

𝑐 < 0 up to a 

certain number of neighbor pairs. The anti-ferroelectric couplings will strongly 

renormalize the direct interactions between the local electric dipoles, and even introduce 

frustrated interactions. Such an effect accounts for the suppression of the ordered moment 

in the ferroelectric phase. In the meantime, the excitation of itinerant electrons produces 

an imaginary part to the dynamical dielectric susceptibility χ(q, ω), that introduces a 

damping term to the local electric moments. Such a damping effect is similar to the one in 

the Hertz-Millis theory of spin density waves [7, 8], and is also known to suppress the 

ordered moment. As a result of the suppression of the ordered moment, the ordering 

process in LiOsO3 is much slower than that in the insulating ferroelectric compounds, as 

shown in Fig. 1D of the main text. In addition, the damping also suppresses the value of 



the dielectric susceptibility. Note that in the paraelectric phase,
1

T



=

−
, where 

~ ~ c

eff ij ijJ J J + . Curie-Weiss temperature θ is thus reduced by the coupling between 

local electric dipoles and itinerant electrons. On the other hand, the structural transition 

takes place when further couple the local dipoles to symmetry-related lattice distortions 

(due to the 𝐻𝜎−𝑝ℎterm), which makes Ts slightly larger than Jeff. As a result, the fitted 

Curie-Weiss temperature θ is smaller than Ts (see Fig. 2H of the main text). 

   The ferroelectric ordering also influences the transport properties of the itinerant 

electrons. As shown in Fig. 4D of the main text, the ferroelectric ordering turns on a 

channel of electron hopping via the Os-Li-Os path. This is a second-order effect, and 

modifies the electron dispersion by (−Δ𝑡𝑎
2𝜂2 𝜖𝐿𝑖⁄ )𝑠𝑖𝑛2(𝑘𝑧 2⁄ ), where Δ𝑡𝑎 is the change 

of hopping matrix associated with the ferroelectric ordering, and 𝜖𝐿𝑖 refers to the onsite 

energy of the Li+ ion. Note that such a term only modifies the dispersion of itinerant 

electrons along the 𝑘𝑧  direction and serves as an additional source of electronic 

anisotropy in the ferroelectric phase. In addition, the relaxation time associated with the 

Os-Li-Os scattering also changes, as the effect of Li+ disorder is diminished by the 

ferroelectric ordering. The additional electronic anisotropy in the ferroelectric phase is 

reflected in the change of slope of the measured Hall coefficient in Fig. 3 of the main 

text. 
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